feat: lafgpt请求;fix: 修复发送按键

This commit is contained in:
archer
2023-04-03 16:35:48 +08:00
parent 4d6616cbfa
commit f97c29b41e
3 changed files with 293 additions and 6 deletions

View File

@@ -0,0 +1,281 @@
import type { NextApiRequest, NextApiResponse } from 'next';
import { createParser, ParsedEvent, ReconnectInterval } from 'eventsource-parser';
import { connectToDatabase } from '@/service/mongo';
import { getOpenAIApi, authChat } from '@/service/utils/chat';
import { httpsAgent, openaiChatFilter, systemPromptFilter } from '@/service/utils/tools';
import { ChatCompletionRequestMessage, ChatCompletionRequestMessageRoleEnum } from 'openai';
import { ChatItemType } from '@/types/chat';
import { jsonRes } from '@/service/response';
import type { ModelSchema } from '@/types/mongoSchema';
import { PassThrough } from 'stream';
import { modelList } from '@/constants/model';
import { pushChatBill } from '@/service/events/pushBill';
import { connectRedis } from '@/service/redis';
import { VecModelDataPrefix } from '@/constants/redis';
import { vectorToBuffer } from '@/utils/tools';
import { openaiCreateEmbedding } from '@/service/utils/openai';
/* 发送提示词 */
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
let step = 0; // step=1时表示开始了流响应
const stream = new PassThrough();
stream.on('error', () => {
console.log('error: ', 'stream error');
stream.destroy();
});
res.on('close', () => {
stream.destroy();
});
res.on('error', () => {
console.log('error: ', 'request error');
stream.destroy();
});
try {
const { chatId, prompt } = req.body as {
prompt: ChatItemType;
chatId: string;
};
const { authorization } = req.headers;
if (!chatId || !prompt) {
throw new Error('缺少参数');
}
await connectToDatabase();
const redis = await connectRedis();
let startTime = Date.now();
const { chat, userApiKey, systemKey, userId } = await authChat(chatId, authorization);
const model: ModelSchema = chat.modelId;
const modelConstantsData = modelList.find((item) => item.model === model.service.modelName);
if (!modelConstantsData) {
throw new Error('模型加载异常');
}
// 获取 chatAPI
const chatAPI = getOpenAIApi(userApiKey || systemKey);
// 请求一次 chatgpt 拆解需求
const promptResponse = await chatAPI.createChatCompletion(
{
model: model.service.chatModel,
temperature: 0,
// max_tokens: modelConstantsData.maxToken,
messages: [
{
role: 'system',
content: `服务端逻辑生成器。根据用户输入的需求,拆解成代码实现的步骤,并按下面格式返回:
1.
2.
3.
....
下面是一些例子:
实现一个手机号注册账号的方法
发送手机验证码函数:
1. 从 query 中获取 phone
2. 校验手机号格式是否正确,不正确返回{error: "手机号格式错误"}
3. 给 phone 发送一个短信验证码验证码长度为6位字符串内容为你正在注册laf, 验证码为code
4. 数据库添加数据,表为"codes",内容为 {phone, code}
注册函数
1. 从 body 中获取 phone 和 code
2. 校验手机号格式是否正确,不正确返回{error: "手机号格式错误"}
2. 获取数据库数据,表为"codes",查找是否有符合 phone, code 等于body参数的记录没有的话返回 {error:"验证码不正确"}
4. 添加数据库数据,表为"users" ,内容为{phone, code, createTime}
5. 删除数据库数据,删除 code 记录
---------------
更新播客记录。传入blogIdblogTexttags还需要记录更新的时间
1. 从 body 中获取 blogIdblogText 和 tags
2. 校验 blogId 是否为空,为空则返回 {error: "博客ID不能为空"}
3. 校验 blogText 是否为空,为空则返回 {error: "博客内容不能为空"}
4. 校验 tags 是否为数组,不是则返回 {error: "标签必须为数组"}
5. 获取当前时间,记录为 updateTime
6. 更新数据库数据,表为"blogs",更新符合 blogId 的记录的内容为{blogText, tags, updateTime}
7. 返回结果 {message: "更新博客记录成功"}`
},
{
role: 'user',
content: prompt.value
}
]
},
{
timeout: 40000,
httpsAgent
}
);
const promptResolve = promptResponse.data.choices?.[0]?.message?.content || '';
if (!promptResolve) {
throw new Error('gpt 异常');
}
prompt.value += `\n${promptResolve}`;
console.log('prompt resolve success, time:', `${(Date.now() - startTime) / 1000}s`);
// 获取提示词的向量
const { vector: promptVector } = await openaiCreateEmbedding({
isPay: !userApiKey,
