From f97c29b41e6c6981020cc05c329df8527e4f65ba Mon Sep 17 00:00:00 2001
From: archer <545436317@qq.com>
Date: Mon, 3 Apr 2023 16:35:48 +0800
Subject: [PATCH] =?UTF-8?q?feat:=20lafgpt=E8=AF=B7=E6=B1=82;fix:=20?=
=?UTF-8?q?=E4=BF=AE=E5=A4=8D=E5=8F=91=E9=80=81=E6=8C=89=E9=94=AE?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
src/pages/api/chat/lafGpt.ts | 281 ++++++++++++++++++++++++++++++++
src/pages/api/chat/vectorGpt.ts | 4 +-
src/pages/chat/index.tsx | 14 +-
3 files changed, 293 insertions(+), 6 deletions(-)
create mode 100644 src/pages/api/chat/lafGpt.ts
diff --git a/src/pages/api/chat/lafGpt.ts b/src/pages/api/chat/lafGpt.ts
new file mode 100644
index 000000000..3a37bde89
--- /dev/null
+++ b/src/pages/api/chat/lafGpt.ts
@@ -0,0 +1,281 @@
+import type { NextApiRequest, NextApiResponse } from 'next';
+import { createParser, ParsedEvent, ReconnectInterval } from 'eventsource-parser';
+import { connectToDatabase } from '@/service/mongo';
+import { getOpenAIApi, authChat } from '@/service/utils/chat';
+import { httpsAgent, openaiChatFilter, systemPromptFilter } from '@/service/utils/tools';
+import { ChatCompletionRequestMessage, ChatCompletionRequestMessageRoleEnum } from 'openai';
+import { ChatItemType } from '@/types/chat';
+import { jsonRes } from '@/service/response';
+import type { ModelSchema } from '@/types/mongoSchema';
+import { PassThrough } from 'stream';
+import { modelList } from '@/constants/model';
+import { pushChatBill } from '@/service/events/pushBill';
+import { connectRedis } from '@/service/redis';
+import { VecModelDataPrefix } from '@/constants/redis';
+import { vectorToBuffer } from '@/utils/tools';
+import { openaiCreateEmbedding } from '@/service/utils/openai';
+
+/* 发送提示词 */
+export default async function handler(req: NextApiRequest, res: NextApiResponse) {
+ let step = 0; // step=1时,表示开始了流响应
+ const stream = new PassThrough();
+ stream.on('error', () => {
+ console.log('error: ', 'stream error');
+ stream.destroy();
+ });
+ res.on('close', () => {
+ stream.destroy();
+ });
+ res.on('error', () => {
+ console.log('error: ', 'request error');
+ stream.destroy();
+ });
+
+ try {
+ const { chatId, prompt } = req.body as {
+ prompt: ChatItemType;
+ chatId: string;
+ };
+
+ const { authorization } = req.headers;
+ if (!chatId || !prompt) {
+ throw new Error('缺少参数');
+ }
+
+ await connectToDatabase();
+ const redis = await connectRedis();
+ let startTime = Date.now();
+
+ const { chat, userApiKey, systemKey, userId } = await authChat(chatId, authorization);
+
+ const model: ModelSchema = chat.modelId;
+ const modelConstantsData = modelList.find((item) => item.model === model.service.modelName);
+ if (!modelConstantsData) {
+ throw new Error('模型加载异常');
+ }
+ // 获取 chatAPI
+ const chatAPI = getOpenAIApi(userApiKey || systemKey);
+
+ // 请求一次 chatgpt 拆解需求
+ const promptResponse = await chatAPI.createChatCompletion(
+ {
+ model: model.service.chatModel,
+ temperature: 0,
+ // max_tokens: modelConstantsData.maxToken,
+ messages: [
+ {
+ role: 'system',
+ content: `服务端逻辑生成器。根据用户输入的需求,拆解成代码实现的步骤,并按下面格式返回:
+ 1.
+ 2.
+ 3.
+ ....
