mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-21 11:43:56 +00:00
v4.5 (#403)
This commit is contained in:
@@ -9,14 +9,12 @@ ARG name
|
||||
# copy packages and one project
|
||||
COPY package.json pnpm-lock.yaml pnpm-workspace.yaml ./
|
||||
COPY ./packages ./packages
|
||||
COPY ./projects/$name ./projects/$name
|
||||
COPY ./projects/$name/package.json ./projects/$name/package.json
|
||||
|
||||
RUN \
|
||||
[ -f pnpm-lock.yaml ] && pnpm install || \
|
||||
(echo "Lockfile not found." && exit 1)
|
||||
|
||||
RUN pnpm prune
|
||||
|
||||
# Rebuild the source code only when needed
|
||||
FROM node:current-alpine AS builder
|
||||
WORKDIR /app
|
||||
@@ -24,9 +22,11 @@ WORKDIR /app
|
||||
ARG name
|
||||
|
||||
# copy common node_modules and one project node_modules
|
||||
COPY package.json pnpm-workspace.yaml ./
|
||||
COPY --from=deps /app/node_modules ./node_modules
|
||||
COPY --from=deps /app/packages ./packages
|
||||
COPY --from=deps /app/projects/$name ./projects/$name
|
||||
COPY ./projects/$name ./projects/$name
|
||||
COPY --from=deps /app/projects/$name/node_modules ./projects/$name/node_modules
|
||||
|
||||
# Uncomment the following line in case you want to disable telemetry during the build.
|
||||
ENV NEXT_TELEMETRY_DISABLED 1
|
||||
|
BIN
docSite/assets/imgs/v45-1.png
Normal file
BIN
docSite/assets/imgs/v45-1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.3 MiB |
BIN
docSite/assets/imgs/v45-2.png
Normal file
BIN
docSite/assets/imgs/v45-2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 286 KiB |
BIN
docSite/assets/imgs/v45-3.png
Normal file
BIN
docSite/assets/imgs/v45-3.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 382 KiB |
BIN
docSite/assets/imgs/v45-4.png
Normal file
BIN
docSite/assets/imgs/v45-4.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 289 KiB |
@@ -63,15 +63,15 @@ Authorization 为 sk-aaabbbcccdddeeefffggghhhiiijjjkkk。model 为刚刚在 One
|
||||
|
||||
```json
|
||||
"ChatModels": [
|
||||
//已有模型
|
||||
//其他对话模型
|
||||
{
|
||||
"model": "chatglm2",
|
||||
"name": "chatglm2",
|
||||
"contextMaxToken": 8000,
|
||||
"maxToken": 8000,
|
||||
"price": 0,
|
||||
"quoteMaxToken": 4000,
|
||||
"maxTemperature": 1.2,
|
||||
"price": 0,
|
||||
"defaultSystem": ""
|
||||
"defaultSystemChatPrompt": ""
|
||||
}
|
||||
],
|
||||
"VectorModels": [
|
||||
|
@@ -107,11 +107,11 @@ Authorization 为 sk-aaabbbcccdddeeefffggghhhiiijjjkkk。model 为刚刚在 One
|
||||
{
|
||||
"model": "chatglm2",
|
||||
"name": "chatglm2",
|
||||
"contextMaxToken": 8000,
|
||||
"maxToken": 8000,
|
||||
"price": 0,
|
||||
"quoteMaxToken": 4000,
|
||||
"maxTemperature": 1.2,
|
||||
"price": 0,
|
||||
"defaultSystem": ""
|
||||
"defaultSystemChatPrompt": ""
|
||||
}
|
||||
]
|
||||
```
|
||||
|
@@ -27,31 +27,75 @@ weight: 520
|
||||
},
|
||||
"ChatModels": [
|
||||
{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"name": "GPT35-4k",
|
||||
"contextMaxToken": 4000, // 最大token,均按 gpt35 计算
|
||||
"model": "gpt-3.5-turbo", // 实际调用的模型
|
||||
"name": "GPT35-4k", // 展示的名字
|
||||
"maxToken": 4000, // 最大token,均按 gpt35 计算
|
||||
"quoteMaxToken": 2000, // 引用内容最大 token
|
||||
"maxTemperature": 1.2, // 最大温度
|
||||
"price": 0,
|
||||
"defaultSystem": ""
|
||||
"defaultSystemChatPrompt": ""
|
||||
},
|
||||
{
|
||||
"model": "gpt-3.5-turbo-16k",
|
||||
"name": "GPT35-16k",
|
||||
"contextMaxToken": 16000,
|
||||
"maxToken": 16000,
|
||||
"quoteMaxToken": 8000,
|
||||
"maxTemperature": 1.2,
|
||||
"price": 0,
|
||||
"defaultSystem": ""
|
||||
"defaultSystemChatPrompt": ""
|
||||
},
|
||||
{
|
||||
"model": "gpt-4",
|
||||
"name": "GPT4-8k",
|
||||
"contextMaxToken": 8000,
|
||||
"maxToken": 8000,
|
||||
"quoteMaxToken": 4000,
|
||||
"maxTemperature": 1.2,
|
||||
"price": 0,
|
||||
"defaultSystem": ""
|
||||
"defaultSystemChatPrompt": ""
|
||||
}
|
||||
],
|
||||
"QAModel": [ // QA 拆分模型
|
||||
{
|
||||
"model": "gpt-3.5-turbo-16k",
|
||||
"name": "GPT35-16k",
|
||||
"maxToken": 16000,
|
||||
"price": 0
|
||||
}
|
||||
],
|
||||
"ExtractModels": [ // 内容提取模型
|
||||
{
|
||||
"model": "gpt-3.5-turbo-16k",
|
||||
"name": "GPT35-16k",
|
||||
"maxToken": 16000,
|
||||
"price": 0,
|
||||
"functionCall": true, // 是否支持 function call
|
||||
"functionPrompt": "" // 自定义非 function call 提示词
|
||||
}
|
||||
],
|
||||
"CQModels": [ // Classify Question: 问题分类模型
|
||||
{
|
||||
"model": "gpt-3.5-turbo-16k",
|
||||
"name": "GPT35-16k",
|
||||
"maxToken": 16000,
|
||||
"price": 0,
|
||||
"functionCall": true,
|
||||
"functionPrompt": ""
|
||||
},
|
||||
{
|
||||
"model": "gpt-4",
|
||||
"name": "GPT4-8k",
|
||||
"maxToken": 8000,
|
||||
"price": 0,
|
||||
"functionCall": true,
|
||||
"functionPrompt": ""
|
||||
}
|
||||
],
|
||||
"QGModels": [ // Question Generation: 生成下一步指引模型
|
||||
{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"name": "GPT35-4k",
|
||||
"maxToken": 4000,
|
||||
"price": 0
|
||||
}
|
||||
],
|
||||
"VectorModels": [
|
||||
@@ -62,36 +106,6 @@ weight: 520
|
||||
"defaultToken": 500,
|
||||
"maxToken": 3000
|
||||
}
|
||||
],
|
||||
"QAModel": { // QA 拆分模型
|
||||
"model": "gpt-3.5-turbo-16k",
|
||||
"name": "GPT35-16k",
|
||||
"maxToken": 16000,
|
||||
"price": 0
|
||||
},
|
||||
"ExtractModel": { // 内容提取模型
|
||||
"model": "gpt-3.5-turbo-16k",
|
||||
"functionCall": true, // 是否使用 functionCall
|
||||
"name": "GPT35-16k",
|
||||
"maxToken": 16000,
|
||||
"price": 0,
|
||||
"prompt": ""
|
||||
},
|
||||
"CQModel": { // Classify Question: 问题分类模型
|
||||
"model": "gpt-3.5-turbo-16k",
|
||||
"functionCall": true,
|
||||
"name": "GPT35-16k",
|
||||
"maxToken": 16000,
|
||||
"price": 0,
|
||||
"prompt": ""
|
||||
},
|
||||
"QGModel": { // Question Generation: 生成下一步指引模型
|
||||
"model": "gpt-3.5-turbo",
|
||||
"name": "GPT35-4k",
|
||||
"maxToken": 4000,
|
||||
"price": 0,
|
||||
"prompt": "",
|
||||
"functionCall": false
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
@@ -139,6 +139,21 @@ docker-compose 端口定义为:`映射端口:运行端口`。
|
||||
|
||||
(自行补习 docker 基本知识)
|
||||
|
||||
### relation "modeldata" does not exist
|
||||
|
||||
PG 数据库没有连接上/初始化失败,可以查看日志。FastGPT 会在每次连接上 PG 时进行表初始化,如果报错会有对应日志。
|
||||
|
||||
1. 检查数据库容器是否正常启动
|
||||
2. 非 docker 部署的,需要手动安装 pg vector 插件
|
||||
3. 查看 fastgpt 日志,有没有相关报错
|
||||
|
||||
### Operation `auth_codes.findOne()` buffering timed out after 10000ms
|
||||
|
||||
mongo连接失败,检查
|
||||
1. mongo 服务有没有起来(有些 cpu 不支持 AVX,无法用 mongo5,需要换成 mongo4.x,可以dockerhub找个最新的4.x,修改镜像版本,重新运行)
|
||||
2. 环境变量(账号密码,注意host和port)
|
||||
|
||||
|
||||
### 错误排查方式
|
||||
|
||||
遇到问题先按下面方式排查。
|
||||
|
@@ -99,12 +99,12 @@ CHAT_API_KEY=sk-xxxxxx
|
||||
{
|
||||
"model": "ERNIE-Bot", // 这里的模型需要对应 One API 的模型
|
||||
"name": "文心一言", // 对外展示的名称
|
||||
"contextMaxToken": 4000, // 最大长下文 token,无论什么模型都按 GPT35 的计算。GPT 外的模型需要自行大致计算下这个值。可以调用官方接口去比对 Token 的倍率,然后在这里粗略计算。
|
||||
"maxToken": 4000, // 最大长下文 token,无论什么模型都按 GPT35 的计算。GPT 外的模型需要自行大致计算下这个值。可以调用官方接口去比对 Token 的倍率,然后在这里粗略计算。
|
||||
// 例如:文心一言的中英文 token 基本是 1:1,而 GPT 的中文 Token 是 2:1,如果文心一言官方最大 Token 是 4000,那么这里就可以填 8000,保险点就填 7000.
|
||||
"price": 0, // 1个token 价格 => 1.5 / 100000 * 1000 = 0.015元/1k token
|
||||
"quoteMaxToken": 2000, // 引用知识库的最大 Token
|
||||
"maxTemperature": 1, // 最大温度
|
||||
"price": 0, // 1个token 价格 => 1.5 / 100000 * 1000 = 0.015元/1k token
|
||||
"defaultSystem": "" // 默认的系统提示词
|
||||
"defaultSystemChatPrompt": "" // 默认的系统提示词
|
||||
}
|
||||
...
|
||||
],
|
||||
|
84
docSite/content/docs/installation/upgrading/45.md
Normal file
84
docSite/content/docs/installation/upgrading/45.md
Normal file
@@ -0,0 +1,84 @@
|
||||
---
|
||||
title: 'V4.5(需进行较为复杂更新)'
|
||||
description: 'FastGPT V4.5 更新'
|
||||
icon: 'upgrade'
|
||||
draft: false
|
||||
toc: true
|
||||
weight: 839
|
||||
---
|
||||
|
||||
FastGPT V4.5 引入 PgVector0.5 版本的 HNSW 索引,极大的提高了知识库检索的速度,比起`IVFFlat`索引大致有3~10倍的性能提升,可轻松实现百万数据毫秒级搜索。缺点在于构建索引的速度非常慢,4c16g 500w 组数据使用`并行构建`大约花了 48 小时。具体参数配置可参考 [PgVector官方](https://github.com/pgvector/pgvector)
|
||||
|
||||
下面需要对数据库进行一些操作升级:
|
||||
|
||||
## PgVector升级:Sealos 部署方案
|
||||
|
||||
1. 点击[Sealos桌面](https://cloud.sealos.io)的数据库应用。
|
||||
2. 点击【pg】数据库的详情。
|
||||
3. 点击右上角的重启,等待重启完成。
|
||||
4. 点击左侧的一键链接,等待打开 Terminal。
|
||||
5. 依次输入下方 sql 命令
|
||||
|
||||
```sql
|
||||
-- 升级插件名
|
||||
ALTER EXTENSION vector UPDATE;
|
||||
-- 插件是否升级成功,成功的话,vector插件版本为 0.5.0,旧版的为 0.4.1
|
||||
\dx
|
||||
|
||||
-- 下面两个语句会设置 pg 在构建索引时可用的内存大小,需根据自身的数据库规格来动态配置,可配置为 1/4 的内存大小
|
||||
alter system set maintenance_work_mem = '2400MB';
|
||||
select pg_reload_conf();
|
||||
|
||||
-- 开始构建索引,该索引构建时间非常久,直接点击右上角的叉,退出 Terminal 即可
|
||||
CREATE INDEX CONCURRENTLY vector_index ON modeldata USING hnsw (vector vector_ip_ops) WITH (m = 16, ef_construction = 64);
|
||||
-- 可以再次点击一键链接,进入 Terminal,输入下方命令,如果看到 "vector_index" hnsw (vector vector_ip_ops) WITH (m='16', ef_construction='64') 则代表构建完成(注意,后面没有 INVALID)
|
||||
\d modeldata
|
||||
```
|
||||
|
||||
| | |
|
||||
| --------------------- | --------------------- |
|
||||
|  |  |
|
||||
|  |  |
|
||||
|
||||
|
||||
|
||||
## PgVector升级:Docker-compose.yml 部署方案
|
||||
|
||||
下面的命令是基于给的 docker-compose 模板,如果数据库账号密码更换了,请自行调整。
|
||||
|
||||
1. 修改 `docker-compose.yml` 中pg的镜像版本,改成 `ankane/pgvector:v0.5.0` 或 `registry.cn-hangzhou.aliyuncs.com/fastgpt/pgvector:v0.5.0`
|
||||
2. 重启 pg 容器(docker-compose pull && docker-compose up -d),等待重启完成。
|
||||
3. 进入容器: `docker exec -it pg bash`
|
||||
4. 连接数据库: `psql 'postgresql://username:password@localhost:5432/postgres'`
|
||||
5. 执行下面 sql 命令
|
||||
|
||||
```sql
|
||||
-- 升级插件名
|
||||
ALTER EXTENSION vector UPDATE;
|
||||
-- 插件是否升级成功,成功的话,vector插件版本为 0.5.0,旧版的为 0.4.2
|
||||
\dx
|
||||
|
||||
-- 下面两个语句会设置 pg 在构建索引时可用的内存大小,需根据自身的数据库规格来动态配置,可配置为 1/4 的内存大小
|
||||
alter system set maintenance_work_mem = '2400MB';
|
||||
select pg_reload_conf();
|
||||
|
||||
-- 开始构建索引,该索引构建时间非常久,直接关掉终端即可,不要使用 ctrl+c 关闭
|
||||
CREATE INDEX CONCURRENTLY vector_index ON modeldata USING hnsw (vector vector_ip_ops) WITH (m = 16, ef_construction = 64);
|
||||
-- 可以再次连接数据库,输入下方命令。如果看到 "vector_index" hnsw (vector vector_ip_ops) WITH (m='16', ef_construction='64') 则代表构建完成(注意,后面没有 INVALID)
|
||||
\d modeldata
|
||||
```
|
||||
|
||||
## 版本新功能介绍
|
||||
|
||||
### Fast GPT V4.5
|
||||
|
||||
1. 新增 - 升级 PgVector 插件,引入 HNSW 索引,极大加快的知识库搜索速度。
|
||||
2. 新增 - AI对话模块,增加【返回AI内容】选项,可控制 AI 的内容不直接返回浏览器。
|
||||
3. 新增 - 支持问题分类选择模型
|
||||
4. 优化 - TextSplitter,采用递归拆解法。
|
||||
5. 优化 - 高级编排 UX 性能
|
||||
6. 修复 - 分享链接鉴权问题
|
||||
|
||||
## 该版本需要修改 `config.json` 文件
|
||||
|
||||
最新配置可参考: [V45版本最新 config.json](/docs/development/configuration)
|
94
docSite/content/docs/use-cases/ai_settings.md
Normal file
94
docSite/content/docs/use-cases/ai_settings.md
Normal file
@@ -0,0 +1,94 @@
|
||||
---
|
||||
title: "AI 高级配置说明"
|
||||
description: "FastGPT AI 高级配置说明"
|
||||
icon: "sign_language"
|
||||
draft: false
|
||||
toc: true
|
||||
weight: 310
|
||||
---
|
||||
|
||||
在 FastGPT 的 AI 对话模块中,有一个 AI 高级配置,里面包含了 AI 模型的参数配置,本文详细介绍这些配置的含义。
|
||||
|
||||
# 返回AI内容
|
||||
|
||||
这是一个开关,打开的时候,当 AI 对话模块运行时,会将其输出的内容返回到浏览器(API响应);如果关闭,AI 输出的内容不会返回到浏览器,但是生成的内容仍可以通过【AI回复】进行输出。你可以将【AI回复】连接到其他模块中。
|
||||
|
||||
# 温度
|
||||
|
||||
可选范围0-10,约大代表生成的内容约自由扩散,越小代表约严谨。调节能力有限,知识库问答场景通常设置为0。
|
||||
|
||||
# 回复上限
|
||||
|
||||
控制 AI 回复的最大 Tokens,较小的值可以一定程度上减少 AI 的废话,但也可能导致 AI 回复不完整。
|
||||
|
||||
# 引用模板 & 引用提示词
|
||||
|
||||
这两个参数与知识库问答场景相关,可以控制知识库相关的提示词。
|
||||
|
||||
## AI 对话消息组成
|
||||
|
||||
想使用明白这两个变量,首先要了解传递传递给 AI 模型的消息格式。它是一个数组,FastGPT 中这个数组的组成形式为:
|
||||
|
||||
```json
|
||||
[
|
||||
内置提示词(config.json 配置,一般为空)
|
||||
系统提示词 (用户输入的提示词)
|
||||
历史记录
|
||||
问题(由引用提示词、引用模板和用户问题组成)
|
||||
]
|
||||
```
|
||||
|
||||
{{% alert icon="🍅" context="success" %}}
|
||||
Tips: 可以通过点击上下文按键查看完整的
|
||||
{{% /alert %}}
|
||||
|
||||
## 引用模板和提示词设计
|
||||
|
||||
引用模板和引用提示词通常是成对出现,引用提示词依赖引用模板。
|
||||
|
||||
FastGPT 知识库采用 QA 对(不一定都是问答格式,仅代表两个变量)的格式存储,在转义成字符串时候会根据**引用模板**来进行格式化。知识库包含 3 个变量: q, a, file_id, index, source,可以通过 {{q}} {{a}} {{file_id}} {{index}} {{source}} 按需引入。下面一个模板例子:
|
||||
|
||||
**引用模板**
|
||||
|
||||
```
|
||||
{instruction:"{{q}}",output:"{{a}}",source:"{{source}}"}
|
||||
```
|
||||
|
||||
搜索到的知识库,会自动将 q,a,source 替换成对应的内容。每条搜索到的内容,会通过 `\n` 隔开。例如:
|
||||
```
|
||||
{instruction:"电影《铃芽之旅》的导演是谁?",output:"电影《铃芽之旅》的导演是新海诚。",source:"手动输入"}
|
||||
{instruction:"本作的主人公是谁?",output:"本作的主人公是名叫铃芽的少女。",source:""}
|
||||
{instruction:"电影《铃芽之旅》男主角是谁?",output:"电影《铃芽之旅》男主角是宗像草太,由松村北斗配音。",source:""}
|
||||
{instruction:"电影《铃芽之旅》的编剧是谁?22",output:"新海诚是本片的编剧。",source:"手动输入"}
|
||||
```
|
||||
|
||||
**引用提示词**
|
||||
|
||||
引用模板需要和引用提示词一起使用,提示词中可以写引用模板的格式说明以及对话的要求等。可以使用 {{quote}} 来使用 **引用模板**,使用 {{question}} 来引入问题。例如:
|
||||
|
||||
```
|
||||
你的背景知识:
|
||||
"""
|
||||
{{quote}}
|
||||
"""
|
||||
对话要求:
|
||||
1. 背景知识是最新的,其中 instruction 是相关介绍,output 是预期回答或补充。
|
||||
2. 使用背景知识回答问题。
|
||||
3. 背景知识无法回答问题时,你可以礼貌的的回答用户问题。
|
||||
我的问题是:"{{question}}"
|
||||
```
|
||||
|
||||
转义后则为:
|
||||
```
|
||||
你的背景知识:
|
||||
"""
|
||||
{instruction:"电影《铃芽之旅》的导演是谁?",output:"电影《铃芽之旅》的导演是新海诚。",source:"手动输入"}
|
||||
{instruction:"本作的主人公是谁?",output:"本作的主人公是名叫铃芽的少女。",source:""}
|
||||
{instruction:"电影《铃芽之旅》男主角是谁?",output:"电影《铃芽之旅》男主角是宗像草太,由松村北斗配音}
|
||||
"""
|
||||
对话要求:
|
||||
1. 背景知识是最新的,其中 instruction 是相关介绍,output 是预期回答或补充。
|
||||
2. 使用背景知识回答问题。
|
||||
3. 背景知识无法回答问题时,你可以礼貌的的回答用户问题。
|
||||
我的问题是:"{{question}}"
|
||||
```
|
@@ -1,109 +0,0 @@
|
||||
---
|
||||
title: "提示词 & 引用提示词"
|
||||
description: "FastGPT 提示词 & 引用提示词说明"
|
||||
icon: "sign_language"
|
||||
draft: false
|
||||
toc: true
|
||||
weight: 310
|
||||
---
|
||||
|
||||
限定词从 V4.4.3 版本后去除,被“引用提示词”和“引用模板”替代。
|
||||
|
||||
# AI 对话消息组成
|
||||
|
||||
传递给 AI 模型的消息是一个数组,FastGPT 中这个数组的组成形式为:
|
||||
|
||||
```json
|
||||
[
|
||||
内置提示词(config.json 配置,一般为空)
|
||||
提示词 (用户输入的提示词)
|
||||
历史记录
|
||||
问题(会由输入的问题、引用提示词和引用模板来决定)
|
||||
]
|
||||
```
|
||||
|
||||
{{% alert icon="🍅" context="success" %}}
|
||||
Tips: 可以通过点击上下文按键查看完整的
|
||||
{{% /alert %}}
|
||||
|
||||
# 引用模板和提示词设计
|
||||
|
||||
知识库采用 QA 对的格式存储,在转义成字符串时候会根据**引用模板**来进行格式化。知识库包含 3 个变量: q,a 和 source,可以通过 {{q}} {{a}} {{source}} 按需引入。下面一个模板例子:
|
||||
|
||||
**引用模板**
|
||||
|
||||
```
|
||||
{instruction:"{{q}}",output:"{{a}}",source:"{{source}}"}
|
||||
```
|
||||
|
||||
搜索到的知识库,会自动将 q,a,source 替换成对应的内容。每条搜索到的内容,会通过 `\n` 隔开。例如:
|
||||
```
|
||||
{instruction:"电影《铃芽之旅》的导演是谁?",output:"电影《铃芽之旅》的导演是新海诚。",source:"手动输入"}
|
||||
{instruction:"本作的主人公是谁?",output:"本作的主人公是名叫铃芽的少女。",source:""}
|
||||
{instruction:"电影《铃芽之旅》男主角是谁?",output:"电影《铃芽之旅》男主角是宗像草太,由松村北斗配音。",source:""}
|
||||
{instruction:"电影《铃芽之旅》的编剧是谁?22",output:"新海诚是本片的编剧。",source:"手动输入"}
|
||||
```
|
||||
|
||||
**引用提示词**
|
||||
|
||||
引用模板需要和引用提示词一起使用,提示词中可以写引用模板的格式说明以及对话的要求等。可以使用 {{quote}} 来使用 **引用模板**,使用 {{question}} 来引入问题。例如:
|
||||
|
||||
```
|
||||
你的背景知识:
|
||||
"""
|
||||
{{quote}}
|
||||
"""
|
||||
对话要求:
|
||||
1. 背景知识是最新的,其中 instruction 是相关介绍,output 是预期回答或补充。
|
||||
2. 使用背景知识回答问题。
|
||||
3. 背景知识无法回答问题时,你可以礼貌的的回答用户问题。
|
||||
我的问题是:"{{question}}"
|
||||
```
|
||||
|
||||
|
||||
# 提示词案例
|
||||
|
||||
## 仅回复知识库里的内容
|
||||
|
||||
**引用提示词**里添加:
|
||||
```
|
||||
你的背景知识:
|
||||
"""
|
||||
{{quote}}
|
||||
"""
|
||||
对话要求:
|
||||
1. 回答前,请先判断背景知识是否足够回答问题,如果无法回答,请直接回复:“对不起,我无法回答你的问题~”。
|
||||
2. 背景知识是最新的,其中 instruction 是相关介绍,output 是预期回答或补充。
|
||||
3. 使用背景知识回答问题。
|
||||
我的问题是:"{{question}}"
|
||||
```
|
||||
|
||||
## 说明引用来源
|
||||
|
||||
**引用模板:**
|
||||
|
||||
```
|
||||
{instruction:"{{q}}",output:"{{a}}",source:"{{source}}"}
|
||||
```
|
||||
|
||||
**引用提示词:**
|
||||
|
||||
```
|
||||
你的背景知识:
|
||||
"""
|
||||
{{quote}}
|
||||
"""
|
||||
对话要求:
|
||||
1. 背景知识是最新的,其中 instruction 是相关介绍,output 是预期回答或补充,source是背景来源。
|
||||
2. 使用背景知识回答问题。
|
||||
3. 在回答问题后,你需要给出本次回答对应的背景来源,来源展示格式如下:
|
||||
|
||||
“
|
||||
这是AI作答。本次知识来源:
|
||||
1. source1
|
||||
2. source2
|
||||
......
