mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-21 03:35:36 +00:00
添加Baichuan2-7B-Chat模型接口文件 (#404)
* 更新镜像 * 更新镜像信息 * 更新镜像信息 * Create openai_api.py * Create requirements.txt
This commit is contained in:
233
files/models/Baichuan2/openai_api.py
Normal file
233
files/models/Baichuan2/openai_api.py
Normal file
@@ -0,0 +1,233 @@
|
||||
# coding=utf-8
|
||||
# Implements API for Baichuan2-7B-Chat in OpenAI's format. (https://platform.openai.com/docs/api-reference/chat)
|
||||
# Usage: python openai_api.py
|
||||
|
||||
import gc
|
||||
import time
|
||||
import torch
|
||||
import uvicorn
|
||||
from pydantic import BaseModel, Field, validator
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from contextlib import asynccontextmanager
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from sse_starlette.sse import ServerSentEvent, EventSourceResponse
|
||||
from transformers.generation.utils import GenerationConfig
|
||||
import random
|
||||
import string
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI): # collects GPU memory
|
||||
yield
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
class ModelCard(BaseModel):
|
||||
id: str
|
||||
object: str = "model"
|
||||
created: int = Field(default_factory=lambda: int(time.time()))
|
||||
owned_by: str = "owner"
|
||||
root: Optional[str] = None
|
||||
parent: Optional[str] = None
|
||||
permission: Optional[list] = None
|
||||
|
||||
class ModelList(BaseModel):
|
||||
object: str = "list"
|
||||
data: List[str] = [] # Assuming ModelCard is a string type. Replace with the correct type if not.
|
||||
|
||||
class ChatMessage(BaseModel):
|
||||
role: str
|
||||
content: str
|
||||
|
||||
@validator('role')
|
||||
def check_role(cls, v):
|
||||
if v not in ["user", "assistant", "system"]:
|
||||
raise ValueError('role must be one of "user", "assistant", "system"')
|
||||
return v
|
||||
|
||||
class DeltaMessage(BaseModel):
|
||||
role: Optional[str] = None
|
||||
content: Optional[str] = None
|
||||
|
||||
@validator('role', allow_reuse=True)
|
||||
def check_role(cls, v):
|
||||
if v is not None and v not in ["user", "assistant", "system"]:
|
||||
raise ValueError('role must be one of "user", "assistant", "system"')
|
||||
return v
|
||||
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str
|
||||
messages: List[ChatMessage]
|
||||
temperature: Optional[float] = None
|
||||
top_p: Optional[float] = None
|
||||
max_length: Optional[int] = 8192 # max_length should be an integer.
|
||||
stream: Optional[bool] = False
|
||||
|
||||
class ChatCompletionResponseChoice(BaseModel):
|
||||
index: int
|
||||
message: ChatMessage
|
||||
finish_reason: str
|
||||
|
||||
@validator('finish_reason')
|
||||
def check_finish_reason(cls, v):
|
||||
if v not in ["stop", "length"]:
|
||||
raise ValueError('finish_reason must be one of "stop" or "length"')
|
||||
return v
|
||||
|
||||
class ChatCompletionResponseStreamChoice(BaseModel):
|
||||
index: int
|
||||
delta: DeltaMessage
|
||||
finish_reason: Optional[str]
|
||||
|
||||
@validator('finish_reason', allow_reuse=True)
|
||||
def check_finish_reason(cls, v):
|
||||
if v is not None and v not in ["stop", "length"]:
|
||||
raise ValueError('finish_reason must be one of "stop" or "length"')
|
||||
return v
|
||||
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
id:str
|
||||
object:str
|
||||
|
||||
@validator('object')
|
||||
def check_object(cls,v):
|
||||
if v not in ["chat.completion","chat.completion.chunk"]:
|
||||
raise ValueError("object must be one of 'chat.completion' or 'chat.completion.chunk'")
|
||||
return v
|
||||
|
||||
created :Optional[int]=Field(default_factory=lambda:int(time.time()))
|
||||
model:str
|
||||
choices :List[Union[ChatCompletionResponseChoice,ChatCompletionResponseStreamChoice]]
|
||||
|
||||
|
||||
def generate_id():
|
||||
possible_characters = string.ascii_letters + string.digits
|
||||
random_string = ''.join(random.choices(possible_characters, k=29))
|
||||
return 'chatcmpl-' + random_string
|
||||
|
||||
|
||||
@app.get("/v1/models", response_model=ModelList)
|
||||
async def list_models():
|
||||
global model_args
|
||||
model_card = ModelCard(id="gpt-3.5-turbo")
|
||||
return ModelList(data=[model_card])
|
||||
|
||||
|