+
+ 下面是一些例子:
+ 实现一个手机号注册账号的方法
+ 发送手机验证码函数:
+ 1. 从 query 中获取 phone
+ 2. 校验手机号格式是否正确,不正确返回{error: "手机号格式错误"}
+ 3. 给 phone 发送一个短信验证码,验证码长度为6位字符串,内容为:你正在注册laf, 验证码为:code
+ 4. 数据库添加数据,表为"codes",内容为 {phone, code}
+ 注册函数
+ 1. 从 body 中获取 phone 和 code
+ 2. 校验手机号格式是否正确,不正确返回{error: "手机号格式错误"}
+ 2. 获取数据库数据,表为"codes",查找是否有符合 phone, code 等于body参数的记录,没有的话返回 {error:"验证码不正确"}
+ 4. 添加数据库数据,表为"users" ,内容为{phone, code, createTime}
+ 5. 删除数据库数据,删除 code 记录
+ ---------------
+ 更新播客记录。传入blogId,blogText,tags,还需要记录更新的时间
+ 1. 从 body 中获取 blogId,blogText 和 tags
+ 2. 校验 blogId 是否为空,为空则返回 {error: "博客ID不能为空"}
+ 3. 校验 blogText 是否为空,为空则返回 {error: "博客内容不能为空"}
+ 4. 校验 tags 是否为数组,不是则返回 {error: "标签必须为数组"}
+ 5. 获取当前时间,记录为 updateTime
+ 6. 更新数据库数据,表为"blogs",更新符合 blogId 的记录的内容为{blogText, tags, updateTime}
+ 7. 返回结果 {message: "更新博客记录成功"}`
+ },
+ {
+ role: 'user',
+ content: prompt.value
+ }
+ ]
+ },
+ {
+ timeout: 40000,
+ httpsAgent
+ }
+ );
+
+ const promptResolve = promptResponse.data.choices?.[0]?.message?.content || '';
+ if (!promptResolve) {
+ throw new Error('gpt 异常');
+ }
+
+ prompt.value += `\n${promptResolve}`;
+ console.log('prompt resolve success, time:', `${(Date.now() - startTime) / 1000}s`);
+
+ // 获取提示词的向量
+ const { vector: promptVector } = await openaiCreateEmbedding({
+ isPay: !userApiKey,
+ apiKey: userApiKey || systemKey,
+ userId,
+ text: prompt.value
+ });
+
+ // 读取对话内容
+ const prompts = [...chat.content, prompt];
+
+ // 搜索系统提示词, 按相似度从 redis 中搜出相关的 q 和 text
+ const redisData: any[] = await redis.sendCommand([
+ 'FT.SEARCH',
+ `idx:${VecModelDataPrefix}:hash`,
+ `@modelId:{${String(
+ chat.modelId._id
+ )}} @vector:[VECTOR_RANGE 0.25 $blob]=>{$YIELD_DISTANCE_AS: score}`,
+ // `@modelId:{${String(chat.modelId._id)}}=>[KNN 10 @vector $blob AS score]`,
+ 'RETURN',
+ '1',
+ 'text',
+ 'SORTBY',
+ 'score',
+ 'PARAMS',
+ '2',
+ 'blob',
+ vectorToBuffer(promptVector),
+ 'LIMIT',
+ '0',
+ '20',
+ 'DIALECT',
+ '2'
+ ]);
+
+ // 格式化响应值,获取 qa
+ const formatRedisPrompt = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
+ .map((i) => {
+ if (!redisData[i]) return '';
+ const text = (redisData[i][1] as string) || '';
+
+ if (!text) return '';
+
+ return text;
+ })
+ .filter((item) => item);
+
+ if (formatRedisPrompt.length === 0) {
+ throw new Error('对不起,我没有找到你的问题');
+ }
+
+ // textArr 筛选,最多 3000 tokens
+ const systemPrompt = systemPromptFilter(formatRedisPrompt, 3400);
+
+ prompts.unshift({
+ obj: 'SYSTEM',
+ value: `${model.systemPrompt} 知识库内容是最新的,知识库内容为: "${systemPrompt}"`
+ });
+
+ // 控制在 tokens 数量,防止超出
+ const filterPrompts = openaiChatFilter(prompts, modelConstantsData.contextMaxToken);
+
+ // 格式化文本内容成 chatgpt 格式
+ const map = {
+ Human: ChatCompletionRequestMessageRoleEnum.User,
+ AI: ChatCompletionRequestMessageRoleEnum.Assistant,
+ SYSTEM: ChatCompletionRequestMessageRoleEnum.System
+ };
+ const formatPrompts: ChatCompletionRequestMessage[] = filterPrompts.map(
+ (item: ChatItemType) => ({
+ role: map[item.obj],
+ content: item.value
+ })
+ );
+ console.log(formatPrompts);
+ // 计算温度
+ const temperature = modelConstantsData.maxTemperature * (model.temperature / 10);
+
+ // 发出请求
+ const chatResponse = await chatAPI.createChatCompletion(
+ {
+ model: model.service.chatModel,
+ temperature: temperature,
+ // max_tokens: modelConstantsData.maxToken,
+ messages: formatPrompts,
+ frequency_penalty: 0.5, // 越大,重复内容越少
+ presence_penalty: -0.5, // 越大,越容易出现新内容
+ stream: true
+ },
+ {
+ timeout: 40000,
+ responseType: 'stream',
+ httpsAgent