|
||||
”
|
||||
|
||||
我的问题是:"{{question}}"
|
||||
```
|
@@ -232,7 +232,7 @@ weight: 142
|
||||
"outputs": [
|
||||
{
|
||||
"key": "answerText",
|
||||
"label": "模型回复",
|
||||
"label": "AI回复",
|
||||
"description": "将在 stream 回复完毕后触发",
|
||||
"valueType": "string",
|
||||
"type": "source",
|
||||
|
@@ -432,7 +432,7 @@ export default async function (ctx: FunctionContext) {
|
||||
"outputs": [
|
||||
{
|
||||
"key": "answerText",
|
||||
"label": "模型回复",
|
||||
"label": "AI回复",
|
||||
"description": "直接响应,无需配置",
|
||||
"type": "hidden",
|
||||
"targets": []
|
||||
|
@@ -751,7 +751,7 @@ HTTP 模块允许你调用任意 POST 类型的 HTTP 接口,从而实验一些
|
||||
"outputs": [
|
||||
{
|
||||
"key": "answerText",
|
||||
"label": "模型回复",
|
||||
"label": "模型AI回复回复",
|
||||
"description": "将在 stream 回复完毕后触发",
|
||||
"valueType": "string",
|
||||
"type": "source",
|
||||
|
@@ -313,7 +313,7 @@ weight: 144
|
||||
"outputs": [
|
||||
{
|
||||
"key": "answerText",
|
||||
"label": "模型回复",
|
||||
"label": "AI回复",
|
||||
"description": "将在 stream 回复完毕后触发",
|
||||
"valueType": "string",
|
||||
"type": "source",
|
||||
|
@@ -745,7 +745,7 @@ PS2:配置中的问题分类还包含着“联网搜索”,这个是另一
|
||||
"outputs": [
|
||||
{
|
||||
"key": "answerText",
|
||||
"label": "模型回复",
|
||||
"label": "AI回复",
|
||||
"description": "将在 stream 回复完毕后触发",
|
||||
"valueType": "string",
|
||||
"type": "source",
|
||||
@@ -903,7 +903,7 @@ PS2:配置中的问题分类还包含着“联网搜索”,这个是另一
|
||||
"outputs": [
|
||||
{
|
||||
"key": "answerText",
|
||||
"label": "模型回复",
|
||||
"label": "AI回复",
|
||||
"description": "将在 stream 回复完毕后触发",
|
||||
"valueType": "string",
|
||||
"type": "source",
|
||||
@@ -1117,7 +1117,7 @@ PS2:配置中的问题分类还包含着“联网搜索”,这个是另一
|
||||
"outputs": [
|
||||
{
|
||||
"key": "answerText",
|
||||
"label": "模型回复",
|
||||
"label": "AI回复",
|
||||
"description": "将在 stream 回复完毕后触发",
|
||||
"valueType": "string",
|
||||
"type": "source",
|
||||
@@ -1484,7 +1484,7 @@ PS2:配置中的问题分类还包含着“联网搜索”,这个是另一
|
||||
"outputs": [
|
||||
{
|
||||
"key": "answerText",
|
||||
"label": "模型回复",
|
||||
"label": "AI回复",
|
||||
"description": "将在 stream 回复完毕后触发",
|
||||
"valueType": "string",
|
||||
"type": "source",
|
||||
|
@@ -29,7 +29,9 @@ export async function connectMongo({
|
||||
bufferCommands: true,
|
||||
maxConnecting: Number(process.env.DB_MAX_LINK || 5),
|
||||
maxPoolSize: Number(process.env.DB_MAX_LINK || 5),
|
||||
minPoolSize: 2
|
||||
minPoolSize: 2,
|
||||
connectTimeoutMS: 20000,
|
||||
waitQueueTimeoutMS: 20000
|
||||
});
|
||||
|
||||
console.log('mongo connected');
|
||||
|
@@ -5,7 +5,9 @@
|
||||
"mongoose": "^7.0.2",
|
||||
"winston": "^3.10.0",
|
||||
"winston-mongodb": "^5.1.1",
|
||||
"axios": "^1.5.1"
|
||||
"axios": "^1.5.1",
|
||||
"nextjs-cors": "^2.1.2",
|
||||
"next": "13.5.2"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/node": "^20.8.5"
|
||||
|
19
packages/common/tools/nextjs.ts
Normal file
19
packages/common/tools/nextjs.ts
Normal file
@@ -0,0 +1,19 @@
|
||||
import type { NextApiResponse, NextApiHandler, NextApiRequest } from 'next';
|
||||
import NextCors from 'nextjs-cors';
|
||||
|
||||
export function withNextCors(handler: NextApiHandler): NextApiHandler {
|
||||
return async function nextApiHandlerWrappedWithNextCors(
|
||||
req: NextApiRequest,
|
||||
res: NextApiResponse
|
||||
) {
|
||||
const methods = ['GET', 'eHEAD', 'PUT', 'PATCH', 'POST', 'DELETE'];
|
||||
const origin = req.headers.origin;
|
||||
await NextCors(req, res, {
|
||||
methods,
|
||||
origin: origin,
|
||||
optionsSuccessStatus: 200
|
||||
});
|
||||
|
||||
return handler(req, res);
|
||||
};
|
||||
}
|
@@ -13,20 +13,10 @@ export const hashStr = (psw: string) => {
|
||||
/* simple text, remove chinese space and extra \n */
|
||||
export const simpleText = (text: string) => {
|
||||
text = text.replace(/([\u4e00-\u9fa5])[\s&&[^\n]]+([\u4e00-\u9fa5])/g, '$1$2');
|
||||
text = text.replace(/\n{2,}/g, '\n');
|
||||
text = text.replace(/\n{3,}/g, '\n\n');
|
||||
text = text.replace(/[\s&&[^\n]]{2,}/g, ' ');
|
||||
text = text.replace(/[\x00-\x08]/g, ' ');
|
||||
text = text.replace(/\r\n|\r/g, '\n');
|
||||
|
||||
// replace empty \n
|
||||
let newText = '';
|
||||
let lastChar = '';
|
||||
for (let i = 0; i < text.length; i++) {
|
||||
const currentChar = text[i];
|
||||
if (currentChar === '\n' && !/[。?!;.?!;]/g.test(lastChar)) {
|
||||
} else {
|
||||
newText += currentChar;
|
||||
}
|
||||
lastChar = currentChar;
|
||||
}
|
||||
return newText;
|
||||
return text;
|
||||
};
|
||||
|
@@ -11,6 +11,7 @@ export const getAIApi = (props?: UserModelSchema['openaiAccount'], timeout = 600
|
||||
apiKey: props?.key || systemAIChatKey,
|
||||
baseURL: props?.baseUrl || baseUrl,
|
||||
httpAgent: global.httpsAgent,
|
||||
timeout
|
||||
timeout,
|
||||
maxRetries: 2
|
||||
});
|
||||
};
|
||||
|
6
packages/core/ai/type.d.ts
vendored
6
packages/core/ai/type.d.ts
vendored
@@ -4,3 +4,9 @@ export type ChatCompletion = OpenAI.Chat.ChatCompletion;
|
||||
export type CreateChatCompletionRequest = OpenAI.Chat.ChatCompletionCreateParams;
|
||||
|
||||
export type StreamChatType = Stream<OpenAI.Chat.ChatCompletionChunk>;
|
||||
|
||||
export type PromptTemplateItem = {
|
||||
title: string;
|
||||
desc: string;
|
||||
value: string;
|
||||
};
|
||||
|
@@ -5,7 +5,7 @@
|
||||
"@fastgpt/common": "workspace:*",
|
||||
"@fastgpt/support": "workspace:*",
|
||||
"encoding": "^0.1.13",
|
||||
"openai": "^4.11.1",
|
||||
"openai": "^4.12.1",
|
||||
"tunnel": "^0.0.6"
|
||||
},
|
||||
"devDependencies": {
|
||||
|
@@ -63,5 +63,6 @@ export type AuthShareChatInitProps = {
|
||||
};
|
||||
|
||||
export function authShareChatInit(data: AuthShareChatInitProps) {
|
||||
if (!global.feConfigs?.isPlus) return;
|
||||
return POST('/support/outLink/authShareChatInit', data);
|
||||
}
|
||||
|
@@ -5,7 +5,8 @@
|
||||
"@fastgpt/common": "workspace:*",
|
||||
"cookie": "^0.5.0",
|
||||
"jsonwebtoken": "^9.0.2",
|
||||
"axios": "^1.5.1"
|
||||
"axios": "^1.5.1",
|
||||
"next": "13.5.2"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/cookie": "^0.5.2",
|
||||
|
@@ -1,8 +1,8 @@
|
||||
import type { NextApiResponse, NextApiRequest } from 'next';
|
||||
import Cookie from 'cookie';
|
||||
import { authJWT } from './tools';
|
||||
import jwt from 'jsonwebtoken';
|
||||
import { authOpenApiKey } from '../openapi/auth';
|
||||
import { authOutLinkId } from '../outLink/auth';
|
||||
|
||||
import { MongoUser } from './schema';
|
||||
import type { UserModelSchema } from './type.d';
|
||||
import { ERROR_ENUM } from '@fastgpt/common/constant/errorCode';
|
||||
@@ -39,7 +39,7 @@ export const authUser = async ({
|
||||
authBalance = false,
|
||||
authOutLink
|
||||
}: {
|
||||
req: any;
|
||||
req: NextApiRequest;
|
||||
authToken?: boolean;
|
||||
authRoot?: boolean;
|
||||
authApiKey?: boolean;
|
||||
@@ -165,3 +165,42 @@ export const authUser = async ({
|
||||
apikey: openApiKey
|
||||
};
|
||||
};
|
||||
|
||||
/* 生成 token */
|
||||
export function generateToken(userId: string) {
|
||||
const key = process.env.TOKEN_KEY as string;
|
||||
const token = jwt.sign(
|
||||
{
|
||||
userId,
|
||||
exp: Math.floor(Date.now() / 1000) + 60 * 60 * 24 * 7
|
||||
},
|
||||
key
|
||||
);
|
||||
return token;
|
||||
}
|
||||
// auth token
|
||||
export function authJWT(token: string) {
|
||||
return new Promise<string>((resolve, reject) => {
|
||||
const key = process.env.TOKEN_KEY as string;
|
||||
|
||||
jwt.verify(token, key, function (err, decoded: any) {
|
||||
if (err || !decoded?.userId) {
|
||||
reject(ERROR_ENUM.unAuthorization);
|
||||
return;
|
||||
}
|
||||
resolve(decoded.userId);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
/* set cookie */
|
||||
export const setCookie = (res: NextApiResponse, token: string) => {
|
||||
res.setHeader(
|
||||
'Set-Cookie',
|
||||
`token=${token}; Path=/; HttpOnly; Max-Age=604800; Samesite=None; Secure;`
|
||||
);
|
||||
};
|
||||
/* clear cookie */
|
||||
export const clearCookie = (res: NextApiResponse) => {
|
||||
res.setHeader('Set-Cookie', 'token=; Path=/; Max-Age=0');
|
||||
};
|
||||
|
@@ -1,28 +0,0 @@
|
||||
import jwt from 'jsonwebtoken';
|
||||
import { ERROR_ENUM } from '@fastgpt/common/constant/errorCode';
|
||||
|
||||
/* 生成 token */
|
||||
export const generateToken = (userId: string) => {
|
||||
const key = process.env.TOKEN_KEY as string;
|
||||
const token = jwt.sign(
|
||||
{
|
||||
userId,
|
||||
exp: Math.floor(Date.now() / 1000) + 60 * 60 * 24 * 7
|
||||
},
|
||||
key
|
||||
);
|
||||
return token;
|
||||
};
|
||||
// auth token
|
||||
export const authJWT = (token: string) =>
|
||||
new Promise<string>((resolve, reject) => {
|
||||
const key = process.env.TOKEN_KEY as string;
|
||||
|
||||
jwt.verify(token, key, function (err, decoded: any) {
|
||||
if (err || !decoded?.userId) {
|
||||
reject(ERROR_ENUM.unAuthorization);
|
||||
return;
|
||||
}
|
||||
resolve(decoded.userId);
|
||||
});
|
||||
});
|
27
pnpm-lock.yaml
generated
27
pnpm-lock.yaml
generated
@@ -35,6 +35,12 @@ importers:
|
||||
mongoose:
|
||||
specifier: ^7.0.2
|
||||
version: registry.npmmirror.com/mongoose@7.0.2
|
||||
next:
|
||||
specifier: 13.5.2
|
||||
version: registry.npmmirror.com/next@13.5.2(@babel/core@7.23.2)(react-dom@18.2.0)(react@18.2.0)(sass@1.58.3)
|
||||
nextjs-cors:
|
||||
specifier: ^2.1.2
|
||||
version: registry.npmmirror.com/nextjs-cors@2.1.2(next@13.5.2)
|
||||
winston:
|
||||
specifier: ^3.10.0
|
||||
version: registry.npmmirror.com/winston@3.10.0
|
||||
@@ -58,8 +64,8 @@ importers:
|
||||
specifier: ^0.1.13
|
||||
version: registry.npmmirror.com/encoding@0.1.13
|
||||
openai:
|
||||
specifier: ^4.11.1
|
||||
version: registry.npmmirror.com/openai@4.11.1(encoding@0.1.13)
|
||||
specifier: ^4.12.1
|
||||
version: registry.npmmirror.com/openai@4.12.1(encoding@0.1.13)
|
||||
tunnel:
|
||||
specifier: ^0.0.6
|
||||
version: registry.npmmirror.com/tunnel@0.0.6
|
||||
@@ -82,6 +88,9 @@ importers:
|
||||
jsonwebtoken:
|
||||
specifier: ^9.0.2
|
||||
version: registry.npmmirror.com/jsonwebtoken@9.0.2
|
||||
next:
|
||||
specifier: 13.5.2
|
||||
version: registry.npmmirror.com/next@13.5.2(@babel/core@7.23.2)(react-dom@18.2.0)(react@18.2.0)(sass@1.58.3)
|
||||
devDependencies:
|
||||
'@types/cookie':
|
||||
specifier: ^0.5.2
|
||||
@@ -200,9 +209,6 @@ importers:
|
||||
next-i18next:
|
||||
specifier: ^14.0.0
|
||||
version: registry.npmmirror.com/next-i18next@14.0.3(i18next@23.5.1)(next@13.5.2)(react-i18next@13.2.2)(react@18.2.0)
|
||||
nextjs-cors:
|
||||
specifier: ^2.1.2
|
||||
version: registry.npmmirror.com/nextjs-cors@2.1.2(next@13.5.2)
|
||||
nprogress:
|
||||
specifier: ^0.2.0
|
||||
version: registry.npmmirror.com/nprogress@0.2.0
|
||||
@@ -288,6 +294,9 @@ importers:
|
||||
'@types/multer':
|
||||
specifier: ^1.4.7
|
||||
version: registry.npmmirror.com/@types/multer@1.4.7
|
||||
'@types/node':
|
||||
specifier: ^20.8.5
|
||||
version: registry.npmmirror.com/@types/node@20.8.5
|
||||
'@types/papaparse':
|
||||
specifier: ^5.3.7
|
||||
version: registry.npmmirror.com/@types/papaparse@5.3.7
|
||||
@@ -9581,11 +9590,11 @@ packages:
|
||||
mimic-fn: registry.npmmirror.com/mimic-fn@4.0.0
|
||||
dev: true
|
||||
|
||||
registry.npmmirror.com/openai@4.11.1(encoding@0.1.13):
|
||||
resolution: {integrity: sha512-GU0HQWbejXuVAQlDjxIE8pohqnjptFDIm32aPlNT1H9ucMz1VJJD0DaTJRQsagNaJ97awWjjVLEG7zCM6sm4SA==, registry: https://registry.npm.taobao.org/, tarball: https://registry.npmmirror.com/openai/-/openai-4.11.1.tgz}
|
||||
id: registry.npmmirror.com/openai/4.11.1
|
||||
registry.npmmirror.com/openai@4.12.1(encoding@0.1.13):
|
||||
resolution: {integrity: sha512-EAoUwm4dtiWvFwBhOCK/VfF8sj1ZU8+aAIJnfT4NyeTfrt1DM/6Gdd6fOZWTjBYryTAqu9Vpb5+9Wu6JMtm/gA==, registry: https://registry.npm.taobao.org/, tarball: https://registry.npmmirror.com/openai/-/openai-4.12.1.tgz}
|
||||
id: registry.npmmirror.com/openai/4.12.1
|
||||
name: openai
|
||||
version: 4.11.1
|
||||
version: 4.12.1
|
||||
hasBin: true
|
||||
dependencies:
|
||||
'@types/node': registry.npmmirror.com/@types/node@18.18.5
|
||||
|
@@ -8,68 +8,85 @@
|
||||
{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"name": "GPT35-4k",
|
||||
"contextMaxToken": 4000,
|
||||
"price": 0,
|
||||
"maxToken": 4000,
|
||||
"quoteMaxToken": 2000,
|
||||
"maxTemperature": 1.2,
|
||||
"price": 0,
|
||||
"defaultSystem": ""
|
||||
"censor": false,
|
||||
"defaultSystemChatPrompt": ""
|
||||
},
|
||||
{
|
||||
"model": "gpt-3.5-turbo-16k",
|
||||
"name": "GPT35-16k",
|
||||
"contextMaxToken": 16000,
|
||||
"maxToken": 16000,
|
||||
"price": 0,
|
||||
"quoteMaxToken": 8000,
|
||||
"maxTemperature": 1.2,
|
||||
"price": 0,
|
||||
"defaultSystem": ""
|
||||
"censor": false,
|
||||
"defaultSystemChatPrompt": ""
|
||||
},
|
||||
{
|
||||
"model": "gpt-4",
|
||||
"name": "GPT4-8k",
|
||||
"contextMaxToken": 8000,
|
||||
"maxToken": 8000,
|
||||
"price": 0,
|
||||
"quoteMaxToken": 4000,
|
||||
"maxTemperature": 1.2,
|
||||
"censor": false,
|
||||
"defaultSystemChatPrompt": ""
|
||||
}
|
||||
],
|
||||
"QAModels": [
|
||||
{
|
||||
"model": "gpt-3.5-turbo-16k",
|
||||
"name": "GPT35-16k",
|
||||
"maxToken": 16000,
|
||||
"price": 0
|
||||
}
|
||||
],
|
||||
"CQModels": [
|
||||
{
|
||||
"model": "gpt-3.5-turbo-16k",
|
||||
"name": "GPT35-16k",
|
||||
"maxToken": 16000,
|
||||
"price": 0,
|
||||
"defaultSystem": ""
|
||||
"functionCall": true,
|
||||
"functionPrompt": ""
|
||||
},
|
||||
{
|
||||
"model": "gpt-4",
|
||||
"name": "GPT4-8k",
|
||||
"maxToken": 8000,
|
||||
"price": 0,
|
||||
"functionCall": true,
|
||||
"functionPrompt": ""
|
||||
}
|
||||
],
|
||||
"ExtractModels": [
|
||||
{
|
||||
"model": "gpt-3.5-turbo-16k",
|
||||
"name": "GPT35-16k",
|
||||
"maxToken": 16000,
|
||||
"price": 0,
|
||||
"functionCall": true,
|
||||
"functionPrompt": ""
|
||||
}
|
||||
],
|
||||
"QGModels": [
|
||||
{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"name": "GPT35-4K",
|
||||
"maxToken": 4000,
|
||||
"price": 0
|
||||
}
|
||||
],
|
||||
"VectorModels": [
|
||||
{
|
||||
"model": "text-embedding-ada-002",
|
||||
"name": "Embedding-2",
|
||||
"price": 0,
|
||||
"defaultToken": 500,
|
||||
"price": 0.2,
|
||||
"defaultToken": 700,
|
||||
"maxToken": 3000
|
||||
}
|
||||
],
|
||||
"QAModel": {
|
||||
"model": "gpt-3.5-turbo-16k",
|
||||
"name": "GPT35-16k",
|
||||
"maxToken": 16000,
|
||||
"price": 0
|
||||
},
|
||||
"ExtractModel": {
|
||||
"model": "gpt-3.5-turbo-16k",
|
||||
"functionCall": true,
|
||||
"name": "GPT35-16k",
|
||||
"maxToken": 16000,
|
||||
"price": 0,
|
||||
"prompt": ""
|
||||
},
|
||||
"CQModel": {
|
||||
"model": "gpt-3.5-turbo-16k",
|
||||
"functionCall": true,
|
||||
"name": "GPT35-16k",
|
||||
"maxToken": 16000,
|
||||
"price": 0,
|
||||
"prompt": ""
|
||||
},
|
||||
"QGModel": {
|
||||
"model": "gpt-3.5-turbo",
|
||||
"name": "GPT35-4k",
|
||||
"maxToken": 4000,
|
||||
"price": 0,
|
||||
"prompt": "",
|
||||
"functionCall": false
|
||||
}
|
||||
]
|
||||
}
|
||||
|
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "app",
|
||||
"version": "4.4.7",
|
||||
"version": "4.5.0",
|
||||
"private": false,
|
||||
"scripts": {
|
||||
"dev": "next dev",
|
||||
@@ -31,6 +31,7 @@
|
||||
"formidable": "^2.1.1",
|
||||
"framer-motion": "^9.0.6",
|
||||
"hyperdown": "^2.4.29",
|
||||
"i18next": "^23.2.11",
|
||||
"immer": "^9.0.19",
|
||||
"js-cookie": "^3.0.5",
|
||||
"js-tiktoken": "^1.0.7",
|
||||
@@ -43,7 +44,7 @@
|
||||
"multer": "1.4.5-lts.1",
|
||||
"nanoid": "^4.0.1",
|
||||
"next": "13.5.2",
|
||||
"nextjs-cors": "^2.1.2",
|
||||
"next-i18next": "^14.0.0",
|
||||
"nprogress": "^0.2.0",
|
||||
"papaparse": "^5.4.1",
|
||||
"pg": "^8.10.0",
|
||||
@@ -52,6 +53,7 @@
|
||||
"react-day-picker": "^8.7.1",
|
||||
"react-dom": "18.2.0",
|
||||
"react-hook-form": "^7.43.1",
|
||||
"react-i18next": "^13.0.2",
|
||||
"react-markdown": "^8.0.7",
|
||||
"react-syntax-highlighter": "^15.5.0",
|
||||
"reactflow": "^11.7.4",
|
||||
@@ -62,10 +64,7 @@
|
||||
"request-ip": "^3.3.0",
|
||||
"sass": "^1.58.3",
|
||||
"timezones-list": "^3.0.2",
|
||||
"zustand": "^4.3.5",
|
||||
"i18next": "^23.2.11",
|
||||
"react-i18next": "^13.0.2",
|
||||
"next-i18next": "^14.0.0"
|
||||
"zustand": "^4.3.5"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@svgr/webpack": "^6.5.1",
|
||||
@@ -76,6 +75,7 @@
|
||||
"@types/jsonwebtoken": "^9.0.3",
|
||||
"@types/lodash": "^4.14.191",
|
||||
"@types/multer": "^1.4.7",
|
||||
"@types/node": "^20.8.5",
|
||||
"@types/papaparse": "^5.3.7",
|
||||
"@types/pg": "^8.6.6",
|
||||
"@types/react": "18.0.28",
|
||||
|
@@ -1,6 +1,10 @@
|
||||
### Fast GPT V4.4.7
|
||||
### Fast GPT V4.5.0
|
||||
|
||||
1. 优化数据集管理,区分手动录入和标注,可追数据至某个文件,保留链接读取的原始链接。
|
||||
2. [使用文档](https://doc.fastgpt.run/docs/intro/)
|
||||
3. [点击查看高级编排介绍文档](https://doc.fastgpt.run/docs/workflow)
|
||||
4. [点击查看商业版](https://doc.fastgpt.run/docs/commercial/)
|
||||
1. 新增 - 升级 PgVector 插件,引入 HNSW 索引,极大加快的知识库搜索速度。
|
||||
2. 新增 - AI对话模块,增加【返回AI内容】选项,可控制 AI 的内容不直接返回浏览器。
|
||||
3. 优化 - TextSplitter,采用递归拆解法。
|
||||
4. 优化 - 高级编排 UX 性能
|
||||
5. 优化数据集管理,区分手动录入和标注,可追数据至某个文件,保留链接读取的原始链接。
|
||||
6. [使用文档](https://doc.fastgpt.run/docs/intro/)
|
||||
7. [点击查看高级编排介绍文档](https://doc.fastgpt.run/docs/workflow)
|
||||
8. [点击查看商业版](https://doc.fastgpt.run/docs/commercial/)
|
||||
|
@@ -39,7 +39,7 @@
|
||||
"My Apps": "My Apps",
|
||||
"Output Field Settings": "Output Field Settings",
|
||||
"Paste Config": "Paste Config",
|
||||
"Quote Prompt Settings": "Quote Prompt Settings",
|
||||
"AI Settings": "AI Settings",
|
||||
"Variable Key Repeat Tip": "Variable Key Repeat",
|
||||
"module": {
|
||||
"Custom Title Tip": "The title name is displayed during the conversation"
|
||||
|
@@ -39,7 +39,7 @@
|
||||
"My Apps": "我的应用",
|
||||
"Output Field Settings": "输出字段编辑",
|
||||
"Paste Config": "粘贴配置",
|
||||
"Quote Prompt Settings": "引用提示词配置",
|
||||
"AI Settings": "AI 高级配置",