||||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||||
async def create_chat_completion(request: ChatCompletionRequest):
|
||||
global model, tokenizer
|
||||
if request.messages[-1].role != "user":
|
||||
raise HTTPException(status_code=400, detail="Invalid request")
|
||||
query = request.messages[-1].content
|
||||
prev_messages = request.messages[:-1]
|
||||
if len(prev_messages) > 0 and prev_messages[0].role == "system":
|
||||
query = prev_messages.pop(0).content + query
|
||||
messages = []
|
||||
for message in prev_messages:
|
||||
messages.append({"role": message.role, "content": message.content})
|
||||
|
||||
messages.append({"role": "user", "content": query})
|
||||
|
||||
if request.stream:
|
||||
generate = predict(messages, request.model)
|
||||
return EventSourceResponse(generate, media_type="text/event-stream")
|
||||
|
||||
response = '本接口不支持非stream模式'
|
||||
choice_data = ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response),
|
||||
finish_reason="stop"
|
||||
)
|
||||
id='chatcmpl-7QyqpwdfhqwajicIEznoc6Q47XAyW'
|
||||
|
||||
return ChatCompletionResponse(id=id,model=request.model, choices=[choice_data], object="chat.completion")
|
||||
|
||||
|
||||
async def predict(messages: List[List[str]], model_id: str):
|
||||
global model, tokenizer
|
||||
id = generate_id()
|
||||
created = int(time.time())
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=0,
|
||||
delta=DeltaMessage(role="assistant",content=""),
|
||||
finish_reason=None
|
||||
)
|
||||
chunk = ChatCompletionResponse(id=id,object="chat.completion.chunk",created=created,model=model_id, choices=[choice_data])
|
||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
|
||||
current_length = 0
|
||||
|
||||
for new_response in model.chat(tokenizer, messages, stream=True):
|
||||
if len(new_response) == current_length:
|
||||
continue
|
||||
|
||||
new_text = new_response[current_length:]
|
||||
current_length = len(new_response)
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=0,
|
||||
delta=DeltaMessage(content=new_text),
|
||||
finish_reason=None
|
||||
)
|
||||
chunk = ChatCompletionResponse(id=id,object="chat.completion.chunk",created=created,model=model_id, choices=[choice_data])
|
||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=0,
|
||||
delta=DeltaMessage(),
|
||||
finish_reason="stop"
|
||||
)
|
||||
chunk = ChatCompletionResponse(id=id,object="chat.completion.chunk",created=created,model=model_id, choices=[choice_data])
|
||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
yield '[DONE]'
|
||||
|
||||
|
||||
def load_models():
|
||||
print("本次加载的大语言模型为: Baichuan-13B-Chat")
|
||||
tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-7B-Chat", use_fast=False, trust_remote_code=True)
|
||||
# model = AutoModelForCausalLM.from_pretrained("Baichuan2-13B-Chat", torch_dtype=torch.float32, trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-7B-Chat", torch_dtype=torch.float16, trust_remote_code=True)
|
||||
model = model.cuda()
|
||||
model.generation_config = GenerationConfig.from_pretrained("baichuan-inc/Baichuan2-7B-Chat")
|
||||
return tokenizer, model
|
||||
|
||||
if __name__ == "__main__":
|
||||
tokenizer, model = load_models()
|
||||
uvicorn.run(app, host='0.0.0.0', port=6006, workers=1)
|
||||
|
||||
while True:
|
||||
try:
|
||||
# 在这里执行您的程序逻辑
|
||||
|
||||
# 检查显存使用情况,如果超过阈值(例如90%),则触发垃圾回收
|
||||
if torch.cuda.is_available():
|
||||
gpu_memory_usage = torch.cuda.memory_allocated() / torch.cuda.max_memory_allocated()
|
||||
if gpu_memory_usage > 0.9:
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
except RuntimeError as e:
|
||||
if "out of memory" in str(e):
|
||||
print("显存不足,正在重启程序...")
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
time.sleep(5) # 等待一段时间以确保显存已释放
|
||||
tokenizer, model = load_models()
|
||||
else:
|
||||
raise e
|
||||
|
||||
|
14
files/models/Baichuan2/requirements.txt
Normal file
14
files/models/Baichuan2/requirements.txt
Normal file
@@ -0,0 +1,14 @@
|
||||
protobuf
|
||||
transformers==4.30.2
|
||||
cpm_kernels
|
||||
torch>=2.0
|
||||
gradio
|
||||
mdtex2html
|
||||
sentencepiece
|
||||
accelerate
|
||||
sse-starlette
|
||||
fastapi==0.99.1
|
||||
pydantic==1.10.7
|
||||
uvicorn==0.21.1
|
||||
xformers
|
||||
bitsandbytes
|
Reference in New Issue
Block a user