apiKey: userApiKey || systemKey,
userId,
text: prompt.value
});
// 读取对话内容
const prompts = [...chat.content, prompt];
// 搜索系统提示词, 按相似度从 redis 中搜出相关的 q 和 text
const redisData: any[] = await redis.sendCommand([
'FT.SEARCH',
`idx:${VecModelDataPrefix}:hash`,
`@modelId:{${String(
chat.modelId._id
)}} @vector:[VECTOR_RANGE 0.25 $blob]=>{$YIELD_DISTANCE_AS: score}`,
// `@modelId:{${String(chat.modelId._id)}}=>[KNN 10 @vector $blob AS score]`,
'RETURN',
'1',
'text',
'SORTBY',
'score',
'PARAMS',
'2',
'blob',
vectorToBuffer(promptVector),
'LIMIT',
'0',
'20',
'DIALECT',
'2'
]);
// 格式化响应值,获取 qa
const formatRedisPrompt = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
.map((i) => {
if (!redisData[i]) return '';
const text = (redisData[i][1] as string) || '';
if (!text) return '';
return text;
})
.filter((item) => item);
if (formatRedisPrompt.length === 0) {
throw new Error('对不起,我没有找到你的问题');
}
// textArr 筛选,最多 3000 tokens
const systemPrompt = systemPromptFilter(formatRedisPrompt, 3400);
prompts.unshift({
obj: 'SYSTEM',
value: `${model.systemPrompt} 知识库内容是最新的,知识库内容为: "${systemPrompt}"`
});
// 控制在 tokens 数量,防止超出
const filterPrompts = openaiChatFilter(prompts, modelConstantsData.contextMaxToken);
// 格式化文本内容成 chatgpt 格式
const map = {
Human: ChatCompletionRequestMessageRoleEnum.User,
AI: ChatCompletionRequestMessageRoleEnum.Assistant,
SYSTEM: ChatCompletionRequestMessageRoleEnum.System
};
const formatPrompts: ChatCompletionRequestMessage[] = filterPrompts.map(
(item: ChatItemType) => ({
role: map[item.obj],
content: item.value
})
);
console.log(formatPrompts);
// 计算温度
const temperature = modelConstantsData.maxTemperature * (model.temperature / 10);
// 发出请求
const chatResponse = await chatAPI.createChatCompletion(
{
model: model.service.chatModel,
temperature: temperature,
// max_tokens: modelConstantsData.maxToken,
messages: formatPrompts,
frequency_penalty: 0.5, // 越大,重复内容越少
presence_penalty: -0.5, // 越大,越容易出现新内容
stream: true
},
{
timeout: 40000,
responseType: 'stream',
httpsAgent
}
);
console.log('api response time:', `${(Date.now() - startTime) / 1000}s`);
// 创建响应流
res.setHeader('Content-Type', 'text/event-stream;charset-utf-8');
res.setHeader('Access-Control-Allow-Origin', '*');
res.setHeader('X-Accel-Buffering', 'no');
res.setHeader('Cache-Control', 'no-cache, no-transform');
step = 1;
let responseContent = '';
stream.pipe(res);
const onParse = async (event: ParsedEvent | ReconnectInterval) => {
if (event.type !== 'event') return;
const data = event.data;
if (data === '[DONE]') return;
try {
const json = JSON.parse(data);
const content: string = json?.choices?.[0].delta.content || '';
if (!content || (responseContent === '' && content === '\n')) return;
responseContent += content;
// console.log('content:', content)
!stream.destroyed && stream.push(content.replace(/\n/g, '<br/>'));
} catch (error) {
error;
}
};
const decoder = new TextDecoder();
try {
for await (const chunk of chatResponse.data as any) {
if (stream.destroyed) {
// 流被中断了,直接忽略后面的内容
break;
}
const parser = createParser(onParse);
parser.feed(decoder.decode(chunk));
}
} catch (error) {
console.log('pipe error', error);
}
// close stream
!stream.destroyed && stream.push(null);
stream.destroy();
const promptsContent = formatPrompts.map((item) => item.content).join('');
// 只有使用平台的 key 才计费
pushChatBill({
isPay: !userApiKey,
modelName: model.service.modelName,
userId,
chatId,
text: promptsContent + responseContent
});
} catch (err: any) {
if (step === 1) {
// 直接结束流
console.log('error结束');
stream.destroy();
} else {
res.status(500);
jsonRes(res, {
code: 500,
error: err
});
}
}
}