|
||||
"Variable Key Repeat Tip": "变量 key 重复",
|
||||
"module": {
|
||||
"Custom Title Tip": "该标题名字会展示在对话过程中"
|
||||
|
@@ -1,6 +1,5 @@
|
||||
import { SystemInputEnum } from '@/constants/app';
|
||||
import { FlowModuleTypeEnum } from '@/constants/flow';
|
||||
import { getChatModel } from '@/service/utils/data';
|
||||
import { AppModuleItemType, VariableItemType } from '@/types/app';
|
||||
|
||||
export const getGuideModule = (modules: AppModuleItemType[]) =>
|
||||
@@ -23,11 +22,3 @@ export const splitGuideModule = (guideModules?: AppModuleItemType) => {
|
||||
questionGuide
|
||||
};
|
||||
};
|
||||
export const getChatModelNameList = (modules: AppModuleItemType[]): string[] => {
|
||||
const chatModules = modules.filter((item) => item.flowType === FlowModuleTypeEnum.chatNode);
|
||||
return chatModules
|
||||
.map(
|
||||
(item) => getChatModel(item.inputs.find((input) => input.key === 'model')?.value)?.name || ''
|
||||
)
|
||||
.filter((item) => item);
|
||||
};
|
||||
|
@@ -62,7 +62,9 @@ const Markdown = ({ source, isChatting = false }: { source: string; isChatting?:
|
||||
[]
|
||||
);
|
||||
|
||||
const formatSource = source.replace(/\\n/g, '\n ');
|
||||
const formatSource = source
|
||||
.replace(/\\n/g, '\n ')
|
||||
.replace(/(http[s]?:\/\/[^\s,。]+)([。,])/g, '$1 $2');
|
||||
|
||||
return (
|
||||
<ReactMarkdown
|
||||
|
@@ -35,8 +35,6 @@ const MyModal = ({
|
||||
>
|
||||
<ModalOverlay />
|
||||
<ModalContent
|
||||
display={'flex'}
|
||||
flexDirection={'column'}
|
||||
w={w}
|
||||
minW={['90vw', '400px']}
|
||||
maxW={maxW}
|
||||
@@ -46,7 +44,7 @@ const MyModal = ({
|
||||
>
|
||||
{!!title && <ModalHeader>{title}</ModalHeader>}
|
||||
{onClose && <ModalCloseButton />}
|
||||
<Box overflow={'overlay'} h={'100%'}>
|
||||
<Box overflow={'overlay'} h={'100%'} display={'flex'} flexDirection={'column'}>
|
||||
{children}
|
||||
</Box>
|
||||
</ModalContent>
|
||||
|
64
projects/app/src/components/PromptTemplate/index.tsx
Normal file
64
projects/app/src/components/PromptTemplate/index.tsx
Normal file
@@ -0,0 +1,64 @@
|
||||
import React, { useState } from 'react';
|
||||
import MyModal from '../MyModal';
|
||||
import { Box, Button, Grid, useTheme } from '@chakra-ui/react';
|
||||
import { PromptTemplateItem } from '@fastgpt/core/ai/type';
|
||||
import { ModalBody, ModalFooter } from '@chakra-ui/react';
|
||||
|
||||
const PromptTemplate = ({
|
||||
title,
|
||||
templates,
|
||||
onClose,
|
||||
onSuccess
|
||||
}: {
|
||||
title: string;
|
||||
templates: PromptTemplateItem[];
|
||||
onClose: () => void;
|
||||
onSuccess: (e: string) => void;
|
||||
}) => {
|
||||
const theme = useTheme();
|
||||
const [selectTemplateTitle, setSelectTemplateTitle] = useState<PromptTemplateItem>();
|
||||
|
||||
return (
|
||||
<MyModal isOpen title={title} onClose={onClose}>
|
||||
<ModalBody w={'600px'}>
|
||||
<Grid gridTemplateColumns={['1fr', '1fr 1fr']} gridGap={4}>
|
||||
{templates.map((item) => (
|
||||
<Box
|
||||
key={item.title}
|
||||
border={theme.borders.base}
|
||||
py={2}
|
||||
px={2}
|
||||
borderRadius={'md'}
|
||||
cursor={'pointer'}
|
||||
{...(item.title === selectTemplateTitle?.title
|
||||
? {
|
||||
bg: 'myBlue.100'
|
||||
}
|
||||
: {})}
|
||||
onClick={() => setSelectTemplateTitle(item)}
|
||||
>
|
||||
<Box>{item.title}</Box>
|
||||
<Box color={'myGray.600'} fontSize={'sm'} whiteSpace={'pre-wrap'}>
|
||||
{item.value}
|
||||
</Box>
|
||||
</Box>
|
||||
))}
|
||||
</Grid>
|
||||
</ModalBody>
|
||||
<ModalFooter>
|
||||
<Button
|
||||
disabled={!selectTemplateTitle}
|
||||
onClick={() => {
|
||||
if (!selectTemplateTitle) return;
|
||||
onSuccess(selectTemplateTitle.value);
|
||||
onClose();
|
||||
}}
|
||||
>
|
||||
确认选择
|
||||
</Button>
|
||||
</ModalFooter>
|
||||
</MyModal>
|
||||
);
|
||||
};
|
||||
|
||||
export default PromptTemplate;
|
@@ -5,7 +5,8 @@ export enum SystemInputEnum {
|
||||
'switch' = 'switch', // a trigger switch
|
||||
'history' = 'history',
|
||||
'userChatInput' = 'userChatInput',
|
||||
'questionGuide' = 'questionGuide'
|
||||
'questionGuide' = 'questionGuide',
|
||||
isResponseAnswerText = 'isResponseAnswerText'
|
||||
}
|
||||
export enum SystemOutputEnum {
|
||||
finish = 'finish'
|
||||
|
@@ -9,7 +9,7 @@ import {
|
||||
} from './index';
|
||||
import type { AppItemType } from '@/types/app';
|
||||
import type { FlowModuleTemplateType } from '@/types/core/app/flow';
|
||||
import { chatModelList } from '@/web/common/store/static';
|
||||
import { chatModelList, cqModelList } from '@/web/common/store/static';
|
||||
import {
|
||||
Input_Template_History,
|
||||
Input_Template_TFSwitch,
|
||||
@@ -136,14 +136,14 @@ export const ChatModule: FlowModuleTemplateType = {
|
||||
key: 'model',
|
||||
type: FlowInputItemTypeEnum.selectChatModel,
|
||||
label: '对话模型',
|
||||
value: chatModelList[0]?.model,
|
||||
list: chatModelList.map((item) => ({ label: item.name, value: item.model })),
|
||||
value: chatModelList?.[0]?.model,
|
||||
customData: () => chatModelList,
|
||||
required: true,
|
||||
valueCheck: (val) => !!val
|
||||
},
|
||||
{
|
||||
key: 'temperature',
|
||||
type: FlowInputItemTypeEnum.slider,
|
||||
type: FlowInputItemTypeEnum.hidden,
|
||||
label: '温度',
|
||||
value: 0,
|
||||
min: 0,
|
||||
@@ -156,20 +156,26 @@ export const ChatModule: FlowModuleTemplateType = {
|
||||
},
|
||||
{
|
||||
key: 'maxToken',
|
||||
type: FlowInputItemTypeEnum.maxToken,
|
||||
type: FlowInputItemTypeEnum.hidden,
|
||||
label: '回复上限',
|
||||
value: chatModelList[0] ? chatModelList[0].contextMaxToken / 2 : 2000,
|
||||
value: chatModelList?.[0] ? chatModelList[0].maxToken / 2 : 2000,
|
||||
min: 100,
|
||||
max: chatModelList[0]?.contextMaxToken || 4000,
|
||||
max: chatModelList?.[0]?.maxToken || 4000,
|
||||
step: 50,
|
||||
markList: [
|
||||
{ label: '100', value: 100 },
|
||||
{
|
||||
label: `${chatModelList[0]?.contextMaxToken || 4000}`,
|
||||
value: chatModelList[0]?.contextMaxToken || 4000
|
||||
label: `${chatModelList?.[0]?.maxToken || 4000}`,
|
||||
value: chatModelList?.[0]?.maxToken || 4000
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
key: 'aiSettings',
|
||||
type: FlowInputItemTypeEnum.aiSettings,
|
||||
label: '',
|
||||
connected: false
|
||||
},
|
||||
{
|
||||
key: 'systemPrompt',
|
||||
type: FlowInputItemTypeEnum.textarea,
|
||||
@@ -180,6 +186,13 @@ export const ChatModule: FlowModuleTemplateType = {
|
||||
placeholder: ChatModelSystemTip,
|
||||
value: ''
|
||||
},
|
||||
{
|
||||
key: SystemInputEnum.isResponseAnswerText,
|
||||
type: FlowInputItemTypeEnum.hidden,
|
||||
label: '返回AI内容',
|
||||
valueType: FlowValueTypeEnum.boolean,
|
||||
value: true
|
||||
},
|
||||
{
|
||||
key: 'quoteTemplate',
|
||||
type: FlowInputItemTypeEnum.hidden,
|
||||
@@ -196,7 +209,7 @@ export const ChatModule: FlowModuleTemplateType = {
|
||||
},
|
||||
{
|
||||
key: 'quoteQA',
|
||||
type: FlowInputItemTypeEnum.quoteList,
|
||||
type: FlowInputItemTypeEnum.target,
|
||||
label: '引用内容',
|
||||
description: "对象数组格式,结构:\n [{q:'问题',a:'回答'}]",
|
||||
valueType: FlowValueTypeEnum.kbQuote,
|
||||
@@ -216,7 +229,7 @@ export const ChatModule: FlowModuleTemplateType = {
|
||||
},
|
||||
{
|
||||
key: TaskResponseKeyEnum.answerText,
|
||||
label: '模型回复',
|
||||
label: 'AI回复',
|
||||
description: '将在 stream 回复完毕后触发',
|
||||
valueType: FlowValueTypeEnum.string,
|
||||
type: FlowOutputItemTypeEnum.source,
|
||||
@@ -330,12 +343,21 @@ export const ClassifyQuestionModule: FlowModuleTemplateType = {
|
||||
showStatus: true,
|
||||
inputs: [
|
||||
Input_Template_TFSwitch,
|
||||
{
|
||||
key: 'model',
|
||||
type: FlowInputItemTypeEnum.selectChatModel,
|
||||
label: '分类模型',
|
||||
value: cqModelList?.[0]?.model,
|
||||
customData: () => cqModelList,
|
||||
required: true,
|
||||
valueCheck: (val) => !!val
|
||||
},
|
||||
{
|
||||
key: 'systemPrompt',
|
||||
type: FlowInputItemTypeEnum.textarea,
|
||||
valueType: FlowValueTypeEnum.string,
|
||||
value: '',
|
||||
label: '系统提示词',
|
||||
label: '背景知识',
|
||||
description:
|
||||
'你可以添加一些特定内容的介绍,从而更好的识别用户的问题类型。这个内容通常是给模型介绍一个它不知道的内容。',
|
||||
placeholder: '例如: \n1. Laf 是一个云函数开发平台……\n2. Sealos 是一个集群操作系统'
|
||||
@@ -504,7 +526,7 @@ export const AppModule: FlowModuleTemplateType = {
|
||||
},
|
||||
{
|
||||
key: TaskResponseKeyEnum.answerText,
|
||||
label: '模型回复',
|
||||
label: 'AI回复',
|
||||
description: '将在应用完全结束后触发',
|
||||
valueType: FlowValueTypeEnum.string,
|
||||
type: FlowOutputItemTypeEnum.source,
|
||||
@@ -757,7 +779,7 @@ export const appTemplates: (AppItemType & {
|
||||
outputs: [
|
||||
{
|
||||
key: 'answerText',
|
||||
label: '模型回复',
|
||||
label: 'AI回复',
|
||||
description: '直接响应,无需配置',
|
||||
type: 'hidden',
|
||||
targets: []
|
||||
@@ -1094,7 +1116,7 @@ export const appTemplates: (AppItemType & {
|
||||
outputs: [
|
||||
{
|
||||
key: 'answerText',
|
||||
label: '模型回复',
|
||||
label: 'AI回复',
|
||||
description: '直接响应,无需配置',
|
||||
type: 'hidden',
|
||||
targets: []
|
||||
@@ -1401,7 +1423,7 @@ export const appTemplates: (AppItemType & {
|
||||
outputs: [
|
||||
{
|
||||
key: 'answerText',
|
||||
label: '模型回复',
|
||||
label: 'AI回复',
|
||||
description: '将在 stream 回复完毕后触发',
|
||||
valueType: 'string',
|
||||
type: 'source',
|
||||
@@ -1863,7 +1885,7 @@ export const appTemplates: (AppItemType & {
|
||||
outputs: [
|
||||
{
|
||||
key: 'answerText',
|
||||
label: '模型回复',
|
||||
label: 'AI回复',
|
||||
description: '将在 stream 回复完毕后触发',
|
||||
valueType: 'string',
|
||||
type: 'source',
|
||||
|
@@ -13,7 +13,7 @@ export enum FlowInputItemTypeEnum {
|
||||
chatInput = 'chatInput',
|
||||
selectApp = 'selectApp',
|
||||
// chat special input
|
||||
quoteList = 'quoteList',
|
||||
aiSettings = 'aiSettings',
|
||||
maxToken = 'maxToken',
|
||||
selectChatModel = 'selectChatModel',
|
||||
// dataset special input
|
||||
|
@@ -1,5 +1,98 @@
|
||||
import type { AppSchema } from '@/types/mongoSchema';
|
||||
import type { OutLinkEditType } from '@fastgpt/support/outLink/type.d';
|
||||
import type {
|
||||
LLMModelItemType,
|
||||
ChatModelItemType,
|
||||
FunctionModelItemType,
|
||||
VectorModelItemType
|
||||
} from '@/types/model';
|
||||
|
||||
export const defaultChatModels: ChatModelItemType[] = [
|
||||
{
|
||||
model: 'gpt-3.5-turbo',
|
||||
name: 'GPT35-4k',
|
||||
price: 0,
|
||||
maxToken: 4000,
|
||||
quoteMaxToken: 2000,
|
||||
maxTemperature: 1.2,
|
||||
censor: false,
|
||||
defaultSystemChatPrompt: ''
|
||||
},
|
||||
{
|
||||
model: 'gpt-3.5-turbo-16k',
|
||||
name: 'GPT35-16k',
|
||||
maxToken: 16000,
|
||||
price: 0,
|
||||
quoteMaxToken: 8000,
|
||||
maxTemperature: 1.2,
|
||||
censor: false,
|
||||
defaultSystemChatPrompt: ''
|
||||
},
|
||||
{
|
||||
model: 'gpt-4',
|
||||
name: 'GPT4-8k',
|
||||
maxToken: 8000,
|
||||
price: 0,
|
||||
quoteMaxToken: 4000,
|
||||
maxTemperature: 1.2,
|
||||
censor: false,
|
||||
defaultSystemChatPrompt: ''
|
||||
}
|
||||
];
|
||||
export const defaultQAModels: LLMModelItemType[] = [
|
||||
{
|
||||
model: 'gpt-3.5-turbo-16k',
|
||||
name: 'GPT35-16k',
|
||||
maxToken: 16000,
|
||||
price: 0
|
||||
}
|
||||
];
|
||||
export const defaultCQModels: FunctionModelItemType[] = [
|
||||
{
|
||||
model: 'gpt-3.5-turbo-16k',
|
||||
name: 'GPT35-16k',
|
||||
maxToken: 16000,
|
||||
price: 0,
|
||||
functionCall: true,
|
||||
functionPrompt: ''
|
||||
},
|
||||
{
|
||||
model: 'gpt-4',
|
||||
name: 'GPT4-8k',
|
||||
maxToken: 8000,
|
||||
price: 0,
|
||||
functionCall: true,
|
||||
functionPrompt: ''
|
||||
}
|
||||
];
|
||||
export const defaultExtractModels: FunctionModelItemType[] = [
|
||||
{
|
||||
model: 'gpt-3.5-turbo-16k',
|
||||
name: 'GPT35-16k',
|
||||
maxToken: 16000,
|
||||
price: 0,
|
||||
functionCall: true,
|
||||
functionPrompt: ''
|
||||
}
|
||||
];
|
||||
export const defaultQGModels: LLMModelItemType[] = [
|
||||
{
|
||||
model: 'gpt-3.5-turbo',
|
||||
name: 'GPT35-4K',
|
||||
maxToken: 4000,
|
||||
price: 0
|
||||
}
|
||||
];
|
||||
|
||||
export const defaultVectorModels: VectorModelItemType[] = [
|
||||
{
|
||||
model: 'text-embedding-ada-002',
|
||||
name: 'Embedding-2',
|
||||
price: 0,
|
||||
defaultToken: 500,
|
||||
maxToken: 3000
|
||||
}
|
||||
];
|
||||
|
||||
export const defaultApp: AppSchema = {
|
||||
_id: '',
|
||||
|
@@ -1,14 +1,17 @@
|
||||
import {
|
||||
type QAModelItemType,
|
||||
type ChatModelItemType,
|
||||
type VectorModelItemType,
|
||||
FunctionModelItemType
|
||||
import type {
|
||||
ChatModelItemType,
|
||||
FunctionModelItemType,
|
||||
LLMModelItemType,
|
||||
VectorModelItemType
|
||||
} from '@/types/model';
|
||||
import type { FeConfigsType } from '@fastgpt/common/type/index.d';
|
||||
|
||||
export type InitDateResponse = {
|
||||
chatModels: ChatModelItemType[];
|
||||
qaModel: QAModelItemType;
|
||||
qaModels: LLMModelItemType[];
|
||||
cqModels: FunctionModelItemType[];
|
||||
extractModels: FunctionModelItemType[];
|
||||
qgModels: LLMModelItemType[];
|
||||
vectorModels: VectorModelItemType[];
|
||||
feConfigs: FeConfigsType;
|
||||
priceMd: string;
|
||||
|
@@ -1,5 +1,23 @@
|
||||
export const defaultQuoteTemplate = `{instruction:"{{q}}",output:"{{a}}"}`;
|
||||
export const defaultQuotePrompt = `你的背景知识:
|
||||
import { PromptTemplateItem } from '@fastgpt/core/ai/type.d';
|
||||
|
||||
export const Prompt_QuoteTemplateList: PromptTemplateItem[] = [
|
||||
{
|
||||
title: '标准模板',
|
||||
desc: '包含 q 和 a 两个变量的标准模板',
|
||||
value: `{instruction:"{{q}}",output:"{{a}}"}`
|
||||
},
|
||||
{
|
||||
title: '全部变量',
|
||||
desc: '包含 q 和 a 两个变量的标准模板',
|
||||
value: `{instruction:"{{q}}",output:"{{a}}",source:"{{source}}",file_id:"{{file_id}}",index:"{{index}}"}`
|
||||
}
|
||||
];
|
||||
|
||||
export const Prompt_QuotePromptList: PromptTemplateItem[] = [
|
||||
{
|
||||
title: '标准模式',
|
||||
desc: '',
|
||||
value: `你的背景知识:
|
||||
"""
|
||||
{{quote}}
|
||||
"""
|
||||
@@ -7,4 +25,19 @@ export const defaultQuotePrompt = `你的背景知识:
|
||||
1. 背景知识是最新的,其中 instruction 是相关介绍,output 是预期回答或补充。
|
||||
2. 使用背景知识回答问题。
|
||||
3. 背景知识无法满足问题时,你需严谨的回答问题。
|
||||
我的问题是:"{{question}}"`;
|
||||
我的问题是:"{{question}}"`
|
||||
},
|
||||
{
|
||||
title: '严格模式',
|
||||
desc: '',
|
||||
value: `你的背景知识:
|
||||
"""
|
||||
{{quote}}
|
||||
"""
|
||||
对话要求:
|
||||
1. 背景知识是最新的,其中 instruction 是相关介绍,output 是预期回答或补充。
|
||||
2. 使用背景知识回答问题。
|
||||
3. 背景知识无法满足问题时,你需要回答:我不清楚关于xxx的内容。
|
||||
我的问题是:"{{question}}"`
|
||||
}
|
||||
];
|
||||
|
@@ -32,8 +32,6 @@ function Error() {
|
||||
}
|
||||
|
||||
export async function getServerSideProps(context: any) {
|
||||
console.log('[render error]: ', context);
|
||||
|
||||
return {
|
||||
props: { ...(await serviceSideProps(context)) }
|
||||
};
|
||||
|
@@ -3,7 +3,7 @@ import { connectToDatabase } from '@/service/mongo';
|
||||
import { authUser } from '@fastgpt/support/user/auth';
|
||||
import { sseErrRes } from '@/service/response';
|
||||
import { sseResponseEventEnum } from '@/constants/chat';
|
||||
import { sseResponse } from '@/service/utils/tools';
|
||||
import { responseWrite } from '@fastgpt/common/tools/stream';
|
||||
import { AppModuleItemType } from '@/types/app';
|
||||
import { dispatchModules } from '@/pages/api/v1/chat/completions';
|
||||
import { pushChatBill } from '@/service/common/bill/push';
|
||||
@@ -59,12 +59,12 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
detail: true
|
||||
});
|
||||
|
||||
sseResponse({
|
||||
responseWrite({
|
||||
res,
|
||||
event: sseResponseEventEnum.answer,
|
||||
data: '[DONE]'
|
||||
});
|
||||
sseResponse({
|
||||
responseWrite({
|
||||
res,
|
||||
event: sseResponseEventEnum.appStreamResponse,
|
||||
data: JSON.stringify(responseData)
|
||||
|
@@ -6,7 +6,8 @@ import { authUser } from '@fastgpt/support/user/auth';
|
||||
import { ChatItemType } from '@/types/chat';
|
||||
import { authApp } from '@/service/utils/auth';
|
||||
import type { ChatSchema } from '@/types/mongoSchema';
|
||||
import { getChatModelNameList, getGuideModule } from '@/components/ChatBox/utils';
|
||||
import { getGuideModule } from '@/components/ChatBox/utils';
|
||||
import { getChatModelNameListByModules } from '@/service/core/app/module';
|
||||
import { TaskResponseKeyEnum } from '@/constants/chat';
|
||||
|
||||
/* 初始化我的聊天框,需要身份验证 */
|
||||
@@ -83,7 +84,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
appId,
|
||||
app: {
|
||||
userGuideModule: getGuideModule(app.modules),
|
||||
chatModels: getChatModelNameList(app.modules),
|
||||
chatModels: getChatModelNameListByModules(app.modules),
|
||||
name: app.name,
|
||||
avatar: app.avatar,
|
||||
intro: app.intro,
|
||||
|
@@ -12,6 +12,8 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
|
||||
const { userId } = await authUser({ req, authToken: true, authApiKey: true });
|
||||
|
||||
const qaModel = global.qaModels[0];
|
||||
|
||||
const { _id } = await Bill.create({
|
||||
userId,
|
||||
appName: name,
|
||||
@@ -25,7 +27,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
},
|
||||
{
|
||||
moduleName: 'QA 拆分',
|
||||
model: global.qaModel.name,
|
||||
model: qaModel?.name,
|
||||
amount: 0,
|
||||
tokenLen: 0
|
||||
}
|
||||
|
@@ -4,7 +4,6 @@ import { connectToDatabase } from '@/service/mongo';
|
||||
import { authUser } from '@fastgpt/support/user/auth';
|
||||
import type { CreateQuestionGuideParams } from '@/global/core/api/aiReq.d';
|
||||
import { pushQuestionGuideBill } from '@/service/common/bill/push';
|
||||
import { defaultQGModel } from '@/pages/api/system/getInitData';
|
||||
import { createQuestionGuide } from '@fastgpt/core/ai/functions/createQuestionGuide';
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
@@ -23,9 +22,11 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse<
|
||||
throw new Error('user not found');
|
||||
}
|
||||
|
||||
const qgModel = global.qgModels[0];
|
||||
|
||||