+ }
+ );
+
+ console.log('api response time:', `${(Date.now() - startTime) / 1000}s`);
+
+ // 创建响应流
+ res.setHeader('Content-Type', 'text/event-stream;charset-utf-8');
+ res.setHeader('Access-Control-Allow-Origin', '*');
+ res.setHeader('X-Accel-Buffering', 'no');
+ res.setHeader('Cache-Control', 'no-cache, no-transform');
+ step = 1;
+
+ let responseContent = '';
+ stream.pipe(res);
+
+ const onParse = async (event: ParsedEvent | ReconnectInterval) => {
+ if (event.type !== 'event') return;
+ const data = event.data;
+ if (data === '[DONE]') return;
+ try {
+ const json = JSON.parse(data);
+ const content: string = json?.choices?.[0].delta.content || '';
+ if (!content || (responseContent === '' && content === '\n')) return;
+
+ responseContent += content;
+ // console.log('content:', content)
+ !stream.destroyed && stream.push(content.replace(/\n/g, '
'));
+ } catch (error) {
+ error;
+ }
+ };
+
+ const decoder = new TextDecoder();
+ try {
+ for await (const chunk of chatResponse.data as any) {
+ if (stream.destroyed) {
+ // 流被中断了,直接忽略后面的内容
+ break;
+ }
+ const parser = createParser(onParse);
+ parser.feed(decoder.decode(chunk));
+ }
+ } catch (error) {
+ console.log('pipe error', error);
+ }
+ // close stream
+ !stream.destroyed && stream.push(null);
+ stream.destroy();
+
+ const promptsContent = formatPrompts.map((item) => item.content).join('');
+ // 只有使用平台的 key 才计费
+ pushChatBill({
+ isPay: !userApiKey,
+ modelName: model.service.modelName,
+ userId,
+ chatId,
+ text: promptsContent + responseContent
+ });
+ } catch (err: any) {
+ if (step === 1) {
+ // 直接结束流
+ console.log('error,结束');
+ stream.destroy();
+ } else {
+ res.status(500);
+ jsonRes(res, {
+ code: 500,
+ error: err
+ });
+ }
+ }
+}
diff --git a/src/pages/api/chat/vectorGpt.ts b/src/pages/api/chat/vectorGpt.ts
index ed4a1689e..13b713e62 100644
--- a/src/pages/api/chat/vectorGpt.ts
+++ b/src/pages/api/chat/vectorGpt.ts
@@ -57,7 +57,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
// 读取对话内容
const prompts = [...chat.content, prompt];
- // 获取 chatAPI
+ // 获取提示词的向量
const { vector: promptVector, chatAPI } = await openaiCreateEmbedding({
isPay: !userApiKey,
apiKey: userApiKey || systemKey,
@@ -71,7 +71,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
`idx:${VecModelDataPrefix}:hash`,
`@modelId:{${String(
chat.modelId._id
- )}} @vector:[VECTOR_RANGE 0.2 $blob]=>{$YIELD_DISTANCE_AS: score}`,
+ )}} @vector:[VECTOR_RANGE 0.25 $blob]=>{$YIELD_DISTANCE_AS: score}`,
// `@modelId:{${String(chat.modelId._id)}}=>[KNN 10 @vector $blob AS score]`,
'RETURN',
'1',
diff --git a/src/pages/chat/index.tsx b/src/pages/chat/index.tsx
index dc93787eb..2a17b3ea3 100644
--- a/src/pages/chat/index.tsx
+++ b/src/pages/chat/index.tsx
@@ -120,6 +120,7 @@ const Chat = ({ chatId }: { chatId: string }) => {
const urlMap: Record = {
[ChatModelNameEnum.GPT35]: '/api/chat/chatGpt',
[ChatModelNameEnum.VECTOR_GPT]: '/api/chat/vectorGpt',
+ // [ChatModelNameEnum.VECTOR_GPT]: '/api/chat/lafGpt',
[ChatModelNameEnum.GPT3]: '/api/chat/gpt3'
};
@@ -198,7 +199,12 @@ const Chat = ({ chatId }: { chatId: string }) => {
.split('\n')
.filter((val) => val)
.join('\n');
- if (!chatData?.modelId || !val || !ChatBox.current || isChatting) {
+
+ if (!chatData?.modelId || !val || isChatting) {
+ toast({
+ title: '内容为空',
+ status: 'warning'
+ });
return;
}
@@ -453,7 +459,7 @@ const Chat = ({ chatId }: { chatId: string }) => {
{/* 发送区 */}
{
}}
/>
{/* 发送和等待按键 */}
-
+
{isChatting ? (
{
>
)}
-
+