View File

@@ -57,7 +57,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
// 读取对话内容
const prompts = [...chat.content, prompt];
// 获取 chatAPI
// 获取提示词的向量
const { vector: promptVector, chatAPI } = await openaiCreateEmbedding({
isPay: !userApiKey,
apiKey: userApiKey || systemKey,
@@ -71,7 +71,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
`idx:${VecModelDataPrefix}:hash`,
`@modelId:{${String(
chat.modelId._id
)}} @vector:[VECTOR_RANGE 0.2 $blob]=>{$YIELD_DISTANCE_AS: score}`,
)}} @vector:[VECTOR_RANGE 0.25 $blob]=>{$YIELD_DISTANCE_AS: score}`,
// `@modelId:{${String(chat.modelId._id)}}=>[KNN 10 @vector $blob AS score]`,
'RETURN',
'1',

View File

@@ -120,6 +120,7 @@ const Chat = ({ chatId }: { chatId: string }) => {
const urlMap: Record<string, string> = {
[ChatModelNameEnum.GPT35]: '/api/chat/chatGpt',
[ChatModelNameEnum.VECTOR_GPT]: '/api/chat/vectorGpt',
// [ChatModelNameEnum.VECTOR_GPT]: '/api/chat/lafGpt',
[ChatModelNameEnum.GPT3]: '/api/chat/gpt3'
};
@@ -198,7 +199,12 @@ const Chat = ({ chatId }: { chatId: string }) => {
.split('\n')
.filter((val) => val)
.join('\n');
if (!chatData?.modelId || !val || !ChatBox.current || isChatting) {
if (!chatData?.modelId || !val || isChatting) {
toast({
title: '内容为空',
status: 'warning'
});
return;
}
@@ -453,7 +459,7 @@ const Chat = ({ chatId }: { chatId: string }) => {
{/* 发送区 */}
<Box m={media('20px auto', '0 auto')} w={'100%'} maxW={media('min(750px, 100%)', 'auto')}>
<Flex
alignItems={'flex-end'}
alignItems={'center'}
py={5}
position={'relative'}
boxShadow={`0 0 15px rgba(0,0,0,0.1)`}
@@ -501,7 +507,7 @@ const Chat = ({ chatId }: { chatId: string }) => {
}}
/>
{/* 发送和等待按键 */}
<Box px={4} onClick={sendPrompt}>
<Flex px={4} h={'30px'} alignItems={'flex-end'} onClick={sendPrompt}>
{isChatting ? (
<Image
style={{ transform: 'translateY(4px)' }}
@@ -520,7 +526,7 @@ const Chat = ({ chatId }: { chatId: string }) => {
></Icon>
</Box>
)}
</Box>
</Flex>
</Flex>
</Box>
</Flex>