const { result, tokens } = await createQuestionGuide({
|
||||
messages,
|
||||
model: (global.qgModel || defaultQGModel).model
|
||||
model: qgModel.model
|
||||
});
|
||||
|
||||
jsonRes(res, {
|
||||
|
@@ -3,7 +3,7 @@ import { jsonRes } from '@/service/response';
|
||||
import { connectToDatabase } from '@/service/mongo';
|
||||
import { MongoDataset } from '@fastgpt/core/dataset/schema';
|
||||
import { authUser } from '@fastgpt/support/user/auth';
|
||||
import { getVectorModel } from '@/service/utils/data';
|
||||
import { getVectorModel } from '@/service/core/ai/model';
|
||||
import type { DatasetsItemType } from '@/types/core/dataset';
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
|
@@ -2,7 +2,7 @@ import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { authUser } from '@fastgpt/support/user/auth';
|
||||
import { PgClient } from '@/service/pg';
|
||||
import { withNextCors } from '@/service/utils/tools';
|
||||
import { withNextCors } from '@fastgpt/common/tools/nextjs';
|
||||
import { PgDatasetTableName } from '@/constants/plugin';
|
||||
import { connectToDatabase } from '@/service/mongo';
|
||||
|
||||
|
@@ -8,7 +8,7 @@ import { findAllChildrenIds } from '../delete';
|
||||
import QueryStream from 'pg-query-stream';
|
||||
import { PgClient } from '@/service/pg';
|
||||
import { addLog } from '@/service/utils/tools';
|
||||
import { responseWriteController } from '@/service/common/stream';
|
||||
import { responseWriteController } from '@fastgpt/common/tools/stream';
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
try {
|
||||
|
@@ -7,10 +7,10 @@ import { jsonRes } from '@/service/response';
|
||||
import { connectToDatabase } from '@/service/mongo';
|
||||
import { authDataset } from '@/service/utils/auth';
|
||||
import { authUser } from '@fastgpt/support/user/auth';
|
||||
import { withNextCors } from '@/service/utils/tools';
|
||||
import { withNextCors } from '@fastgpt/common/tools/nextjs';
|
||||
import { PgDatasetTableName } from '@/constants/plugin';
|
||||
import { insertData2Dataset, PgClient } from '@/service/pg';
|
||||
import { getVectorModel } from '@/service/utils/data';
|
||||
import { getVectorModel } from '@/service/core/ai/model';
|
||||
import { getVector } from '@/pages/api/openapi/plugin/vector';
|
||||
import { DatasetDataItemType } from '@/types/core/dataset/data';
|
||||
import { countPromptTokens } from '@/utils/common/tiktoken';
|
||||
|
@@ -5,15 +5,15 @@ import { connectToDatabase, TrainingData } from '@/service/mongo';
|
||||
import { MongoDataset } from '@fastgpt/core/dataset/schema';
|
||||
import { authUser } from '@fastgpt/support/user/auth';
|
||||
import { authDataset } from '@/service/utils/auth';
|
||||
import { withNextCors } from '@/service/utils/tools';
|
||||
import { withNextCors } from '@fastgpt/common/tools/nextjs';
|
||||
import { TrainingModeEnum } from '@/constants/plugin';
|
||||
import { startQueue } from '@/service/utils/tools';
|
||||
import { getVectorModel } from '@/service/utils/data';
|
||||
import { DatasetDataItemType } from '@/types/core/dataset/data';
|
||||
import { countPromptTokens } from '@/utils/common/tiktoken';
|
||||
import type { PushDataResponse } from '@/global/core/api/datasetRes.d';
|
||||
import type { PushDataProps } from '@/global/core/api/datasetReq.d';
|
||||
import { authFileIdValid } from '@/service/dataset/auth';
|
||||
import { getVectorModel } from '@/service/core/ai/model';
|
||||
|
||||
const modeMap = {
|
||||
[TrainingModeEnum.index]: true,
|
||||
@@ -71,7 +71,7 @@ export async function pushDataToKb({
|
||||
if (mode === TrainingModeEnum.index) {
|
||||
const vectorModel = (await MongoDataset.findById(kbId, 'vectorModel'))?.vectorModel;
|
||||
|
||||
return getVectorModel(vectorModel || global.vectorModels[0].model);
|
||||
return getVectorModel(vectorModel);
|
||||
}
|
||||
return global.vectorModels[0];
|
||||
})()
|
||||
@@ -79,7 +79,7 @@ export async function pushDataToKb({
|
||||
|
||||
const modeMaxToken = {
|
||||
[TrainingModeEnum.index]: vectorModel.maxToken * 1.5,
|
||||
[TrainingModeEnum.qa]: global.qaModel.maxToken * 0.8
|
||||
[TrainingModeEnum.qa]: global.qaModels[0].maxToken * 0.8
|
||||
};
|
||||
|
||||
// filter repeat or equal content
|
||||
|
@@ -2,7 +2,7 @@ import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { authUser } from '@fastgpt/support/user/auth';
|
||||
import { PgClient } from '@/service/pg';
|
||||
import { withNextCors } from '@/service/utils/tools';
|
||||
import { withNextCors } from '@fastgpt/common/tools/nextjs';
|
||||
import { connectToDatabase } from '@/service/mongo';
|
||||
import { MongoDataset } from '@fastgpt/core/dataset/schema';
|
||||
import { getVector } from '@/pages/api/openapi/plugin/vector';
|
||||
|
@@ -2,7 +2,7 @@ import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { connectToDatabase } from '@/service/mongo';
|
||||
import { authUser } from '@fastgpt/support/user/auth';
|
||||
import { getVectorModel } from '@/service/utils/data';
|
||||
import { getVectorModel } from '@/service/core/ai/model';
|
||||
import { MongoDataset } from '@fastgpt/core/dataset/schema';
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
|
@@ -2,7 +2,7 @@ import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { connectToDatabase } from '@/service/mongo';
|
||||
import { authUser } from '@fastgpt/support/user/auth';
|
||||
import { getVectorModel } from '@/service/utils/data';
|
||||
import { getVectorModel } from '@/service/core/ai/model';
|
||||
import type { DatasetsItemType } from '@/types/core/dataset';
|
||||
import { DatasetTypeEnum } from '@fastgpt/core/dataset/constant';
|
||||
import { MongoDataset } from '@fastgpt/core/dataset/schema';
|
||||
|
@@ -2,7 +2,7 @@ import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { authUser } from '@fastgpt/support/user/auth';
|
||||
import { PgClient } from '@/service/pg';
|
||||
import { withNextCors } from '@/service/utils/tools';
|
||||
import { withNextCors } from '@fastgpt/common/tools/nextjs';
|
||||
import { getVector } from '../../openapi/plugin/vector';
|
||||
import { PgDatasetTableName } from '@/constants/plugin';
|
||||
import { MongoDataset } from '@fastgpt/core/dataset/schema';
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { authBalanceByUid, authUser } from '@fastgpt/support/user/auth';
|
||||
import { withNextCors } from '@/service/utils/tools';
|
||||
import { withNextCors } from '@fastgpt/common/tools/nextjs';
|
||||
import { getAIApi } from '@fastgpt/core/ai/config';
|
||||
import { pushGenerateVectorBill } from '@/service/common/bill/push';
|
||||
import { connectToDatabase } from '@/service/mongo';
|
||||
|
@@ -1,5 +1,5 @@
|
||||
import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { withNextCors } from '@/service/utils/tools';
|
||||
import { withNextCors } from '@fastgpt/common/tools/nextjs';
|
||||
import ChatCompletion from '@/pages/api/v1/chat/completions';
|
||||
|
||||
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse) {
|
||||
|
@@ -6,8 +6,9 @@ import { MongoUser } from '@fastgpt/support/user/schema';
|
||||
import type { InitShareChatResponse } from '@/global/support/api/outLinkRes.d';
|
||||
import { authApp } from '@/service/utils/auth';
|
||||
import { HUMAN_ICON } from '@/constants/chat';
|
||||
import { getChatModelNameList, getGuideModule } from '@/components/ChatBox/utils';
|
||||
import { getGuideModule } from '@/components/ChatBox/utils';
|
||||
import { authShareChatInit } from '@fastgpt/support/outLink/auth';
|
||||
import { getChatModelNameListByModules } from '@/service/core/app/module';
|
||||
|
||||
/* init share chat window */
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
|
||||
@@ -51,7 +52,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
userAvatar: user?.avatar || HUMAN_ICON,
|
||||
app: {
|
||||
userGuideModule: getGuideModule(app.modules),
|
||||
chatModels: getChatModelNameList(app.modules),
|
||||
chatModels: getChatModelNameListByModules(app.modules),
|
||||
name: app.name,
|
||||
avatar: app.avatar,
|
||||
intro: app.intro
|
||||
|
@@ -4,10 +4,23 @@ import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { readFileSync } from 'fs';
|
||||
import type { InitDateResponse } from '@/global/common/api/systemRes';
|
||||
import type { VectorModelItemType, FunctionModelItemType } from '@/types/model';
|
||||
import { formatPrice } from '@fastgpt/common/bill';
|
||||
import { getTikTokenEnc } from '@/utils/common/tiktoken';
|
||||
import { initHttpAgent } from '@fastgpt/core/init';
|
||||
import {
|
||||
defaultChatModels,
|
||||
defaultQAModels,
|
||||
defaultCQModels,
|
||||
defaultExtractModels,
|
||||
defaultQGModels,
|
||||
defaultVectorModels
|
||||
} from '@/constants/model';
|
||||
import {
|
||||
ChatModelItemType,
|
||||
FunctionModelItemType,
|
||||
LLMModelItemType,
|
||||
VectorModelItemType
|
||||
} from '@/types/model';
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
|
||||
getInitConfig();
|
||||
@@ -17,7 +30,10 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
data: {
|
||||
feConfigs: global.feConfigs,
|
||||
chatModels: global.chatModels,
|
||||
qaModel: global.qaModel,
|
||||
qaModels: global.qaModels,
|
||||
cqModels: global.cqModels,
|
||||
extractModels: global.extractModels,
|
||||
qgModels: global.qgModels,
|
||||
vectorModels: global.vectorModels,
|
||||
priceMd: global.priceMd,
|
||||
systemVersion: global.systemVersion || '0.0.0'
|
||||
@@ -42,72 +58,6 @@ const defaultFeConfigs: FeConfigsType = {
|
||||
},
|
||||
scripts: []
|
||||
};
|
||||
const defaultChatModels = [
|
||||
{
|
||||
model: 'gpt-3.5-turbo',
|
||||
name: 'GPT35-4k',
|
||||
contextMaxToken: 4000,
|
||||
quoteMaxToken: 2400,
|
||||
maxTemperature: 1.2,
|
||||
price: 0
|
||||
},
|
||||
{
|
||||
model: 'gpt-3.5-turbo-16k',
|
||||
name: 'GPT35-16k',
|
||||
contextMaxToken: 16000,
|
||||
quoteMaxToken: 8000,
|
||||
maxTemperature: 1.2,
|
||||
price: 0
|
||||
},
|
||||
{
|
||||
model: 'gpt-4',
|
||||
name: 'GPT4-8k',
|
||||
contextMaxToken: 8000,
|
||||
quoteMaxToken: 4000,
|
||||
maxTemperature: 1.2,
|
||||
price: 0
|
||||
}
|
||||
];
|
||||
const defaultQAModel = {
|
||||
model: 'gpt-3.5-turbo-16k',
|
||||
name: 'GPT35-16k',
|
||||
maxToken: 16000,
|
||||
price: 0
|
||||
};
|
||||
export const defaultExtractModel: FunctionModelItemType = {
|
||||
model: 'gpt-3.5-turbo-16k',
|
||||
name: 'GPT35-16k',
|
||||
maxToken: 16000,
|
||||
price: 0,
|
||||
prompt: '',
|
||||
functionCall: true
|
||||
};
|
||||
export const defaultCQModel: FunctionModelItemType = {
|
||||
model: 'gpt-3.5-turbo-16k',
|
||||
name: 'GPT35-16k',
|
||||
maxToken: 16000,
|
||||
price: 0,
|
||||
prompt: '',
|
||||
functionCall: true
|
||||
};
|
||||
export const defaultQGModel: FunctionModelItemType = {
|
||||
model: 'gpt-3.5-turbo',
|
||||
name: 'FastAI-4k',
|
||||
maxToken: 4000,
|
||||
price: 1.5,
|
||||
prompt: '',
|
||||
functionCall: false
|
||||
};
|
||||
|
||||
const defaultVectorModels: VectorModelItemType[] = [
|
||||
{
|
||||
model: 'text-embedding-ada-002',
|
||||
name: 'Embedding-2',
|
||||
price: 0,
|
||||
defaultToken: 500,
|
||||
maxToken: 3000
|
||||
}
|
||||
];
|
||||
|
||||
export function initGlobal() {
|
||||
// init tikToken
|
||||
@@ -127,7 +77,16 @@ export function getInitConfig() {
|
||||
|
||||
const filename =
|
||||
process.env.NODE_ENV === 'development' ? 'data/config.local.json' : '/app/data/config.json';
|
||||
const res = JSON.parse(readFileSync(filename, 'utf-8'));
|
||||
const res = JSON.parse(readFileSync(filename, 'utf-8')) as {
|
||||
FeConfig: FeConfigsType;
|
||||
SystemParams: SystemEnvType;
|
||||
ChatModels: ChatModelItemType[];
|
||||
QAModels: LLMModelItemType[];
|
||||
CQModels: FunctionModelItemType[];
|
||||
ExtractModels: FunctionModelItemType[];
|
||||
QGModels: LLMModelItemType[];
|
||||
VectorModels: VectorModelItemType[];
|
||||
};
|
||||
|
||||
console.log(`System Version: ${global.systemVersion}`);
|
||||
|
||||
@@ -137,11 +96,13 @@ export function getInitConfig() {
|
||||
? { ...defaultSystemEnv, ...res.SystemParams }
|
||||
: defaultSystemEnv;
|
||||
global.feConfigs = res.FeConfig ? { ...defaultFeConfigs, ...res.FeConfig } : defaultFeConfigs;
|
||||
|
||||
global.chatModels = res.ChatModels || defaultChatModels;
|
||||
global.qaModel = res.QAModel || defaultQAModel;
|
||||
global.extractModel = res.ExtractModel || defaultExtractModel;
|
||||
global.cqModel = res.CQModel || defaultCQModel;
|
||||
global.qgModel = res.QGModel || defaultQGModel;
|
||||
global.qaModels = res.QAModels || defaultQAModels;
|
||||
global.cqModels = res.CQModels || defaultCQModels;
|
||||
global.extractModels = res.ExtractModels || defaultExtractModels;
|
||||
global.qgModels = res.QGModels || defaultQGModels;
|
||||
|
||||
global.vectorModels = res.VectorModels || defaultVectorModels;
|
||||
} catch (error) {
|
||||
setDefaultData();
|
||||
@@ -152,13 +113,27 @@ export function getInitConfig() {
|
||||
export function setDefaultData() {
|
||||
global.systemEnv = defaultSystemEnv;
|
||||
global.feConfigs = defaultFeConfigs;
|
||||
|
||||
global.chatModels = defaultChatModels;
|
||||
global.qaModel = defaultQAModel;
|
||||
global.qaModels = defaultQAModels;
|
||||
global.cqModels = defaultCQModels;
|
||||
global.extractModels = defaultExtractModels;
|
||||
global.qgModels = defaultQGModels;
|
||||
|
||||
global.vectorModels = defaultVectorModels;
|
||||
global.extractModel = defaultExtractModel;
|
||||
global.cqModel = defaultCQModel;
|
||||
global.qgModel = defaultQGModel;
|
||||
global.priceMd = '';
|
||||
|
||||
console.log('use default config');
|
||||
console.log({
|
||||
feConfigs: defaultFeConfigs,
|
||||
systemEnv: defaultSystemEnv,
|
||||
chatModels: defaultChatModels,
|
||||
qaModels: defaultQAModels,
|
||||
cqModels: defaultCQModels,
|
||||
extractModels: defaultExtractModels,
|
||||
qgModels: defaultQGModels,
|
||||
vectorModels: defaultVectorModels
|
||||
});
|
||||
}
|
||||
|
||||
export function getSystemVersion() {
|
||||
@@ -187,10 +162,18 @@ ${global.vectorModels
|
||||
${global.chatModels
|
||||
?.map((item) => `| 对话-${item.name} | ${formatPrice(item.price, 1000)} |`)
|
||||
.join('\n')}
|
||||
| 文件QA拆分 | ${formatPrice(global.qaModel?.price, 1000)} |
|
||||
| 高级编排 - 问题分类 | ${formatPrice(global.cqModel?.price, 1000)} |
|
||||
| 高级编排 - 内容提取 | ${formatPrice(global.extractModel?.price, 1000)} |
|
||||
| 下一步指引 | ${formatPrice(global.qgModel?.price, 1000)} |
|
||||
${global.qaModels
|
||||
?.map((item) => `| 文件QA拆分-${item.name} | ${formatPrice(item.price, 1000)} |`)
|
||||
.join('\n')}
|
||||
${global.cqModels
|
||||
?.map((item) => `| 问题分类-${item.name} | ${formatPrice(item.price, 1000)} |`)
|
||||
.join('\n')}
|
||||
${global.extractModels
|
||||
?.map((item) => `| 内容提取-${item.name} | ${formatPrice(item.price, 1000)} |`)
|
||||
.join('\n')}
|
||||
${global.qgModels
|
||||
?.map((item) => `| 下一步指引-${item.name} | ${formatPrice(item.price, 1000)} |`)
|
||||
.join('\n')}
|
||||
`;
|
||||
console.log(global.priceMd);
|
||||
}
|
||||
|
@@ -2,8 +2,8 @@
|
||||
import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { MongoUser } from '@fastgpt/support/user/schema';
|
||||
import { setCookie } from '@/service/utils/tools';
|
||||
import { generateToken } from '@fastgpt/support/user/tools';
|
||||
import { setCookie } from '@fastgpt/support/user/auth';
|
||||
import { generateToken } from '@fastgpt/support/user/auth';
|
||||
import { connectToDatabase } from '@/service/mongo';
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
|
||||
|
@@ -1,7 +1,7 @@
|
||||
// Next.js API route support: https://nextjs.org/docs/api-routes/introduction
|
||||
import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { clearCookie } from '@/service/utils/tools';
|
||||
import { clearCookie } from '@fastgpt/support/user/auth';
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
try {
|
||||
|
@@ -3,7 +3,8 @@ import { authApp } from '@/service/utils/auth';
|
||||
import { authUser } from '@fastgpt/support/user/auth';
|
||||
import { AuthUserTypeEnum } from '@fastgpt/support/user/auth';
|
||||
import { sseErrRes, jsonRes } from '@/service/response';
|
||||
import { addLog, withNextCors } from '@/service/utils/tools';
|
||||
import { addLog } from '@/service/utils/tools';
|
||||
import { withNextCors } from '@fastgpt/common/tools/nextjs';
|
||||
import { ChatRoleEnum, ChatSourceEnum, sseResponseEventEnum } from '@/constants/chat';
|
||||
import {
|
||||
dispatchHistory,
|
||||
@@ -21,7 +22,7 @@ import type { MessageItemType } from '@/types/core/chat/type';
|
||||
import { gptMessage2ChatType, textAdaptGptResponse } from '@/utils/adapt';
|
||||
import { getChatHistory } from './getHistory';
|
||||
import { saveChat } from '@/service/utils/chat/saveChat';
|
||||
import { sseResponse } from '@/service/utils/tools';
|
||||
import { responseWrite } from '@fastgpt/common/tools/stream';
|
||||
import { TaskResponseKeyEnum } from '@/constants/chat';
|
||||
import { FlowModuleTypeEnum, initModuleType } from '@/constants/flow';
|
||||
import { AppModuleItemType, RunningModuleItemType } from '@/types/app';
|
||||
@@ -217,7 +218,7 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
|
||||
const feResponseData = isOwner ? responseData : selectShareResponse({ responseData });
|
||||
|
||||
if (stream) {
|
||||
sseResponse({
|
||||
responseWrite({
|
||||
res,
|
||||
event: detail ? sseResponseEventEnum.answer : undefined,
|
||||
data: textAdaptGptResponse({
|
||||
@@ -225,14 +226,14 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
|
||||
finish_reason: 'stop'
|
||||
})
|
||||
});
|
||||
sseResponse({
|
||||
responseWrite({
|
||||
res,
|
||||
event: detail ? sseResponseEventEnum.answer : undefined,
|
||||
data: '[DONE]'
|
||||
});
|
||||
|
||||
if (responseDetail && detail) {
|
||||
