Files
FastGPT/docSite/content/docs/installation/docker.md
2023-10-17 10:00:32 +08:00

163 lines
6.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: 'Docker Compose 快速部署'
description: '使用 Docker Compose 快速部署 FastGPT'
icon: ''
draft: false
toc: true
weight: 720
---
## 准备条件
服务器要求2C2G 起
### 1. 准备好代理环境(国外服务器可忽略)
确保可以访问 OpenAI具体方案可以参考[代理方案](/docs/installation/proxy/)。或直接在 Sealos 上 [部署 OneAPI](/docs/installation/one-api),既解决代理问题也能实现多 Key 轮询、接入其他大模型。
### 2. 多模型支持
FastGPT 使用了 one-api 项目来管理模型池,其可以兼容 OpenAI 、Azure 、国内主流模型和本地模型等。
可选择 [Sealos 快速部署 OneAPI](/docs/installation/one-api),更多部署方法可参考该项目的 [README](https://github.com/songquanpeng/one-api),也可以直接通过以下按钮一键部署:
[![](https://fastly.jsdelivr.net/gh/labring-actions/templates@main/Deploy-on-Sealos.svg)](https://cloud.sealos.io/?openapp=system-fastdeploy%3FtemplateName%3Done-api)
## 一、安装 Docker 和 docker-compose
{{< tabs tabTotal="3" >}}
{{< tab tabName="Linux" >}}
{{< markdownify >}}
```bash
# 安装 Docker
curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun
systemctl enable --now docker
# 安装 docker-compose
curl -L https://github.com/docker/compose/releases/download/2.20.3/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose
chmod +x /usr/local/bin/docker-compose
# 验证安装
docker -v
docker-compose -v
# 如失效,自行百度~
```
{{< /markdownify >}}
{{< /tab >}}
{{< tab tabName="MacOS" >}}
{{< markdownify >}}
推荐直接使用 [Orbstack](https://orbstack.dev/)。可直接通过 Homebrew 来安装:
```bash
brew install orbstack
```
或者直接[下载安装包](https://orbstack.dev/download)进行安装。
{{< /markdownify >}}
{{< /tab >}}
{{< tab tabName="Windows" >}}
{{< markdownify >}}
我们建议将源代码和其他数据绑定到 Linux 容器中时,将其存储在 Linux 文件系统中,而不是 Windows 文件系统中。
可以选择直接[使用 WSL 2 后端在 Windows 中安装 Docker Desktop](https://docs.docker.com/desktop/wsl/)。
也可以直接[在 WSL 2 中安装命令行版本的 Docker](https://nickjanetakis.com/blog/install-docker-in-wsl-2-without-docker-desktop)。
{{< /markdownify >}}
{{< /tab >}}
{{< /tabs >}}
## 二、创建目录并下载 docker-compose.yml
依次执行下面命令,创建 FastGPT 文件并拉取`docker-compose.yml``config.json`,执行完后目录下会有 2 个文件。
非 Linux 环境或无法访问外网环境可手动创建一个目录并下载下面2个链接的文件: [docker-compose.yml](https://github.com/labring/FastGPT/blob/main/files/deploy/fastgpt/docker-compose.yml),[config.json](https://github.com/labring/FastGPT/blob/main/projects/app/data/config.json)
**注意: `docker-compose.yml` 配置文件中 Mongo 为 5.x部分服务器不支持需手动更改其镜像版本为 4.4.24**
```bash
mkdir fastgpt
cd fastgpt
curl -O https://raw.githubusercontent.com/labring/FastGPT/main/files/deploy/fastgpt/docker-compose.yml
curl -O https://raw.githubusercontent.com/labring/FastGPT/main/projects/app/data/config.json
```
## 三、启动容器
修改`docker-compose.yml`中的`OPENAI_BASE_URL``CHAT_API_KEY`即可,对应为 API 的地址和 key。
```bash
# 在 docker-compose.yml 同级目录下执行
docker-compose pull
docker-compose up -d
```
## 四、访问 FastGPT
目前可以通过 `ip:3000` 直接访问(注意防火墙)。登录用户名为 `root`,密码为`docker-compose.yml`环境变量里设置的 `DEFAULT_ROOT_PSW`
如果需要域名访问,请自行安装并配置 Nginx。
## QA
### 如何更新?
执行下面命令会自动拉取最新镜像,一般情况下不需要执行额外操作。
```bash
docker-compose pull
docker-compose up -d
```
### 如何自定义配置文件?
修改`config.json`文件,并执行`docker-compose up -d`重起容器。具体配置,参考[配置详解](/docs/development/configuration)。
### 如何检查自定义配置文件是否挂载
1. `docker logs fastgpt` 可以查看日志,在启动容器后,第一次请求网页,会进行配置文件读取,可以看看有没有读取成功以及有无错误日志。
2. `docker exec -it fastgpt sh` 进入 FastGPT 容器,可以通过`ls data`查看目录下是否成功挂载`config.json`文件。可通过`cat data/config.json`查看配置文件。
**可能不生效的原因**
1. 挂载目录不正确
2. 配置文件不正确,日志中会提示`invalid json`,配置文件需要是标准的 JSON 文件。
### 为什么无法连接`本地模型`镜像。
`docker-compose.yml`中使用了桥接的模式建立了`fastgpt`网络如想通过0.0.0.0或镜像名访问其它镜像,需将其它镜像也加入到网络中。
### 端口冲突怎么解决?
docker-compose 端口定义为:`映射端口:运行端口`
桥接模式下,容器运行端口不会有冲突,但是会有映射端口冲突,只需将映射端口修改成不同端口即可。
如果`容器1`需要连接`容器2`,使用`容器2:运行端口`来进行连接即可。
(自行补习 docker 基本知识)
### relation "modeldata" does not exist
PG 数据库没有连接上/初始化失败可以查看日志。FastGPT 会在每次连接上 PG 时进行表初始化,如果报错会有对应日志。
1. 检查数据库容器是否正常启动
2. 非 docker 部署的,需要手动安装 pg vector 插件
3. 查看 fastgpt 日志,有没有相关报错
### Operation `auth_codes.findOne()` buffering timed out after 10000ms
mongo连接失败检查
1. mongo 服务有没有起来(有些 cpu 不支持 AVX无法用 mongo5需要换成 mongo4.x可以dockerhub找个最新的4.x修改镜像版本重新运行
2. 环境变量账号密码注意host和port
### 错误排查方式
遇到问题先按下面方式排查。
1. `docker ps -a` 查看所有容器运行状态,检查是否全部 running如有异常尝试`docker logs 容器名`查看对应日志。
2. 不懂 docker 不要瞎改端口,只需要改`OPENAI_BASE_URL``CHAT_API_KEY`即可。