sseResponse({
|
||||
responseWrite({
|
||||
res,
|
||||
event: sseResponseEventEnum.appStreamResponse,
|
||||
data: JSON.stringify(feResponseData)
|
||||
@@ -323,13 +324,16 @@ export async function dispatchModules({
|
||||
let chatAnswerText = ''; // AI answer
|
||||
let runningTime = Date.now();
|
||||
|
||||
function pushStore({
|
||||
answerText = '',
|
||||
responseData
|
||||
}: {
|
||||
answerText?: string;
|
||||
responseData?: ChatHistoryItemResType | ChatHistoryItemResType[];
|
||||
}) {
|
||||
function pushStore(
|
||||
{ inputs = [] }: RunningModuleItemType,
|
||||
{
|
||||
answerText = '',
|
||||
responseData
|
||||
}: {
|
||||
answerText?: string;
|
||||
responseData?: ChatHistoryItemResType | ChatHistoryItemResType[];
|
||||
}
|
||||
) {
|
||||
const time = Date.now();
|
||||
if (responseData) {
|
||||
if (Array.isArray(responseData)) {
|
||||
@@ -342,7 +346,12 @@ export async function dispatchModules({
|
||||
}
|
||||
}
|
||||
runningTime = time;
|
||||
chatAnswerText += answerText;
|
||||
|
||||
const isResponseAnswerText =
|
||||
inputs.find((item) => item.key === SystemInputEnum.isResponseAnswerText)?.value ?? true;
|
||||
if (isResponseAnswerText) {
|
||||
chatAnswerText += answerText;
|
||||
}
|
||||
}
|
||||
function moduleInput(
|
||||
module: RunningModuleItemType,
|
||||
@@ -376,7 +385,7 @@ export async function dispatchModules({
|
||||
module: RunningModuleItemType,
|
||||
result: Record<string, any> = {}
|
||||
): Promise<any> {
|
||||
pushStore(result);
|
||||
pushStore(module, result);
|
||||
return Promise.all(
|
||||
module.outputs.map((outputItem) => {
|
||||
if (result[outputItem.key] === undefined) return;
|
||||
@@ -505,7 +514,7 @@ export function responseStatus({
|
||||
name?: string;
|
||||
}) {
|
||||
if (!name) return;
|
||||
sseResponse({
|
||||
responseWrite({
|
||||
res,
|
||||
event: sseResponseEventEnum.moduleStatus,
|
||||
data: JSON.stringify({
|
||||
|
@@ -1,4 +1,4 @@
|
||||
import React from 'react';
|
||||
import React, { useMemo, useState } from 'react';
|
||||
import MyModal from '@/components/MyModal';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { EditFormType } from '@/utils/app';
|
||||
@@ -11,43 +11,65 @@ import {
|
||||
Link,
|
||||
ModalBody,
|
||||
ModalFooter,
|
||||
Switch,
|
||||
Textarea
|
||||
} from '@chakra-ui/react';
|
||||
import MyTooltip from '@/components/MyTooltip';
|
||||
import { QuestionOutlineIcon } from '@chakra-ui/icons';
|
||||
import { defaultQuotePrompt, defaultQuoteTemplate } from '@/global/core/prompt/AIChat';
|
||||
import { feConfigs } from '@/web/common/store/static';
|
||||
import { Prompt_QuotePromptList, Prompt_QuoteTemplateList } from '@/global/core/prompt/AIChat';
|
||||
import { chatModelList, feConfigs } from '@/web/common/store/static';
|
||||
import MySlider from '@/components/Slider';
|
||||
import { SystemInputEnum } from '@/constants/app';
|
||||
import dynamic from 'next/dynamic';
|
||||
import { PromptTemplateItem } from '@fastgpt/core/ai/type';
|
||||
|
||||
const PromptTemplate = dynamic(() => import('@/components/PromptTemplate'));
|
||||
|
||||
const AIChatSettingsModal = ({
|
||||
isAdEdit,
|
||||
onClose,
|
||||
onSuccess,
|
||||
defaultData
|
||||
}: {
|
||||
isAdEdit?: boolean;
|
||||
onClose: () => void;
|
||||
onSuccess: (e: EditFormType['chatModel']) => void;
|
||||
defaultData: EditFormType['chatModel'];
|
||||
}) => {
|
||||
const { t } = useTranslation();
|
||||
const [refresh, setRefresh] = useState(false);
|
||||
|
||||
const { register, handleSubmit } = useForm({
|
||||
const { register, handleSubmit, getValues, setValue } = useForm({
|
||||
defaultValues: defaultData
|
||||
});
|
||||
|
||||
const [selectTemplateData, setSelectTemplateData] = useState<{
|
||||
title: string;
|
||||
key: 'quoteTemplate' | 'quotePrompt';
|
||||
templates: PromptTemplateItem[];
|
||||
}>();
|
||||
|
||||
const tokenLimit = useMemo(() => {
|
||||
return chatModelList.find((item) => item.model === getValues('model'))?.maxToken || 4000;
|
||||
}, [getValues, refresh]);
|
||||
|
||||
const LabelStyles: BoxProps = {
|
||||
fontWeight: 'bold',
|
||||
mb: 1,
|
||||
fontSize: ['sm', 'md']
|
||||
};
|
||||
const selectTemplateBtn: BoxProps = {
|
||||
color: 'myBlue.600',
|
||||
cursor: 'pointer'
|
||||
};
|
||||
|
||||
return (
|
||||
<MyModal
|
||||
isOpen
|
||||
title={
|
||||
<Flex alignItems={'flex-end'}>
|
||||
{t('app.Quote Prompt Settings')}
|
||||
{t('app.AI Settings')}
|
||||
{feConfigs?.show_doc && (
|
||||
<Link
|
||||
href={'https://doc.fastgpt.run/docs/use-cases/prompt/'}
|
||||
href={'https://doc.fastgpt.run/docs/use-cases/ai_settings/'}
|
||||
target={'_blank'}
|
||||
ml={1}
|
||||
textDecoration={'underline'}
|
||||
@@ -59,39 +81,134 @@ const AIChatSettingsModal = ({
|
||||
)}
|
||||
</Flex>
|
||||
}
|
||||
isCentered
|
||||
w={'700px'}
|
||||
h={['90vh', 'auto']}
|
||||
>
|
||||
<ModalBody>
|
||||
<ModalBody flex={['1 0 0', 'auto']} overflowY={'auto'}>
|
||||
{isAdEdit && (
|
||||
<Flex alignItems={'center'}>
|
||||
<Box {...LabelStyles} w={'80px'}>
|
||||
返回AI内容
|
||||
</Box>
|
||||
<Box flex={1} ml={'10px'}>
|
||||
<Switch
|
||||
isChecked={getValues(SystemInputEnum.isResponseAnswerText)}
|
||||
size={'lg'}
|
||||
onChange={(e) => {
|
||||
const value = e.target.checked;
|
||||
setValue(SystemInputEnum.isResponseAnswerText, value);
|
||||
setRefresh((state) => !state);
|
||||
}}
|
||||
/>
|
||||
</Box>
|
||||
</Flex>
|
||||
)}
|
||||
<Flex alignItems={'center'} mb={10} mt={isAdEdit ? 8 : 5}>
|
||||
<Box {...LabelStyles} mr={2} w={'80px'}>
|
||||
温度
|
||||
</Box>
|
||||
<Box flex={1} ml={'10px'}>
|
||||
<MySlider
|
||||
markList={[
|
||||
{ label: '严谨', value: 0 },
|
||||
{ label: '发散', value: 10 }
|
||||
]}
|
||||
width={'95%'}
|
||||
min={0}
|
||||
max={10}
|
||||
value={getValues('temperature')}
|
||||
onChange={(e) => {
|
||||
setValue('temperature', e);
|
||||
setRefresh(!refresh);
|
||||
}}
|
||||
/>
|
||||
</Box>
|
||||
</Flex>
|
||||
<Flex alignItems={'center'} mt={12} mb={10}>
|
||||
<Box {...LabelStyles} mr={2} w={'80px'}>
|
||||
回复上限
|
||||
</Box>
|
||||
<Box flex={1} ml={'10px'}>
|
||||
<MySlider
|
||||
markList={[
|
||||
{ label: '100', value: 100 },
|
||||
{ label: `${tokenLimit}`, value: tokenLimit }
|
||||
]}
|
||||
width={'95%'}
|
||||
min={100}
|
||||
max={tokenLimit}
|
||||
step={50}
|
||||
value={getValues('maxToken')}
|
||||
onChange={(val) => {
|
||||
setValue('maxToken', val);
|
||||
setRefresh(!refresh);
|
||||
}}
|
||||
/>
|
||||
</Box>
|
||||
</Flex>
|
||||
<Box>
|
||||
<Box {...LabelStyles}>
|
||||
<Flex {...LabelStyles} mb={1}>
|
||||
引用内容模板
|
||||
<MyTooltip
|
||||
label={t('template.Quote Content Tip', { default: defaultQuoteTemplate })}
|
||||
label={t('template.Quote Content Tip', {
|
||||
default: Prompt_QuoteTemplateList[0].value
|
||||
})}
|
||||
forceShow
|
||||
>
|
||||
<QuestionOutlineIcon display={['none', 'inline']} ml={1} />
|
||||
</MyTooltip>
|
||||
</Box>
|
||||
<Box flex={1} />
|
||||
<Box
|
||||
{...selectTemplateBtn}
|
||||
onClick={() =>
|
||||
setSelectTemplateData({
|
||||
title: '选择引用内容模板',
|
||||
key: 'quoteTemplate',
|
||||
templates: Prompt_QuoteTemplateList
|
||||
})
|
||||
}
|
||||
>
|
||||
选择模板
|
||||
</Box>
|
||||
</Flex>
|
||||
<Textarea
|
||||
rows={4}
|
||||
placeholder={t('template.Quote Content Tip', { default: defaultQuoteTemplate }) || ''}
|
||||
rows={6}
|
||||
placeholder={
|
||||
t('template.Quote Content Tip', { default: Prompt_QuoteTemplateList[0].value }) || ''
|
||||
}
|
||||
borderColor={'myGray.100'}
|
||||
{...register('quoteTemplate')}
|
||||
/>
|
||||
</Box>
|
||||
<Box mt={4}>
|
||||
<Box {...LabelStyles}>
|
||||
<Flex {...LabelStyles} mb={1}>
|
||||
引用内容提示词
|
||||
<MyTooltip
|
||||
label={t('template.Quote Prompt Tip', { default: defaultQuotePrompt })}
|
||||
label={t('template.Quote Prompt Tip', { default: Prompt_QuotePromptList[0].value })}
|
||||
forceShow
|
||||
>
|
||||
<QuestionOutlineIcon display={['none', 'inline']} ml={1} />
|
||||
</MyTooltip>
|
||||
</Box>
|
||||
<Box flex={1} />
|
||||
<Box
|
||||
{...selectTemplateBtn}
|
||||
onClick={() =>
|
||||
setSelectTemplateData({
|
||||
title: '选择引用提示词模板',
|
||||
key: 'quotePrompt',
|
||||
templates: Prompt_QuotePromptList
|
||||
})
|
||||
}
|
||||
>
|
||||
选择模板
|
||||
</Box>
|
||||
</Flex>
|
||||
<Textarea
|
||||
rows={6}
|
||||
placeholder={t('template.Quote Prompt Tip', { default: defaultQuotePrompt }) || ''}
|
||||
rows={11}
|
||||
placeholder={
|
||||
t('template.Quote Prompt Tip', { default: Prompt_QuotePromptList[0].value }) || ''
|
||||
}
|
||||
borderColor={'myGray.100'}
|
||||
{...register('quotePrompt')}
|
||||
/>
|
||||
@@ -105,6 +222,14 @@ const AIChatSettingsModal = ({
|
||||
{t('Confirm')}
|
||||
</Button>
|
||||
</ModalFooter>
|
||||
{!!selectTemplateData && (
|
||||
<PromptTemplate
|
||||
title={selectTemplateData.title}
|
||||
templates={selectTemplateData.templates}
|
||||
onClose={() => setSelectTemplateData(undefined)}
|
||||
onSuccess={(e) => setValue(selectTemplateData.key, e)}
|
||||
/>
|
||||
)}
|
||||
</MyModal>
|
||||
);
|
||||
};
|
||||
|
@@ -0,0 +1,229 @@
|
||||
import React, { useCallback, useRef, useState } from 'react';
|
||||
import { Box, Flex, IconButton, useTheme, useDisclosure } from '@chakra-ui/react';
|
||||
import { SmallCloseIcon } from '@chakra-ui/icons';
|
||||
import { FlowInputItemTypeEnum } from '@/constants/flow';
|
||||
import { FlowOutputTargetItemType } from '@/types/core/app/flow';
|
||||
import { AppModuleItemType } from '@/types/app';
|
||||
import { useRequest } from '@/web/common/hooks/useRequest';
|
||||
import type { AppSchema } from '@/types/mongoSchema';
|
||||
import { useUserStore } from '@/web/support/store/user';
|
||||
import { useTranslation } from 'next-i18next';
|
||||
import { useCopyData } from '@/web/common/hooks/useCopyData';
|
||||
import { AppTypeEnum } from '@/constants/app';
|
||||
import dynamic from 'next/dynamic';
|
||||
|
||||
import MyIcon from '@/components/Icon';
|
||||
import MyTooltip from '@/components/MyTooltip';
|
||||
import ChatTest, { type ChatTestComponentRef } from './ChatTest';
|
||||
import { useFlowStore } from './Provider';
|
||||
|
||||
const ImportSettings = dynamic(() => import('./ImportSettings'));
|
||||
|
||||
type Props = { app: AppSchema; onCloseSettings: () => void };
|
||||
|
||||
const RenderHeaderContainer = React.memo(function RenderHeaderContainer({
|
||||
app,
|
||||
ChatTestRef,
|
||||
testModules,
|
||||
setTestModules,
|
||||
onCloseSettings
|
||||
}: Props & {
|
||||
ChatTestRef: React.RefObject<ChatTestComponentRef>;
|
||||
testModules?: AppModuleItemType[];
|
||||
setTestModules: React.Dispatch<AppModuleItemType[] | undefined>;
|
||||
}) {
|
||||
const theme = useTheme();
|
||||
const { t } = useTranslation();
|
||||
const { copyData } = useCopyData();
|
||||
const { isOpen: isOpenImport, onOpen: onOpenImport, onClose: onCloseImport } = useDisclosure();
|
||||
const { updateAppDetail } = useUserStore();
|
||||
|
||||
const { nodes, edges, onFixView } = useFlowStore();
|
||||
|
||||
const flow2AppModules = useCallback(() => {
|
||||
const modules: AppModuleItemType[] = nodes.map((item) => ({
|
||||
moduleId: item.data.moduleId,
|
||||
name: item.data.name,
|
||||
flowType: item.data.flowType,
|
||||
showStatus: item.data.showStatus,
|
||||
position: item.position,
|
||||
inputs: item.data.inputs.map((item) => ({
|
||||
...item,
|
||||
connected: item.connected ?? item.type !== FlowInputItemTypeEnum.target
|
||||
})),
|
||||
outputs: item.data.outputs.map((item) => ({
|
||||
...item,
|
||||
targets: [] as FlowOutputTargetItemType[]
|
||||
}))
|
||||
}));
|
||||
|
||||
// update inputs and outputs
|
||||
modules.forEach((module) => {
|
||||
module.inputs.forEach((input) => {
|
||||
input.connected =
|
||||
input.connected ||
|
||||
!!edges.find(
|
||||
(edge) => edge.target === module.moduleId && edge.targetHandle === input.key
|
||||
);
|
||||
});
|
||||
module.outputs.forEach((output) => {
|
||||
output.targets = edges
|
||||
.filter(
|
||||
(edge) =>
|
||||
edge.source === module.moduleId &&
|
||||
edge.sourceHandle === output.key &&
|
||||
edge.targetHandle
|
||||
)
|
||||
.map((edge) => ({
|
||||
moduleId: edge.target,
|
||||
key: edge.targetHandle || ''
|
||||
}));
|
||||
});
|
||||
});
|
||||
return modules;
|
||||
}, [edges, nodes]);
|
||||
|
||||
const { mutate: onclickSave, isLoading } = useRequest({
|
||||
mutationFn: () => {
|
||||
const modules = flow2AppModules();
|
||||
// check required connect
|
||||
for (let i = 0; i < modules.length; i++) {
|
||||
const item = modules[i];
|
||||
if (item.inputs.find((input) => input.required && !input.connected)) {
|
||||
return Promise.reject(`【${item.name}】存在未连接的必填输入`);
|
||||
}
|
||||
if (item.inputs.find((input) => input.valueCheck && !input.valueCheck(input.value))) {
|
||||
return Promise.reject(`【${item.name}】存在为填写的必填项`);
|
||||
}
|
||||
}
|
||||
|
||||
return updateAppDetail(app._id, {
|
||||
modules: modules,
|
||||
type: AppTypeEnum.advanced
|
||||
});
|
||||
},
|
||||
successToast: '保存配置成功',
|
||||
errorToast: '保存配置异常',
|
||||
onSuccess() {
|
||||
ChatTestRef.current?.resetChatTest();
|
||||
}
|
||||
});
|
||||
|
||||
return (
|
||||
<>
|
||||
<Flex
|
||||
py={3}
|
||||
px={[2, 5, 8]}
|
||||
borderBottom={theme.borders.base}
|
||||
alignItems={'center'}
|
||||
userSelect={'none'}
|
||||
>
|
||||
<MyTooltip label={'返回'} offset={[10, 10]}>
|
||||
<IconButton
|
||||
size={'sm'}
|
||||
icon={<MyIcon name={'back'} w={'14px'} />}
|
||||
borderRadius={'md'}
|
||||
borderColor={'myGray.300'}
|
||||
variant={'base'}
|
||||
aria-label={''}
|
||||
onClick={() => {
|
||||
onCloseSettings();
|
||||
onFixView();
|
||||
}}
|
||||
/>
|
||||
</MyTooltip>
|
||||
<Box ml={[3, 6]} fontSize={['md', '2xl']} flex={1}>
|
||||
{app.name}
|
||||
</Box>
|
||||
|
||||
<MyTooltip label={t('app.Import Configs')}>
|
||||
<IconButton
|
||||
mr={[3, 6]}
|
||||
icon={<MyIcon name={'importLight'} w={['14px', '16px']} />}
|
||||
borderRadius={'lg'}
|
||||
variant={'base'}
|
||||
aria-label={'save'}
|
||||
onClick={onOpenImport}
|
||||
/>
|
||||
</MyTooltip>
|
||||
<MyTooltip label={t('app.Export Configs')}>
|
||||
<IconButton
|
||||
mr={[3, 6]}
|
||||
icon={<MyIcon name={'export'} w={['14px', '16px']} />}
|
||||
borderRadius={'lg'}
|
||||
variant={'base'}
|
||||
aria-label={'save'}
|
||||
onClick={() =>
|
||||
copyData(
|
||||
JSON.stringify(flow2AppModules(), null, 2),
|
||||
t('app.Export Config Successful')
|
||||
)
|
||||
}
|
||||
/>
|
||||
</MyTooltip>
|
||||
|
||||
{testModules ? (
|
||||
<IconButton
|
||||
mr={[3, 6]}
|
||||
icon={<SmallCloseIcon fontSize={'25px'} />}
|
||||
variant={'base'}
|
||||
color={'myGray.600'}
|
||||
borderRadius={'lg'}
|
||||
aria-label={''}
|
||||
onClick={() => setTestModules(undefined)}
|
||||
/>
|
||||
) : (
|
||||
<MyTooltip label={'测试对话'}>
|
||||
<IconButton
|
||||
mr={[3, 6]}
|
||||
icon={<MyIcon name={'chat'} w={['14px', '16px']} />}
|
||||
borderRadius={'lg'}
|
||||
aria-label={'save'}
|
||||
variant={'base'}
|
||||
onClick={() => {
|
||||
setTestModules(flow2AppModules());
|
||||
}}
|
||||
/>
|
||||
</MyTooltip>
|
||||
)}
|
||||
|
||||
<MyTooltip label={'保存配置'}>
|
||||
<IconButton
|
||||
icon={<MyIcon name={'save'} w={['14px', '16px']} />}
|
||||
borderRadius={'lg'}
|
||||
isLoading={isLoading}
|
||||
aria-label={'save'}
|
||||
onClick={onclickSave}
|
||||
/>
|
||||
</MyTooltip>
|
||||
</Flex>
|
||||
{isOpenImport && <ImportSettings onClose={onCloseImport} />}
|
||||
</>
|
||||
);
|
||||
});
|
||||
|
||||
const Header = (props: Props) => {
|
||||
const { app } = props;
|
||||
const ChatTestRef = useRef<ChatTestComponentRef>(null);
|
||||
|
||||
const [testModules, setTestModules] = useState<AppModuleItemType[]>();
|
||||
|
||||
return (
|
||||
<>
|
||||
<RenderHeaderContainer
|
||||
{...props}
|
||||
ChatTestRef={ChatTestRef}
|
||||
testModules={testModules}
|
||||
setTestModules={setTestModules}
|
||||
/>
|
||||
<ChatTest
|
||||
ref={ChatTestRef}
|
||||
modules={testModules}
|
||||
app={app}
|
||||
onClose={() => setTestModules(undefined)}
|
||||
/>
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
||||
export default React.memo(Header);
|
@@ -1,4 +1,4 @@
|
||||
import React, { useMemo } from 'react';
|
||||
import React from 'react';
|
||||
import { NodeProps } from 'reactflow';
|
||||
import NodeCard from '../modules/NodeCard';
|
||||
import { FlowModuleItemType } from '@/types/core/app/flow';
|
||||
@@ -7,11 +7,8 @@ import Container from '../modules/Container';
|
||||
import RenderInput from '../render/RenderInput';
|
||||
import RenderOutput from '../render/RenderOutput';
|
||||
|
||||
import { useFlowStore } from '../Provider';
|
||||
|
||||
const NodeChat = ({ data }: NodeProps<FlowModuleItemType>) => {
|
||||
const { moduleId, inputs, outputs } = data;
|
||||
const { onChangeNode } = useFlowStore();
|
||||
|
||||
return (
|
||||
<NodeCard minW={'400px'} {...data}>
|
||||
|
@@ -5,14 +5,11 @@ import {
|
||||
type EdgeChange,
|
||||
useNodesState,
|
||||
useEdgesState,
|
||||
XYPosition,
|
||||
useViewport,
|
||||
Connection,
|
||||
addEdge
|
||||
} from 'reactflow';
|
||||
import type {
|
||||
FlowModuleItemType,
|
||||
FlowModuleTemplateType,
|
||||
FlowOutputTargetItemType,
|
||||
FlowModuleItemChangeProps
|
||||
} from '@/types/core/app/flow';
|
||||
@@ -44,7 +41,6 @@ export type useFlowStoreType = {
|
||||
setEdges: Dispatch<SetStateAction<Edge<any>[]>>;
|
||||
onEdgesChange: OnChange<EdgeChange>;
|
||||
onFixView: () => void;
|
||||
onAddNode: (e: { template: FlowModuleTemplateType; position: XYPosition }) => void;
|
||||
onDelNode: (nodeId: string) => void;
|
||||
onChangeNode: (e: FlowModuleItemChangeProps) => void;
|
||||
onCopyNode: (nodeId: string) => void;
|
||||
@@ -80,9 +76,7 @@ const StateContext = createContext<useFlowStoreType>({
|
||||
onFixView: function (): void {
|
||||
return;
|
||||
},
|
||||
onAddNode: function (e: { template: FlowModuleTemplateType; position: XYPosition }): void {
|
||||
return;
|
||||
},
|
||||
|
||||
onDelNode: function (nodeId: string): void {
|
||||
return;
|
||||
},
|
||||
@@ -117,7 +111,6 @@ export const FlowProvider = ({ appId, children }: { appId: string; children: Rea
|
||||
const { toast } = useToast();
|
||||
const [nodes = [], setNodes, onNodesChange] = useNodesState<FlowModuleItemType>([]);
|
||||
const [edges, setEdges, onEdgesChange] = useEdgesState([]);
|
||||
const { x, y, zoom } = useViewport();
|
||||
|
||||
const onFixView = useCallback(() => {
|
||||
const btn = document.querySelector('.react-flow__controls-fitview') as HTMLButtonElement;
|
||||
@@ -205,27 +198,6 @@ export const FlowProvider = ({ appId, children }: { appId: string; children: Rea
|
||||
[nodes, onDelConnect, setEdges, t, toast]
|
||||
);
|
||||
|
||||
const onAddNode = useCallback(
|
||||
({ template, position }: { template: FlowModuleTemplateType; position: XYPosition }) => {
|
||||
if (!reactFlowWrapper.current) return;
|
||||
const reactFlowBounds = reactFlowWrapper.current.getBoundingClientRect();
|
||||
const mouseX = (position.x - reactFlowBounds.left - x) / zoom - 100;
|
||||
const mouseY = (position.y - reactFlowBounds.top - y) / zoom;
|
||||
setNodes((state) =>
|
||||
state.concat(
|
||||
appModule2FlowNode({
|
||||
item: {
|
||||
...template,
|
||||
moduleId: nanoid(),
|
||||
position: { x: mouseX, y: mouseY }
|
||||
}
|
||||
})
|
||||
)
|
||||
);
|
||||
},
|
||||
[setNodes, x, y, zoom]
|
||||
);
|
||||
|
||||
const onDelNode = useCallback(
|
||||
(nodeId: string) => {
|
||||
setNodes((state) => state.filter((item) => item.id !== nodeId));
|
||||
@@ -338,7 +310,6 @@ export const FlowProvider = ({ appId, children }: { appId: string; children: Rea
|
||||
setEdges,
|
||||
onEdgesChange,
|
||||
onFixView,
|
||||
onAddNode,
|
||||
onDelNode,
|
||||
onChangeNode,
|
||||
onCopyNode,
|
||||
|
@@ -1,24 +1,20 @@
|
||||
import React, { useMemo } from 'react';
|
||||
import React, { useCallback, useMemo } from 'react';
|
||||
import { Box, Flex } from '@chakra-ui/react';
|
||||
import { ModuleTemplates } from '@/constants/flow/ModuleTemplate';
|
||||
import { FlowModuleItemType, FlowModuleTemplateType } from '@/types/core/app/flow';
|
||||
import type { Node } from 'reactflow';
|
||||
import { FlowModuleTemplateType } from '@/types/core/app/flow';
|
||||
import { useViewport, XYPosition } from 'reactflow';
|
||||
import { useGlobalStore } from '@/web/common/store/global';
|
||||
import Avatar from '@/components/Avatar';
|
||||
import { FlowModuleTypeEnum } from '@/constants/flow';
|
||||
import { useFlowStore } from './Provider';
|
||||
import { customAlphabet } from 'nanoid';
|
||||
import { appModule2FlowNode } from '@/utils/adapt';
|
||||
const nanoid = customAlphabet('abcdefghijklmnopqrstuvwxyz1234567890', 6);
|
||||
|
||||
const ModuleTemplateList = ({
|
||||
nodes,
|
||||
isOpen,
|
||||
onClose
|
||||
}: {
|
||||
nodes?: Node<FlowModuleItemType>[];
|
||||
isOpen: boolean;
|
||||
onClose: () => void;
|
||||
}) => {
|
||||
const { onAddNode } = useFlowStore();
|
||||
const ModuleTemplateList = ({ isOpen, onClose }: { isOpen: boolean; onClose: () => void }) => {
|
||||
const { nodes, setNodes, reactFlowWrapper } = useFlowStore();
|
||||
const { isPc } = useGlobalStore();
|
||||
const { x, y, zoom } = useViewport();
|
||||
|
||||
const filterTemplates = useMemo(() => {
|
||||
const guideModulesIndex = ModuleTemplates.findIndex((item) => item.label === '引导模块');
|
||||
@@ -47,6 +43,28 @@ const ModuleTemplateList = ({
|
||||
];
|
||||
}, [nodes]);
|
||||
|
||||
const onAddNode = useCallback(
|
||||
({ template, position }: { template: FlowModuleTemplateType; position: XYPosition }) => {
|
||||
if (!reactFlowWrapper?.current) return;
|
||||
|
||||
const reactFlowBounds = reactFlowWrapper.current.getBoundingClientRect();
|
||||
const mouseX = (position.x - reactFlowBounds.left - x) / zoom - 100;
|
||||
const mouseY = (position.y - reactFlowBounds.top - y) / zoom;
|
||||
setNodes((state) =>
|
||||
state.concat(
|
||||
appModule2FlowNode({
|
||||
item: {
|
||||
...template,
|
||||
moduleId: nanoid(),
|
||||
position: { x: mouseX, y: mouseY }
|
||||
}
|
||||
})
|
||||
)
|
||||
);
|
||||
},
|
||||
[reactFlowWrapper, setNodes, x, y, zoom]
|
||||
);
|
||||
|
||||
return (
|
||||
<>
|
||||
<Box
|
||||
|
@@ -32,6 +32,7 @@ import { formatPrice } from '@fastgpt/common/bill';
|
||||
import { useDatasetStore } from '@/web/core/store/dataset';
|
||||
import { SelectedDatasetType } from '@/types/core/dataset';
|
||||
import { useQuery } from '@tanstack/react-query';
|
||||
import { LLMModelItemType } from '@/types/model';
|
||||
|
||||
const SetInputFieldModal = dynamic(() => import('../modules/SetInputFieldModal'));
|
||||
const SelectAppModal = dynamic(() => import('../../../SelectAppModal'));
|
||||
@@ -186,8 +187,8 @@ const RenderInput = ({
|
||||
{item.type === FlowInputItemTypeEnum.selectApp && (
|
||||
<SelectAppRender item={item} moduleId={moduleId} />
|
||||
)}
|
||||
{item.type === FlowInputItemTypeEnum.quoteList && (
|
||||
<QuoteListRender inputs={sortInputs} item={item} moduleId={moduleId} />
|
||||
{item.type === FlowInputItemTypeEnum.aiSettings && (
|
||||
<AISetting inputs={sortInputs} item={item} moduleId={moduleId} />
|
||||
)}
|
||||
{item.type === FlowInputItemTypeEnum.maxToken && (
|
||||
<MaxTokenRender inputs={sortInputs} item={item} moduleId={moduleId} />
|
||||
@@ -343,7 +344,7 @@ var SliderRender = React.memo(function SliderRender({ item, moduleId }: RenderPr
|
||||
);
|
||||
});
|
||||
|
||||
var QuoteListRender = React.memo(function QuoteListRender({ inputs = [], moduleId }: RenderProps) {
|
||||
var AISetting = React.memo(function AISetting({ inputs = [], moduleId }: RenderProps) {
|
||||
const { onChangeNode } = useFlowStore();
|
||||
const { t } = useTranslation();
|
||||
const chatModulesData = useMemo(() => {
|
||||
@@ -367,10 +368,11 @@ var QuoteListRender = React.memo(function QuoteListRender({ inputs = [], moduleI
|
||||
leftIcon={<MyIcon name={'settingLight'} w={'14px'} />}
|
||||
onClick={onOpenAIChatSetting}
|
||||
>
|
||||
{t('app.Quote Prompt Settings')}
|
||||
{t('app.AI Settings')}
|
||||
</Button>
|
||||
{isOpenAIChatSetting && (
|
||||
<AIChatSettingsModal
|
||||
isAdEdit
|
||||
onClose={onCloseAIChatSetting}
|
||||
onSuccess={(e) => {
|
||||
for (let key in e) {
|
||||
@@ -404,7 +406,7 @@ var MaxTokenRender = React.memo(function MaxTokenRender({
|
||||
const { onChangeNode } = useFlowStore();
|
||||
const model = inputs.find((item) => item.key === 'model')?.value;
|
||||
const modelData = chatModelList.find((item) => item.model === model);
|
||||
const maxToken = modelData ? modelData.contextMaxToken : 4000;
|
||||
const maxToken = modelData ? modelData.maxToken : 4000;
|
||||
const markList = [
|
||||
{ label: '100', value: 100 },
|
||||
{ label: `${maxToken}`, value: maxToken }
|
||||
@@ -441,8 +443,42 @@ var SelectChatModelRender = React.memo(function SelectChatModelRender({
|
||||
moduleId
|
||||
}: RenderProps) {
|
||||
const { onChangeNode } = useFlowStore();
|
||||
const modelList = (item.customData?.() as LLMModelItemType[]) || chatModelList || [];
|
||||
|
||||
const list = chatModelList.map((item) => {
|
||||
function onChangeModel(e: string) {
|
||||
{
|
||||
onChangeNode({
|
||||
moduleId,
|
||||
type: 'inputs',
|
||||
key: item.key,
|
||||
value: {
|
||||
...item,
|
||||
value: e
|
||||
}
|
||||
});
|
||||
|
||||
// update max tokens
|
||||
const model = modelList.find((item) => item.model === e) || modelList[0];
|
||||
if (!model) return;
|
||||
|
||||
onChangeNode({
|
||||
moduleId,
|
||||
type: 'inputs',
|
||||
key: 'maxToken',
|
||||
value: {
|
||||
...inputs.find((input) => input.key === 'maxToken'),
|
||||
markList: [
|
||||
{ label: '100', value: 100 },
|
||||
{ label: `${model.maxToken}`, value: model.maxToken }
|
||||
],
|
||||
max: model.maxToken,
|
||||
value: model.maxToken / 2
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
const list = modelList.map((item) => {
|
||||
const priceStr = `(${formatPrice(item.price, 1000)}元/1k Tokens)`;
|
||||
|
||||
return {
|
||||
@@ -451,43 +487,11 @@ var SelectChatModelRender = React.memo(function SelectChatModelRender({
|
||||
};
|
||||
});
|
||||
|
||||
return (
|
||||
<MySelect
|
||||
width={'100%'}
|
||||
value={item.value}
|
||||
list={list}
|
||||
onchange={(e) => {
|
||||
onChangeNode({
|
||||
moduleId,
|
||||
type: 'inputs',
|
||||
key: item.key,
|
||||
value: {
|
||||
...item,
|
||||
value: e
|
||||
}
|
||||
});
|
||||
if (!item.value && list.length > 0) {
|
||||
onChangeModel(list[0].value);
|
||||
}
|
||||
|
||||
// update max tokens
|
||||
const model = chatModelList.find((item) => item.model === e) || chatModelList[0];
|
||||
if (!model) return;
|
||||
|
||||
onChangeNode({
|
||||
moduleId,
|
||||
type: 'inputs',
|
||||
key: 'maxToken',
|
||||
value: {
|
||||
...inputs.find((input) => input.key === 'maxToken'),
|
||||
markList: [
|
||||
{ label: '100', value: 100 },
|
||||
{ label: `${model.contextMaxToken}`, value: model.contextMaxToken }
|
||||
],
|
||||
max: model.contextMaxToken,
|
||||
value: model.contextMaxToken / 2
|
||||
}
|
||||
});
|
||||
}}
|
||||
/>
|
||||
);
|
||||
return <MySelect width={'100%'} value={item.value} list={list} onchange={onChangeModel} />;
|
||||
});
|
||||
|
||||
var SelectDatasetRender = React.memo(function SelectDatasetRender({ item, moduleId }: RenderProps) {
|
||||
|
@@ -25,6 +25,7 @@ import MyTooltip from '@/components/MyTooltip';
|
||||
import TemplateList from './components/TemplateList';
|
||||
import ChatTest, { type ChatTestComponentRef } from './components/ChatTest';
|
||||
import FlowProvider, { useFlowStore } from './components/Provider';
|
||||
import Header from './components/Header';
|
||||
|
||||
const ImportSettings = dynamic(() => import('./components/ImportSettings'));
|
||||
const NodeChat = dynamic(() => import('./components/Nodes/NodeChat'));
|
||||
@@ -62,187 +63,7 @@ const edgeTypes = {
|
||||
};
|
||||
type Props = { app: AppSchema; onCloseSettings: () => void };
|
||||
|
||||
function FlowHeader({ app, onCloseSettings }: Props & {}) {
|
||||
const theme = useTheme();
|
||||
const { t } = useTranslation();
|
||||
const { copyData } = useCopyData();
|
||||
const ChatTestRef = useRef<ChatTestComponentRef>(null);
|
||||
const { isOpen: isOpenImport, onOpen: onOpenImport, onClose: onCloseImport } = useDisclosure();
|
||||
const { updateAppDetail } = useUserStore();
|
||||
const { nodes, edges, onFixView } = useFlowStore();
|
||||
|
||||
const [testModules, setTestModules] = useState<AppModuleItemType[]>();
|
||||
|
||||
const flow2AppModules = useCallback(() => {
|
||||
const modules: AppModuleItemType[] = nodes.map((item) => ({
|
||||
moduleId: item.data.moduleId,
|
||||
name: item.data.name,
|
||||
flowType: item.data.flowType,
|
||||
showStatus: item.data.showStatus,
|
||||
position: item.position,
|
||||
inputs: item.data.inputs.map((item) => ({
|
||||
...item,
|
||||
connected: item.connected ?? item.type !== FlowInputItemTypeEnum.target
|
||||
})),
|
||||
outputs: item.data.outputs.map((item) => ({
|
||||
...item,
|
||||
targets: [] as FlowOutputTargetItemType[]
|
||||
}))
|
||||
}));
|
||||
|
||||
// update inputs and outputs
|
||||
modules.forEach((module) => {
|
||||
module.inputs.forEach((input) => {
|
||||
input.connected =
|
||||
input.connected ||
|
||||
!!edges.find(
|
||||
(edge) => edge.target === module.moduleId && edge.targetHandle === input.key
|
||||
);
|
||||
});
|
||||
module.outputs.forEach((output) => {
|
||||
output.targets = edges
|
||||
.filter(
|
||||
(edge) =>
|
||||
edge.source === module.moduleId &&
|
||||
edge.sourceHandle === output.key &&
|
||||
edge.targetHandle
|
||||
)
|
||||
.map((edge) => ({
|
||||
moduleId: edge.target,
|
||||
key: edge.targetHandle || ''
|
||||
}));
|
||||
});
|
||||
});
|
||||
return modules;
|
||||
}, [edges, nodes]);
|
||||
|
||||
const { mutate: onclickSave, isLoading } = useRequest({
|
||||
mutationFn: () => {
|
||||
const modules = flow2AppModules();
|
||||
// check required connect
|
||||
for (let i = 0; i < modules.length; i++) {
|
||||
const item = modules[i];
|
||||
if (item.inputs.find((input) => input.required && !input.connected)) {
|
||||
return Promise.reject(`【${item.name}】存在未连接的必填输入`);
|
||||
}
|
||||
if (item.inputs.find((input) => input.valueCheck && !input.valueCheck(input.value))) {
|
||||
return Promise.reject(`【${item.name}】存在为填写的必填项`);
|
||||
}
|
||||
}
|
||||
|
||||
return updateAppDetail(app._id, {
|
||||
modules: modules,
|
||||
type: AppTypeEnum.advanced
|
||||
});
|
||||
},
|
||||
successToast: '保存配置成功',
|
||||
errorToast: '保存配置异常',
|
||||
onSuccess() {
|
||||
ChatTestRef.current?.resetChatTest();
|
||||
}
|
||||
});
|
||||
|
||||
return (
|
||||
<>
|
||||
<Flex
|
||||
py={3}
|
||||
px={[2, 5, 8]}
|
||||
borderBottom={theme.borders.base}
|
||||
alignItems={'center'}
|
||||
userSelect={'none'}
|
||||
>
|
||||
<MyTooltip label={'返回'} offset={[10, 10]}>
|
||||
<IconButton
|
||||
size={'sm'}
|
||||
icon={<MyIcon name={'back'} w={'14px'} />}
|
||||
borderRadius={'md'}
|
||||
borderColor={'myGray.300'}
|
||||
variant={'base'}
|
||||
aria-label={''}
|
||||
onClick={() => {
|
||||
onCloseSettings();
|
||||
onFixView();
|
||||
}}
|
||||
/>
|
||||
</MyTooltip>
|
||||
<Box ml={[3, 6]} fontSize={['md', '2xl']} flex={1}>
|
||||
{app.name}
|
||||
</Box>
|
||||
|
||||
<MyTooltip label={t('app.Import Configs')}>
|
||||
<IconButton
|
||||
mr={[3, 6]}
|
||||
icon={<MyIcon name={'importLight'} w={['14px', '16px']} />}
|
||||
borderRadius={'lg'}
|
||||
variant={'base'}
|
||||
aria-label={'save'}
|
||||
onClick={onOpenImport}
|
||||
/>
|
||||
</MyTooltip>
|
||||
<MyTooltip label={t('app.Export Configs')}>
|
||||
<IconButton
|
||||
mr={[3, 6]}
|
||||
icon={<MyIcon name={'export'} w={['14px', '16px']} />}
|
||||
borderRadius={'lg'}
|
||||
variant={'base'}
|
||||
aria-label={'save'}
|
||||
onClick={() =>
|
||||
copyData(
|
||||
JSON.stringify(flow2AppModules(), null, 2),
|
||||
t('app.Export Config Successful')
|
||||
)
|
||||
}
|
||||
/>
|
||||
</MyTooltip>
|
||||
|
||||
{testModules ? (
|
||||
<IconButton
|
||||
mr={[3, 6]}
|
||||
icon={<SmallCloseIcon fontSize={'25px'} />}
|
||||
variant={'base'}
|
||||
color={'myGray.600'}
|
||||
borderRadius={'lg'}
|
||||
aria-label={''}
|
||||
onClick={() => setTestModules(undefined)}
|
||||
/>
|
||||
) : (
|
||||
<MyTooltip label={'测试对话'}>
|
||||
<IconButton
|
||||
mr={[3, 6]}
|
||||
icon={<MyIcon name={'chat'} w={['14px', '16px']} />}
|
||||
borderRadius={'lg'}
|
||||
aria-label={'save'}
|
||||
variant={'base'}
|
||||
onClick={() => {
|
||||
setTestModules(flow2AppModules());
|
||||
}}
|
||||
/>
|
||||
</MyTooltip>
|
||||
)}
|
||||
|
||||
<MyTooltip label={'保存配置'}>
|
||||
<IconButton
|
||||
icon={<MyIcon name={'save'} w={['14px', '16px']} />}
|
||||
borderRadius={'lg'}
|
||||
isLoading={isLoading}
|
||||
aria-label={'save'}
|
||||
onClick={onclickSave}
|
||||
/>
|
||||
</MyTooltip>
|
||||
</Flex>
|
||||
{isOpenImport && <ImportSettings onClose={onCloseImport} />}
|
||||
<ChatTest
|
||||
ref={ChatTestRef}
|
||||
modules={testModules}
|
||||
app={app}
|
||||
onClose={() => setTestModules(undefined)}
|
||||
/>
|
||||
</>
|
||||
);
|
||||
}
|
||||
const Header = React.memo(FlowHeader);
|
||||
|
||||
const AppEdit = (props: Props) => {
|
||||
const AppEdit = React.memo(function AppEdit(props: Props) {
|
||||
const { app } = props;
|
||||
|
||||
const {
|
||||
@@ -261,7 +82,7 @@ const AppEdit = (props: Props) => {
|
||||
return (
|
||||
<>
|
||||
{/* header */}
|
||||
<Header {...props} />
|
||||
<Header app={app} onCloseSettings={props.onCloseSettings} />
|
||||
<Box
|
||||
minH={'400px'}
|
||||
flex={'1 0 0'}
|
||||
@@ -318,11 +139,11 @@ const AppEdit = (props: Props) => {
|
||||
<Controls position={'bottom-right'} style={{ display: 'flex' }} showInteractive={false} />
|
||||
</ReactFlow>
|
||||
|
||||
<TemplateList isOpen={isOpenTemplate} nodes={nodes} onClose={onCloseTemplate} />
|
||||
<TemplateList isOpen={isOpenTemplate} onClose={onCloseTemplate} />
|
||||
</Box>
|
||||
</>
|
||||
);
|
||||
};
|
||||
});
|
||||
|
||||
const Flow = (data: Props) => {
|
||||
return (
|
||||
|
@@ -34,7 +34,6 @@ import { chatModelList } from '@/web/common/store/static';
|
||||
import { formatPrice } from '@fastgpt/common/bill/index';
|
||||
import {
|
||||
ChatModelSystemTip,
|
||||
ChatModelLimitTip,
|
||||
welcomeTextTip,
|
||||
questionGuideTip
|
||||
} from '@/constants/flow/ModuleTemplate';
|
||||
@@ -128,12 +127,7 @@ const Settings = ({ appId }: { appId: string }) => {
|
||||
label: `${item.name} (${formatPrice(item.price, 1000)} 元/1k tokens)`
|
||||
}));
|
||||
}, [refresh]);
|
||||
const tokenLimit = useMemo(() => {
|
||||
return (
|
||||
chatModelList.find((item) => item.model === getValues('chatModel.model'))?.contextMaxToken ||
|
||||
4000
|
||||
);
|
||||
}, [getValues, refresh]);
|
||||
|
||||
const selectedKbList = useMemo(
|
||||
() => allDatasets.filter((item) => kbList.find((kb) => kb.kbId === item._id)),
|
||||
[allDatasets, kbList]
|
||||
@@ -411,6 +405,10 @@ const Settings = ({ appId }: { appId: string }) => {
|
||||
<Box ml={2} flex={1}>
|
||||
AI 配置
|
||||
</Box>
|
||||
<Flex {...BoxBtnStyles} onClick={onOpenAIChatSetting}>
|
||||
<MyIcon mr={1} name={'settingLight'} w={'14px'} />
|
||||
高级配置
|
||||
</Flex>
|
||||
</Flex>
|
||||
|
||||
<Flex alignItems={'center'} mt={5}>
|
||||
@@ -424,7 +422,7 @@ const Settings = ({ appId }: { appId: string }) => {
|
||||
setValue('chatModel.model', val);
|
||||
const maxToken =
|
||||
chatModelList.find((item) => item.model === getValues('chatModel.model'))
|
||||
?.contextMaxToken || 4000;
|
||||
?.maxToken || 4000;
|
||||
const token = maxToken / 2;
|
||||
setValue('chatModel.maxToken', token);
|
||||
setRefresh(!refresh);
|
||||
@@ -432,45 +430,6 @@ const Settings = ({ appId }: { appId: string }) => {
|
||||
/>
|
||||
</Box>
|
||||
</Flex>
|
||||
<Flex alignItems={'center'} my={10}>
|
||||
<Box {...LabelStyles}>温度</Box>
|
||||
<Box flex={1} ml={'10px'}>
|
||||
<MySlider
|
||||
markList={[
|
||||
{ label: '严谨', value: 0 },
|
||||
{ label: '发散', value: 10 }
|
||||
]}
|
||||
width={'95%'}
|
||||
min={0}
|
||||
max={10}
|
||||
value={getValues('chatModel.temperature')}
|
||||
onChange={(e) => {
|
||||
setValue('chatModel.temperature', e);
|
||||
setRefresh(!refresh);
|
||||
}}
|
||||
/>
|
||||
</Box>
|
||||
</Flex>
|
||||
<Flex alignItems={'center'} mt={12} mb={10}>
|
||||
<Box {...LabelStyles}>回复上限</Box>
|
||||
<Box flex={1} ml={'10px'}>
|
||||
<MySlider
|
||||
markList={[
|
||||
{ label: '100', value: 100 },
|
||||
{ label: `${tokenLimit}`, value: tokenLimit }
|
||||
]}
|
||||
width={'95%'}
|
||||
min={100}
|
||||
max={tokenLimit}
|
||||
step={50}
|
||||
value={getValues('chatModel.maxToken')}
|
||||
onChange={(val) => {
|
||||
setValue('chatModel.maxToken', val);
|
||||
setRefresh(!refresh);
|
||||
}}
|
||||
/>
|
||||
</Box>
|
||||
</Flex>
|
||||
<Flex mt={10} alignItems={'flex-start'}>
|
||||
<Box {...LabelStyles}>
|
||||
提示词
|
||||
@@ -502,10 +461,6 @@ const Settings = ({ appId }: { appId: string }) => {
|
||||
<MyIcon name={'edit'} w={'14px'} mr={1} />
|
||||
参数
|
||||
</Flex>
|
||||
<Flex {...BoxBtnStyles} onClick={onOpenAIChatSetting}>
|
||||
<MyIcon mr={1} name={'settingLight'} w={'14px'} />
|
||||
提示词
|
||||
</Flex>
|
||||
</Flex>
|
||||
<Flex mt={1} color={'myGray.600'} fontSize={['sm', 'md']}>
|
||||
相似度: {getValues('kb.searchSimilarity')}, 单次搜索数量: {getValues('kb.searchLimit')},
|
||||
|
@@ -6,7 +6,7 @@ import { useMutation } from '@tanstack/react-query';
|
||||
import { splitText2Chunks } from '@/utils/file';
|
||||
import { getErrText } from '@/utils/tools';
|
||||
import { formatPrice } from '@fastgpt/common/bill/index';
|
||||
import { qaModel } from '@/web/common/store/static';
|
||||
import { qaModelList } from '@/web/common/store/static';
|
||||
import MyIcon from '@/components/Icon';
|
||||
import CloseIcon from '@/components/Icon/close';
|
||||
import DeleteIcon, { hoverDeleteStyles } from '@/components/Icon/delete';
|
||||
@@ -23,8 +23,9 @@ import { chunksUpload } from '@/web/core/utils/dataset';
|
||||
const fileExtension = '.txt, .doc, .docx, .pdf, .md';
|
||||
|
||||
const QAImport = ({ kbId }: { kbId: string }) => {
|
||||
const unitPrice = qaModel.price || 3;
|
||||
const chunkLen = qaModel.maxToken * 0.45;
|
||||
const qaModel = qaModelList[0];
|
||||
const unitPrice = qaModel?.price || 3;
|
||||
const chunkLen = qaModel?.maxToken * 0.45;
|
||||
const theme = useTheme();
|
||||
const router = useRouter();
|
||||
const { toast } = useToast();
|
||||
|
@@ -13,9 +13,9 @@ import MyTooltip from '@/components/MyTooltip';
|
||||
import MyModal from '@/components/MyModal';
|
||||
import { postCreateDataset } from '@/web/core/api/dataset';
|
||||
import type { CreateDatasetParams } from '@/global/core/api/datasetReq.d';
|
||||
import { vectorModelList } from '@/web/common/store/static';
|
||||
import MySelect from '@/components/Select';
|
||||
import { QuestionOutlineIcon } from '@chakra-ui/icons';
|
||||
import { vectorModelList } from '@/web/common/store/static';
|
||||
import Tag from '@/components/Tag';
|
||||
|
||||
const CreateModal = ({ onClose, parentId }: { onClose: () => void; parentId?: string }) => {
|
||||
|
@@ -1,12 +1,12 @@
|
||||
import { Bill } from '@/service/mongo';
|
||||
import { MongoUser } from '@fastgpt/support/user/schema';
|
||||
import { BillSourceEnum } from '@/constants/user';
|
||||
import { getModel } from '@/service/utils/data';
|
||||
import { getModelMap, ModelTypeEnum } from '@/service/core/ai/model';
|
||||
import { ChatHistoryItemResType } from '@/types/chat';
|
||||
import { formatPrice } from '@fastgpt/common/bill/index';
|
||||
import { addLog } from '@/service/utils/tools';
|
||||
import type { CreateBillType } from '@/types/common/bill';
|
||||
import { defaultQGModel } from '@/pages/api/system/getInitData';
|
||||
import { defaultQGModels } from '@/constants/model';
|
||||
|
||||
async function createBill(data: CreateBillType) {
|
||||
try {
|
||||
@@ -106,7 +106,7 @@ export const pushQABill = async ({
|
||||
addLog.info('splitData generate success', { totalTokens });
|
||||
|
||||
// 获取模型单价格, 都是用 gpt35 拆分
|
||||
const unitPrice = global.qaModel.price || 3;
|
||||
const unitPrice = global.qaModels?.[0]?.price || 3;
|
||||
// 计算价格
|
||||
const total = unitPrice * totalTokens;
|
||||
|
||||
@@ -158,7 +158,7 @@ export const pushGenerateVectorBill = async ({
|
||||
{
|
||||
moduleName: '索引生成',
|
||||
amount: total,
|
||||
model: vectorModel.model,
|
||||
model: vectorModel.name,
|
||||
tokenLen
|
||||
}
|
||||
]
|
||||
@@ -167,14 +167,22 @@ export const pushGenerateVectorBill = async ({
|
||||
return { total };
|
||||
};
|
||||
|
||||
export const countModelPrice = ({ model, tokens }: { model: string; tokens: number }) => {
|
||||
const modelData = getModel(model);
|
||||
export const countModelPrice = ({
|
||||
model,
|
||||
tokens,
|
||||
type
|
||||
}: {
|
||||
model: string;
|
||||
tokens: number;
|
||||
type: `${ModelTypeEnum}`;
|
||||
}) => {
|
||||
const modelData = getModelMap?.[type]?.(model);
|
||||
if (!modelData) return 0;
|
||||
return modelData.price * tokens;
|
||||
};
|
||||
|
||||
export const pushQuestionGuideBill = ({ tokens, userId }: { tokens: number; userId: string }) => {
|
||||
const qgModel = global.qgModel || defaultQGModel;
|
||||
const qgModel = global.qgModels?.[0] || defaultQGModels[0];
|
||||
const total = qgModel.price * tokens;
|
||||
createBill({
|
||||
userId,
|
||||
|
68
projects/app/src/service/core/ai/model.ts
Normal file
68
projects/app/src/service/core/ai/model.ts
Normal file
@@ -0,0 +1,68 @@
|
||||
import {
|
||||
defaultChatModels,
|
||||
defaultCQModels,
|
||||
defaultExtractModels,
|
||||
defaultQAModels,
|
||||
defaultQGModels,
|
||||
defaultVectorModels
|
||||
} from '@/constants/model';
|
||||
|
||||
export const getChatModel = (model?: string) => {
|
||||
return (
|
||||
(global.chatModels || defaultChatModels).find((item) => item.model === model) ||
|
||||
defaultChatModels[0]
|
||||
);
|
||||
};
|
||||
export const getQAModel = (model?: string) => {
|
||||
return (
|
||||
(global.qaModels || defaultQAModels).find((item) => item.model === model) ||
|
||||
global.qaModels?.[0] ||
|
||||
defaultQAModels[0]
|
||||
);
|
||||
};
|
||||
export const getCQModel = (model?: string) => {
|
||||
return (
|
||||
(global.cqModels || defaultCQModels).find((item) => item.model === model) ||
|
||||
global.cqModels?.[0] ||
|
||||
defaultCQModels[0]
|
||||
);
|
||||
};
|
||||
export const getExtractModel = (model?: string) => {
|
||||
return (
|
||||
(global.extractModels || defaultExtractModels).find((item) => item.model === model) ||
|
||||
global.extractModels?.[0] ||
|
||||
defaultExtractModels[0]
|
||||
);
|
||||
};
|
||||
export const getQGModel = (model?: string) => {
|
||||
return (
|
||||
(global.qgModels || defaultQGModels).find((item) => item.model === model) ||
|
||||
global.qgModels?.[0] ||
|
||||
defaultQGModels[0]
|
||||
);
|
||||
};
|
||||
|
||||
export const getVectorModel = (model?: string) => {
|
||||
return (
|
||||
global.vectorModels.find((item) => item.model === model) ||
|
||||
global.vectorModels?.[0] ||
|
||||
defaultVectorModels[0]
|
||||
);
|
||||
};
|
||||
|
||||
export enum ModelTypeEnum {
|
||||
chat = 'chat',
|
||||
qa = 'qa',
|
||||
cq = 'cq',
|
||||
extract = 'extract',
|
||||
qg = 'qg',
|
||||
vector = 'vector'
|
||||
}
|
||||
export const getModelMap = {
|
||||
[ModelTypeEnum.chat]: getChatModel,
|
||||
[ModelTypeEnum.qa]: getQAModel,
|
||||
[ModelTypeEnum.cq]: getCQModel,
|
||||
[ModelTypeEnum.extract]: getExtractModel,
|
||||
[ModelTypeEnum.qg]: getQGModel,
|
||||
[ModelTypeEnum.vector]: getVectorModel
|
||||
};
|
12
projects/app/src/service/core/app/module.ts
Normal file
12
projects/app/src/service/core/app/module.ts
Normal file
@@ -0,0 +1,12 @@
|
||||
import { FlowModuleTypeEnum } from '@/constants/flow';
|
||||
import { AppModuleItemType } from '@/types/app';
|
||||
|
||||
export const getChatModelNameListByModules = (modules: AppModuleItemType[]): string[] => {
|
||||
const chatModules = modules.filter((item) => item.flowType === FlowModuleTypeEnum.chatNode);
|
||||
return chatModules
|
||||
.map((item) => {
|
||||
const model = item.inputs.find((input) => input.key === 'model')?.value;
|
||||
return global.chatModels.find((item) => item.model === model)?.name || '';
|
||||
})
|
||||
.filter((item) => item);
|
||||
};
|
@@ -73,7 +73,7 @@ export async function generateQA(): Promise<any> {
|
||||
];
|
||||
const ai = getAIApi(undefined, 480000);
|
||||
const chatResponse = await ai.chat.completions.create({
|
||||
model: global.qaModel.model,
|
||||
model: global.qaModels[0].model,
|
||||
temperature: 0.01,
|
||||
messages,
|
||||
stream: false
|
||||
|
@@ -10,9 +10,11 @@ import { FlowModuleTypeEnum } from '@/constants/flow';
|
||||
import type { ModuleDispatchProps } from '@/types/core/chat/type';
|
||||
import { replaceVariable } from '@/utils/common/tools/text';
|
||||
import { Prompt_CQJson } from '@/global/core/prompt/agent';
|
||||
import { defaultCQModel } from '@/pages/api/system/getInitData';
|
||||
import { FunctionModelItemType } from '@/types/model';
|
||||
import { getCQModel } from '@/service/core/ai/model';
|
||||
|
||||
type Props = ModuleDispatchProps<{
|
||||
model: string;
|
||||
systemPrompt?: string;
|
||||
history?: ChatItemType[];
|
||||
[SystemInputEnum.userChatInput]: string;
|
||||
@@ -30,20 +32,26 @@ export const dispatchClassifyQuestion = async (props: Props): Promise<CQResponse
|
||||
const {
|
||||
moduleName,
|
||||
user,
|
||||
inputs: { agents, userChatInput }
|
||||
inputs: { model, agents, userChatInput }
|
||||
} = props as Props;
|
||||
|
||||
if (!userChatInput) {
|
||||
return Promise.reject('Input is empty');
|
||||
}
|
||||
|
||||
const cqModel = global.cqModel || defaultCQModel;
|
||||
const cqModel = getCQModel(model);
|
||||
|
||||
const { arg, tokens } = await (async () => {
|
||||
if (cqModel.functionCall) {
|
||||
return functionCall(props);
|
||||
return functionCall({
|
||||
...props,
|
||||
cqModel
|
||||
});
|
||||
}
|
||||
return completions(props);
|
||||
return completions({
|
||||
...props,
|
||||
cqModel
|
||||
});
|
||||
})();
|
||||
|
||||
const result = agents.find((item) => item.key === arg?.type) || agents[agents.length - 1];
|
||||
@@ -64,45 +72,45 @@ export const dispatchClassifyQuestion = async (props: Props): Promise<CQResponse
|
||||
|
||||
async function functionCall({
|
||||
user,
|
||||
cqModel,
|
||||
inputs: { agents, systemPrompt, history = [], userChatInput }
|
||||
}: Props) {
|
||||
const cqModel = global.cqModel;
|
||||
|
||||
}: Props & { cqModel: FunctionModelItemType }) {
|
||||
const messages: ChatItemType[] = [
|
||||
...(systemPrompt
|
||||
? [
|
||||
{
|
||||
obj: ChatRoleEnum.System,
|
||||
value: systemPrompt
|
||||
}
|
||||
]
|
||||
: []),
|
||||
...history,
|
||||
{
|
||||
obj: ChatRoleEnum.Human,
|
||||
value: userChatInput
|
||||
value: systemPrompt
|
||||
? `补充的背景知识:
|
||||
"""
|
||||
${systemPrompt}
|
||||
"""
|
||||
我的问题: ${userChatInput}
|
||||
`
|
||||
: userChatInput
|
||||
}
|
||||
];
|
||||
|
||||
const filterMessages = ChatContextFilter({
|
||||
messages,
|
||||
maxTokens: cqModel.maxToken
|
||||
});
|
||||
const adaptMessages = adaptChat2GptMessages({ messages: filterMessages, reserveId: false });
|
||||
|
||||
// function body
|
||||
// function body
|
||||
const agentFunction = {
|
||||
name: agentFunName,
|
||||
description: '判断用户问题的类型属于哪方面,返回对应的字段',
|
||||
description: '请根据对话记录及补充的背景知识,判断用户的问题类型,并返回对应的字段',
|
||||
parameters: {
|
||||
type: 'object',
|
||||
properties: {
|
||||
type: {
|
||||
type: 'string',
|
||||
description: agents.map((item) => `${item.value},返回:'${item.key}'`).join(';'),
|
||||
description: `判断用户的问题类型,并返回对应的字段。下面是几种问题类型: ${agents
|
||||
.map((item) => `${item.value},返回:'${item.key}'`)
|
||||
.join(';')}`,
|
||||
enum: agents.map((item) => item.key)
|
||||
}
|
||||
},
|
||||
required: ['type']
|
||||
}
|
||||
}
|
||||
};
|
||||
const ai = getAIApi(user.openaiAccount, 48000);
|
||||
@@ -133,15 +141,14 @@ async function functionCall({
|
||||
}
|
||||
|
||||
async function completions({
|
||||
cqModel,
|
||||
user,
|
||||
inputs: { agents, systemPrompt = '', history = [], userChatInput }
|
||||
}: Props) {
|
||||
const extractModel = global.extractModel;
|
||||
|
||||
}: Props & { cqModel: FunctionModelItemType }) {
|
||||
const messages: ChatItemType[] = [
|
||||
{
|
||||
obj: ChatRoleEnum.Human,
|
||||
value: replaceVariable(extractModel.prompt || Prompt_CQJson, {
|
||||
value: replaceVariable(cqModel.functionPrompt || Prompt_CQJson, {
|
||||
systemPrompt,
|
||||
typeList: agents.map((item) => `ID: "${item.key}", 问题类型:${item.value}`).join('\n'),
|
||||
text: `${history.map((item) => `${item.obj}:${item.value}`).join('\n')}
|
||||
@@ -153,7 +160,7 @@ Human:${userChatInput}`
|
||||
const ai = getAIApi(user.openaiAccount, 480000);
|
||||
|
||||
const data = await ai.chat.completions.create({
|
||||
model: extractModel.model,
|
||||
model: cqModel.model,
|
||||
temperature: 0.01,
|
||||
messages: adaptChat2GptMessages({ messages, reserveId: false }),
|
||||
stream: false
|
||||
|
@@ -9,7 +9,7 @@ import { FlowModuleTypeEnum } from '@/constants/flow';
|
||||
import type { ModuleDispatchProps } from '@/types/core/chat/type';
|
||||
import { Prompt_ExtractJson } from '@/global/core/prompt/agent';
|
||||
import { replaceVariable } from '@/utils/common/tools/text';
|
||||
import { defaultExtractModel } from '@/pages/api/system/getInitData';
|
||||
import { FunctionModelItemType } from '@/types/model';
|
||||
|
||||
type Props = ModuleDispatchProps<{
|
||||
history?: ChatItemType[];
|
||||
@@ -37,13 +37,19 @@ export async function dispatchContentExtract(props: Props): Promise<Response> {
|
||||
return Promise.reject('Input is empty');
|
||||
}
|
||||
|
||||
const extractModel = global.extractModel || defaultExtractModel;
|
||||
const extractModel = global.extractModels[0];
|
||||
|
||||
const { arg, tokens } = await (async () => {
|
||||
if (extractModel.functionCall) {
|
||||
return functionCall(props);
|
||||
return functionCall({
|
||||
...props,
|
||||
extractModel
|
||||
});
|
||||
}
|
||||
return completions(props);
|
||||
return completions({
|
||||
...props,
|
||||
extractModel
|
||||
});
|
||||
})();
|
||||
|
||||
// remove invalid key
|
||||
@@ -83,11 +89,10 @@ export async function dispatchContentExtract(props: Props): Promise<Response> {
|
||||
}
|
||||
|
||||
async function functionCall({
|
||||
extractModel,
|
||||
user,
|
||||
inputs: { history = [], content, extractKeys, description }
|
||||
}: Props) {
|
||||
const extractModel = global.extractModel;
|
||||
|
||||
}: Props & { extractModel: FunctionModelItemType }) {
|
||||
const messages: ChatItemType[] = [
|
||||
...history,
|
||||
{
|
||||
@@ -152,15 +157,14 @@ async function functionCall({
|
||||
}
|
||||
|
||||
async function completions({
|
||||
extractModel,
|
||||
user,
|
||||
inputs: { history = [], content, extractKeys, description }
|
||||
}: Props) {
|
||||
const extractModel = global.extractModel;
|
||||
|
||||
}: Props & { extractModel: FunctionModelItemType }) {
|
||||
const messages: ChatItemType[] = [
|
||||
{
|
||||
obj: ChatRoleEnum.Human,
|
||||
value: replaceVariable(extractModel.prompt || Prompt_ExtractJson, {
|
||||
value: replaceVariable(extractModel.functionPrompt || Prompt_ExtractJson, {
|
||||
description,
|
||||
json: extractKeys
|
||||
.map(
|
||||
|
@@ -7,7 +7,6 @@ import { textAdaptGptResponse } from '@/utils/adapt';
|
||||
import { getAIApi } from '@fastgpt/core/ai/config';
|
||||
import type { ChatCompletion, StreamChatType } from '@fastgpt/core/ai/type';
|
||||
import { TaskResponseKeyEnum } from '@/constants/chat';
|
||||
import { getChatModel } from '@/service/utils/data';
|
||||
import { countModelPrice } from '@/service/common/bill/push';
|
||||
import { ChatModelItemType } from '@/types/model';
|
||||
import { postTextCensor } from '@fastgpt/common/plusApi/censor';
|
||||
@@ -15,12 +14,13 @@ import { ChatCompletionRequestMessageRoleEnum } from '@fastgpt/core/ai/constant'
|
||||
import { AppModuleItemType } from '@/types/app';
|
||||
import { countMessagesTokens, sliceMessagesTB } from '@/utils/common/tiktoken';
|
||||
import { adaptChat2GptMessages } from '@/utils/common/adapt/message';
|
||||
import { defaultQuotePrompt, defaultQuoteTemplate } from '@/global/core/prompt/AIChat';
|
||||
import { Prompt_QuotePromptList, Prompt_QuoteTemplateList } from '@/global/core/prompt/AIChat';
|
||||
import type { AIChatProps } from '@/types/core/aiChat';
|
||||
import { replaceVariable } from '@/utils/common/tools/text';
|
||||
import { FlowModuleTypeEnum } from '@/constants/flow';
|
||||
import type { ModuleDispatchProps } from '@/types/core/chat/type';
|
||||
import { responseWrite, responseWriteController } from '@/service/common/stream';
|
||||
import { responseWrite, responseWriteController } from '@fastgpt/common/tools/stream';
|
||||
import { getChatModel, ModelTypeEnum } from '@/service/core/ai/model';
|
||||
|
||||
export type ChatProps = ModuleDispatchProps<
|
||||
AIChatProps & {
|
||||
@@ -47,12 +47,13 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
|
||||
user,
|
||||
outputs,
|
||||
inputs: {
|
||||
model = global.chatModels[0]?.model,
|
||||
model,
|
||||
temperature = 0,
|
||||
maxToken = 4000,
|
||||
history = [],
|
||||
quoteQA = [],
|
||||
userChatInput,
|
||||
isResponseAnswerText = true,
|
||||
systemPrompt = '',
|
||||
limitPrompt,
|
||||
quoteTemplate,
|
||||
@@ -63,6 +64,8 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
|
||||
return Promise.reject('Question is empty');
|
||||
}
|
||||
|
||||
stream = stream && isResponseAnswerText;
|
||||
|
||||
// temperature adapt
|
||||
const modelConstantsData = getChatModel(model);
|
||||
|
||||
@@ -110,18 +113,18 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
|
||||
model,
|
||||
temperature,
|
||||
max_tokens,
|
||||
stream,
|
||||
messages: [
|
||||
...(modelConstantsData.defaultSystem
|
||||
...(modelConstantsData.defaultSystemChatPrompt
|
||||
? [
|
||||
{
|
||||
role: ChatCompletionRequestMessageRoleEnum.System,
|
||||
content: modelConstantsData.defaultSystem
|
||||
content: modelConstantsData.defaultSystemChatPrompt
|
||||
}
|
||||
]
|
||||
: []),
|
||||
...messages
|
||||
],
|
||||
stream
|
||||
]
|
||||
});
|
||||
|
||||
const { answerText, totalTokens, completeMessages } = await (async () => {
|
||||
@@ -172,7 +175,9 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
|
||||
[TaskResponseKeyEnum.responseData]: {
|
||||
moduleType: FlowModuleTypeEnum.chatNode,
|
||||
moduleName,
|
||||
price: user.openaiAccount?.key ? 0 : countModelPrice({ model, tokens: totalTokens }),
|
||||
price: user.openaiAccount?.key
|
||||
? 0
|
||||
: countModelPrice({ model, tokens: totalTokens, type: ModelTypeEnum.chat }),
|
||||
model: modelConstantsData.name,
|
||||
tokens: totalTokens,
|
||||
question: userChatInput,
|
||||
@@ -198,7 +203,7 @@ function filterQuote({
|
||||
maxTokens: model.quoteMaxToken,
|
||||
messages: quoteQA.map((item, index) => ({
|
||||
obj: ChatRoleEnum.System,
|
||||
value: replaceVariable(quoteTemplate || defaultQuoteTemplate, {
|
||||
value: replaceVariable(quoteTemplate || Prompt_QuoteTemplateList[0].value, {
|
||||
...item,
|
||||
index: index + 1
|
||||
})
|
||||
@@ -212,7 +217,7 @@ function filterQuote({
|
||||
filterQuoteQA.length > 0
|
||||
? `${filterQuoteQA
|
||||
.map((item, index) =>
|
||||
replaceVariable(quoteTemplate || defaultQuoteTemplate, {
|
||||
replaceVariable(quoteTemplate || Prompt_QuoteTemplateList[0].value, {
|
||||
...item,
|
||||
index: `${index + 1}`
|
||||
})
|
||||
@@ -243,7 +248,7 @@ function getChatMessages({
|
||||
model: ChatModelItemType;
|
||||
}) {
|
||||
const question = quoteText
|
||||
? replaceVariable(quotePrompt || defaultQuotePrompt, {
|
||||
? replaceVariable(quotePrompt || Prompt_QuotePromptList[0].value, {
|
||||
quote: quoteText,
|
||||
question: userChatInput
|
||||
})
|
||||
@@ -275,7 +280,7 @@ function getChatMessages({
|
||||
|
||||
const filterMessages = ChatContextFilter({
|
||||
messages,
|
||||
maxTokens: Math.ceil(model.contextMaxToken - 300) // filter token. not response maxToken
|
||||
maxTokens: Math.ceil(model.maxToken - 300) // filter token. not response maxToken
|
||||
});
|
||||
|
||||
const adaptMessages = adaptChat2GptMessages({ messages: filterMessages, reserveId: false });
|
||||
@@ -294,7 +299,7 @@ function getMaxTokens({
|
||||
model: ChatModelItemType;
|
||||
filterMessages: ChatProps['inputs']['history'];
|
||||
}) {
|
||||
const tokensLimit = model.contextMaxToken;
|
||||
const tokensLimit = model.maxToken;
|
||||
/* count response max token */
|
||||
|
||||
const promptsToken = countMessagesTokens({
|
||||
@@ -349,7 +354,7 @@ async function streamResponse({
|
||||
stream.controller?.abort();
|
||||
break;
|
||||
}
|
||||
const content = part.choices[0]?.delta?.content || '';
|
||||
const content = part.choices?.[0]?.delta?.content || '';
|
||||
answer += content;
|
||||
|
||||
responseWrite({
|
||||
|
@@ -8,6 +8,7 @@ import type { QuoteItemType } from '@/types/chat';
|
||||
import { PgDatasetTableName } from '@/constants/plugin';
|
||||
import { FlowModuleTypeEnum } from '@/constants/flow';
|
||||
import type { ModuleDispatchProps } from '@/types/core/chat/type';
|
||||
import { ModelTypeEnum } from '@/service/core/ai/model';
|
||||
type KBSearchProps = ModuleDispatchProps<{
|
||||
kbList: SelectedDatasetType;
|
||||
similarity: number;
|
||||
@@ -66,7 +67,11 @@ export async function dispatchKBSearch(props: Record<string, any>): Promise<KBSe
|
||||
responseData: {
|
||||
moduleType: FlowModuleTypeEnum.kbSearchNode,
|
||||
moduleName,
|
||||
price: countModelPrice({ model: vectorModel.model, tokens: tokenLen }),
|
||||
price: countModelPrice({
|
||||
model: vectorModel.model,
|
||||
tokens: tokenLen,
|
||||
type: ModelTypeEnum.vector
|
||||
}),
|
||||
model: vectorModel.name,
|
||||
tokens: tokenLen,
|
||||
similarity,
|
||||
|
@@ -1,5 +1,5 @@
|
||||
import { sseResponseEventEnum, TaskResponseKeyEnum } from '@/constants/chat';
|
||||
import { sseResponse } from '@/service/utils/tools';
|
||||
import { responseWrite } from '@fastgpt/common/tools/stream';
|
||||
import { textAdaptGptResponse } from '@/utils/adapt';
|
||||
import type { ModuleDispatchProps } from '@/types/core/chat/type';
|
||||
export type AnswerProps = ModuleDispatchProps<{
|
||||
@@ -21,7 +21,7 @@ export const dispatchAnswer = (props: Record<string, any>): AnswerResponse => {
|
||||
const formatText = typeof text === 'string' ? text : JSON.stringify(text, null, 2);
|
||||
|
||||
if (stream) {
|
||||
sseResponse({
|
||||
responseWrite({
|
||||
res,
|
||||
event: detail ? sseResponseEventEnum.answer : undefined,
|
||||
data: textAdaptGptResponse({
|
||||
|
@@ -3,7 +3,7 @@ import type { ModuleDispatchProps } from '@/types/core/chat/type';
|
||||
import { SelectAppItemType } from '@/types/core/app/flow';
|
||||
import { dispatchModules } from '@/pages/api/v1/chat/completions';
|
||||
import { App } from '@/service/mongo';
|
||||
import { responseWrite } from '@/service/common/stream';
|
||||
import { responseWrite } from '@fastgpt/common/tools/stream';
|
||||
import { ChatRoleEnum, TaskResponseKeyEnum, sseResponseEventEnum } from '@/constants/chat';
|
||||
import { textAdaptGptResponse } from '@/utils/adapt';
|
||||
|
||||
|
@@ -232,6 +232,6 @@ export async function initPg() {
|
||||
`);
|
||||
console.log('init pg successful');
|
||||
} catch (error) {
|
||||
addLog.error('init pg error', error);
|
||||
console.log('init pg error', error);
|
||||
}
|
||||
}
|
||||
|
@@ -1,7 +1,9 @@
|
||||
import { sseResponseEventEnum } from '@/constants/chat';
|
||||
import { NextApiResponse } from 'next';
|
||||
import { proxyError, ERROR_RESPONSE, ERROR_ENUM } from '@fastgpt/common/constant/errorCode';
|
||||
import { clearCookie, sseResponse, addLog } from './utils/tools';
|
||||
import { addLog } from './utils/tools';
|
||||
import { clearCookie } from '@fastgpt/support/user/auth';
|
||||
import { responseWrite } from '@fastgpt/common/tools/stream';
|
||||
|
||||
export interface ResponseType<T = any> {
|
||||
code: number;
|
||||
@@ -66,7 +68,7 @@ export const sseErrRes = (res: NextApiResponse, error: any) => {
|
||||
clearCookie(res);
|
||||
}
|
||||
|
||||
return sseResponse({
|
||||
return responseWrite({
|
||||
res,
|
||||
event: sseResponseEventEnum.error,
|
||||
data: JSON.stringify(ERROR_RESPONSE[errResponseKey])
|
||||
@@ -86,7 +88,7 @@ export const sseErrRes = (res: NextApiResponse, error: any) => {
|
||||
|
||||
addLog.error(`sse error: ${msg}`, error);
|
||||
|
||||
sseResponse({
|
||||
responseWrite({
|
||||
res,
|
||||
event: sseResponseEventEnum.error,
|
||||
data: JSON.stringify({ message: msg })
|
||||
|
@@ -1,24 +0,0 @@
|
||||
export const getChatModel = (model?: string) => {
|
||||
return global.chatModels.find((item) => item.model === model);
|
||||
};
|
||||
export const getVectorModel = (model?: string) => {
|
||||
return (
|
||||
global.vectorModels.find((item) => item.model === model) || {
|
||||
model: 'UnKnow',
|
||||
name: 'UnKnow',
|
||||
defaultToken: 500,
|
||||
price: 0,
|
||||
maxToken: 3000
|
||||
}
|
||||
);
|
||||
};
|
||||
|
||||
export const getModel = (model?: string) => {
|
||||
return [
|
||||
...global.chatModels,
|
||||
...global.vectorModels,
|
||||
global.qaModel,
|
||||
global.extractModel,
|
||||
global.cqModel
|
||||
].find((item) => item.model === model);
|
||||
};
|
@@ -1,37 +1,7 @@
|
||||
import type { NextApiResponse, NextApiHandler, NextApiRequest } from 'next';
|
||||
import NextCors from 'nextjs-cors';
|
||||
import type { NextApiResponse } from 'next';
|
||||
import { generateQA } from '../events/generateQA';
|
||||
import { generateVector } from '../events/generateVector';
|
||||
|
||||
/* set cookie */
|
||||
export const setCookie = (res: NextApiResponse, token: string) => {
|
||||
res.setHeader(
|
||||
'Set-Cookie',
|
||||
`token=${token}; Path=/; HttpOnly; Max-Age=604800; Samesite=None; Secure;`
|
||||
);
|
||||
};
|
||||
/* clear cookie */
|
||||
export const clearCookie = (res: NextApiResponse) => {
|
||||
res.setHeader('Set-Cookie', 'token=; Path=/; Max-Age=0');
|
||||
};
|
||||
|
||||
export function withNextCors(handler: NextApiHandler): NextApiHandler {
|
||||
return async function nextApiHandlerWrappedWithNextCors(
|
||||
req: NextApiRequest,
|
||||
res: NextApiResponse
|
||||
) {
|
||||
const methods = ['GET', 'eHEAD', 'PUT', 'PATCH', 'POST', 'DELETE'];
|
||||
const origin = req.headers.origin;
|
||||
await NextCors(req, res, {
|
||||
methods,
|
||||
origin: origin,
|
||||
optionsSuccessStatus: 200
|
||||
});
|
||||
|
||||
return handler(req, res);
|
||||
};
|
||||
}
|
||||
|
||||
/* start task */
|
||||
export const startQueue = () => {
|
||||
if (!global.systemEnv) return;
|
||||
@@ -43,20 +13,6 @@ export const startQueue = () => {
|
||||
}
|
||||
};
|
||||
|
||||
export const sseResponse = ({
|
||||
res,
|
||||
event,
|
||||
data
|
||||
}: {
|
||||
res: NextApiResponse;
|
||||
event?: string;
|
||||
data: string;
|
||||
}) => {
|
||||
if (res.closed) return;
|
||||
event && res.write(`event: ${event}\n`);
|
||||
res.write(`data: ${data}\n\n`);
|
||||
};
|
||||
|
||||
/* add logger */
|
||||
export const addLog = {
|
||||
info: (msg: string, obj?: Record<string, any>) => {
|
||||
|
3
projects/app/src/types/core/aiChat.d.ts
vendored
3
projects/app/src/types/core/aiChat.d.ts
vendored
@@ -1,9 +1,12 @@
|
||||
import { SystemInputEnum } from '@/constants/app';
|
||||
|
||||
/* ai chat modules props */
|
||||
export type AIChatProps = {
|
||||
model: string;
|
||||
systemPrompt?: string;
|
||||
temperature: number;
|
||||
maxToken: number;
|
||||
[SystemInputEnum.isResponseAnswerText]: boolean;
|
||||
quoteTemplate?: string;
|
||||
quotePrompt?: string;
|
||||
frequency: number;
|
||||
|
1
projects/app/src/types/core/app/flow.d.ts
vendored
1
projects/app/src/types/core/app/flow.d.ts
vendored
@@ -31,6 +31,7 @@ export type FlowInputItemType = {
|
||||
required?: boolean;
|
||||
list?: { label: string; value: any }[];
|
||||
markList?: { label: string; value: any }[];
|
||||
customData?: () => any;
|
||||
valueCheck?: (value: any) => boolean;
|
||||
};
|
||||
|
||||
|
10
projects/app/src/types/index.d.ts
vendored
10
projects/app/src/types/index.d.ts
vendored
@@ -3,7 +3,7 @@ import type { Tiktoken } from 'js-tiktoken';
|
||||
import {
|
||||
ChatModelItemType,
|
||||
FunctionModelItemType,
|
||||
QAModelItemType,
|
||||
LLMModelItemType,
|
||||
VectorModelItemType
|
||||
} from './model';
|
||||
import { TrackEventName } from '@/constants/common';
|
||||
@@ -36,10 +36,10 @@ declare global {
|
||||
|
||||
var vectorModels: VectorModelItemType[];
|
||||
var chatModels: ChatModelItemType[];
|
||||
var qaModel: QAModelItemType;
|
||||
var extractModel: FunctionModelItemType;
|
||||
var cqModel: FunctionModelItemType;
|
||||
var qgModel: FunctionModelItemType;
|
||||
var qaModels: LLMModelItemType[];
|
||||
var cqModels: FunctionModelItemType[];
|
||||
var extractModels: FunctionModelItemType[];
|
||||
var qgModels: LLMModelItemType[];
|
||||
|
||||
var priceMd: string;
|
||||
var systemVersion: string;
|
||||
|
34
projects/app/src/types/model.d.ts
vendored
34
projects/app/src/types/model.d.ts
vendored
@@ -1,19 +1,23 @@
|
||||
export type ChatModelItemType = {
|
||||
model: string;
|
||||
name: string;
|
||||
contextMaxToken: number;
|
||||
quoteMaxToken: number;
|
||||
maxTemperature: number;
|
||||
price: number;
|
||||
censor?: boolean;
|
||||
defaultSystem?: string;
|
||||
};
|
||||
export type QAModelItemType = {
|
||||
import { LLMModelUsageEnum } from '@/constants/model';
|
||||
|
||||
export type LLMModelItemType = {
|
||||
model: string;
|
||||
name: string;
|
||||
maxToken: number;
|
||||
price: number;
|
||||
};
|
||||
export type ChatModelItemType = LLMModelItemType & {
|
||||
quoteMaxToken: number;
|
||||
maxTemperature: number;
|
||||
censor?: boolean;
|
||||
defaultSystemChatPrompt?: string;
|
||||
};
|
||||
|
||||
export type FunctionModelItemType = LLMModelItemType & {
|
||||
functionCall: boolean;
|
||||
functionPrompt: string;
|
||||
};
|
||||
|
||||
export type VectorModelItemType = {
|
||||
model: string;
|
||||
name: string;
|
||||
@@ -21,11 +25,3 @@ export type VectorModelItemType = {
|
||||
price: number;
|
||||
maxToken: number;
|
||||
};
|
||||
export type FunctionModelItemType = {
|
||||
model: string;
|
||||
name: string;
|
||||
maxToken: number;
|
||||
price: number;
|
||||
prompt: string;
|
||||
functionCall: boolean;
|
||||
};
|
||||
|
@@ -36,9 +36,10 @@ export const getDefaultAppForm = (): EditFormType => {
|
||||
model: defaultChatModel?.model,
|
||||
systemPrompt: '',
|
||||
temperature: 0,
|
||||
[SystemInputEnum.isResponseAnswerText]: true,
|
||||
quotePrompt: '',
|
||||
quoteTemplate: '',
|
||||
maxToken: defaultChatModel ? defaultChatModel.contextMaxToken / 2 : 4000,
|
||||
maxToken: defaultChatModel ? defaultChatModel.maxToken / 2 : 4000,
|
||||
frequency: 0.5,
|
||||
presence: -0.5
|
||||
},
|
||||
@@ -185,6 +186,13 @@ const chatModelInput = (formData: EditFormType): FlowInputItemType[] => [
|
||||
label: '系统提示词',
|
||||
connected: true
|
||||
},
|
||||
{
|
||||
key: SystemInputEnum.isResponseAnswerText,
|
||||
value: true,
|
||||
type: 'hidden',
|
||||
label: '返回AI内容',
|
||||
connected: true
|
||||
},
|
||||
{
|
||||
key: 'quoteTemplate',
|
||||
value: formData.chatModel.quoteTemplate || '',
|
||||
@@ -328,7 +336,7 @@ const simpleChatTemplate = (formData: EditFormType): AppModuleItemType[] => [
|
||||
outputs: [
|
||||
{
|
||||
key: 'answerText',
|
||||
label: '模型回复',
|
||||
label: 'AI回复',
|
||||
description: '直接响应,无需配置',
|
||||
type: 'hidden',
|
||||
targets: []
|
||||
@@ -533,7 +541,7 @@ const kbTemplate = (formData: EditFormType): AppModuleItemType[] => [
|
||||
outputs: [
|
||||
{
|
||||
key: 'answerText',
|
||||
label: '模型回复',
|
||||
label: 'AI回复',
|
||||
description: '直接响应,无需配置',
|
||||
type: 'hidden',
|
||||
targets: []
|
||||
|
@@ -12,11 +12,12 @@ export const splitText2Chunks = ({ text = '', maxLen }: { text: string; maxLen:
|
||||
const tempMarker = 'SPLIT_HERE_SPLIT_HERE';
|
||||
|
||||
const stepReg: Record<number, RegExp> = {
|
||||
0: /(\n)/g,
|
||||
1: /([。]|\.\s)/g,
|
||||
2: /([!?]|!\s|\?\s)/g,
|
||||
3: /([;]|;\s)/g,
|
||||
4: /([,]|,\s)/g
|
||||
0: /(\n\n)/g,
|
||||
1: /([\n])/g,
|
||||
2: /([。]|\.\s)/g,
|
||||
3: /([!?]|!\s|\?\s)/g,
|
||||
4: /([;]|;\s)/g,
|
||||
5: /([,]|,\s)/g
|
||||
};
|
||||
|
||||
const splitTextRecursively = ({ text = '', step }: { text: string; step: number }) => {
|
||||
@@ -43,7 +44,6 @@ export const splitText2Chunks = ({ text = '', maxLen }: { text: string; maxLen:
|
||||
.filter((part) => part);
|
||||
|
||||
let chunks: string[] = [];
|
||||
|
||||
let preChunk = '';
|
||||
let chunk = '';
|
||||
for (let i = 0; i < splitTexts.length; i++) {
|
||||
|
@@ -1,34 +1,41 @@
|
||||
import {
|
||||
type QAModelItemType,
|
||||
type ChatModelItemType,
|
||||
type VectorModelItemType
|
||||
} from '@/types/model';
|
||||
import type { InitDateResponse } from '@/global/common/api/systemRes';
|
||||
import { getSystemInitData } from '@/web/common/api/system';
|
||||
import { delay } from '@/utils/tools';
|
||||
import type { FeConfigsType } from '@fastgpt/common/type/index.d';
|
||||
import {
|
||||
defaultChatModels,
|
||||
defaultQAModels,
|
||||
defaultCQModels,
|
||||
defaultExtractModels,
|
||||
defaultQGModels,
|
||||
defaultVectorModels
|
||||
} from '@/constants/model';
|
||||
|
||||
export let chatModelList: ChatModelItemType[] = [];
|
||||
export let qaModel: QAModelItemType = {
|
||||
model: 'gpt-3.5-turbo-16k',
|
||||
name: 'GPT35-16k',
|
||||
maxToken: 16000,
|
||||
price: 0
|
||||
};
|
||||
export let vectorModelList: VectorModelItemType[] = [];
|
||||
export let feConfigs: FeConfigsType = {};
|
||||
export let priceMd = '';
|
||||
export let systemVersion = '0.0.0';
|
||||
|
||||
export let vectorModelList = defaultVectorModels;
|
||||
export let chatModelList = defaultChatModels;
|
||||
export let qaModelList = defaultQAModels;
|
||||
export let cqModelList = defaultCQModels;
|
||||
export let extractModelList = defaultExtractModels;
|
||||
export let qgModelList = defaultQGModels;
|
||||
|
||||
let retryTimes = 3;
|
||||
|
||||
export const clientInitData = async (): Promise<InitDateResponse> => {
|
||||
try {
|
||||
const res = await getSystemInitData();
|
||||
|
||||
chatModelList = res.chatModels;
|
||||
qaModel = res.qaModel;
|
||||
vectorModelList = res.vectorModels;
|
||||
chatModelList = res.chatModels || [];
|
||||
qaModelList = res.qaModels || [];
|
||||
cqModelList = res.cqModels || [];
|
||||
extractModelList = res.extractModels || [];
|
||||
qgModelList = res.qgModels || [];
|
||||
|
||||
vectorModelList = res.vectorModels || [];
|
||||
|
||||
feConfigs = res.feConfigs;
|
||||
priceMd = res.priceMd;
|
||||
systemVersion = res.systemVersion;
|
||||
|
Reference in New Issue
Block a user