Files
FastGPT/docSite/content/zh-cn/docs/development/docker.md
Archer db544afa7c Fix doc (#1655)
* fix: docker doc

* fix: docker doc

* version doc
2024-06-01 09:33:21 +08:00

365 lines
11 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: 'Docker Compose 快速部署'
description: '使用 Docker Compose 快速部署 FastGPT'
icon: ''
draft: false
toc: true
weight: 707
---
## 部署架构图
![](/imgs/sealos-fastgpt.webp)
{{% alert icon="🤖" context="success" %}}
- MongoDB用于存储除了向量外的各类数据
- PostgreSQL/Milvus存储向量数据
- OneAPI: 聚合各类 AI API支持多模型调用 (任何模型问题,先自行通过 OneAPI 测试校验)
{{% /alert %}}
## 推荐配置
### PgVector版本
体验测试首选
{{< table "table-hover table-striped-columns" >}}
| 环境 | 最低配置(单节点) | 推荐配置 |
| ---- | ---- | ---- |
| 测试 | 2c2g | 2c4g |
| 100w 组向量 | 4c8g 50GB | 4c16g 50GB |
| 500w 组向量 | 8c32g 200GB | 16c64g 200GB |
{{< /table >}}
### Milvus版本
对于千万级以上向量性能更优秀。
[点击查看 Milvus 官方推荐配置](https://milvus.io/docs/prerequisite-docker.md)
{{< table "table-hover table-striped-columns" >}}
| 环境 | 最低配置(单节点) | 推荐配置 |
| ---- | ---- | ---- |
| 测试 | 2c8g | 4c16g |
| 100w 组向量 | 未测试 | |
| 500w 组向量 | | |
{{< /table >}}
### zilliz cloud版本
亿级以上向量首选。
由于向量库使用了 Cloud无需占用本地资源无需太关注。
## 前置工作
### 1. 确保网络环境
如果使用`OpenAI`等国外模型接口,请确保可以正常访问,否则会报错:`Connection error` 等。 方案可以参考:[代理方案](/docs/development/proxy/)
### 2. 准备 Docker 环境
{{< tabs tabTotal="3" >}}
{{< tab tabName="Linux" >}}
{{< markdownify >}}
```bash
# 安装 Docker
curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun
systemctl enable --now docker
# 安装 docker-compose
curl -L https://github.com/docker/compose/releases/download/v2.20.3/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose
chmod +x /usr/local/bin/docker-compose
# 验证安装
docker -v
docker-compose -v
# 如失效,自行百度~
```
{{< /markdownify >}}
{{< /tab >}}
{{< tab tabName="MacOS" >}}
{{< markdownify >}}
推荐直接使用 [Orbstack](https://orbstack.dev/)。可直接通过 Homebrew 来安装:
```bash
brew install orbstack
```
或者直接[下载安装包](https://orbstack.dev/download)进行安装。
{{< /markdownify >}}
{{< /tab >}}
{{< tab tabName="Windows" >}}
{{< markdownify >}}
我们建议将源代码和其他数据绑定到 Linux 容器中时,将其存储在 Linux 文件系统中,而不是 Windows 文件系统中。
可以选择直接[使用 WSL 2 后端在 Windows 中安装 Docker Desktop](https://docs.docker.com/desktop/wsl/)。
也可以直接[在 WSL 2 中安装命令行版本的 Docker](https://nickjanetakis.com/blog/install-docker-in-wsl-2-without-docker-desktop)。
{{< /markdownify >}}
{{< /tab >}}
{{< /tabs >}}
## 开始部署
### 1. 下载 docker-compose.yml
非 Linux 环境或无法访问外网环境,可手动创建一个目录,并下载配置文件和对应版本的`docker-compose.yml`
- [config.json](https://github.com/labring/FastGPT/blob/main/projects/app/data/config.json)
- [docker-compose.yml](https://github.com/labring/FastGPT/blob/main/files/docker) (注意,不同向量库版本的文件不一样)
{{% alert icon="🤖" context="success" %}}
所有 `docker-compose.yml` 配置文件中 `MongoDB` 为 5.x需要用到AUX指令集部分 CPU 不支持,需手动更改其镜像版本为 4.4.24**需要自己在docker hub下载阿里云镜像没做备份
{{% /alert %}}
**Linux 快速脚本**
```bash
mkdir fastgpt
cd fastgpt
curl -O https://raw.githubusercontent.com/labring/FastGPT/main/projects/app/data/config.json
# pgvector 版本(测试推荐,简单快捷)
curl -o docker-compose.yml https://raw.githubusercontent.com/labring/FastGPT/main/files/docker/docker-compose-milvus.yml
# milvus 版本
# curl -o docker-compose.yml https://raw.githubusercontent.com/labring/FastGPT/main/files/docker/docker-compose-milvus.yml
# zilliz 版本
# curl -o docker-compose.yml https://raw.githubusercontent.com/labring/FastGPT/main/files/docker/docker-compose-zilliz.yml
```
### 2. 修改 docker-compose.yml 环境变量
{{< tabs tabTotal="3" >}}
{{< tab tabName="PgVector版本" >}}
{{< markdownify >}}
```
无需操作
```
{{< /markdownify >}}
{{< /tab >}}
{{< tab tabName="Milvus版本" >}}
{{< markdownify >}}
```
无需操作
```
{{< /markdownify >}}
{{< /tab >}}
{{< tab tabName="Zilliz版本" >}}
{{< markdownify >}}
![zilliz_key](/imgs/zilliz_key.png)
{{% alert icon="🤖" context="success" %}}
修改`MILVUS_ADDRESS``MILVUS_TOKEN`链接参数,分别对应 `zilliz``Public Endpoint``Api key`记得把自己ip加入白名单。
{{% /alert %}}
{{< /markdownify >}}
{{< /tab >}}
{{< /tabs >}}
### 3. 启动容器
在 docker-compose.yml 同级目录下执行。请确保`docker-compose`版本最好在2.17以上,否则可能无法执行自动化命令。
```bash
# 启动容器
docker-compose up -d
# 等待10sOneAPI第一次总是要重启几次才能连上Mysql
sleep 10
# 重启一次oneapi(由于OneAPI的默认Key有点问题不重启的话会提示找不到渠道临时手动重启一次解决等待作者修复)
docker restart oneapi
```
### 4. 打开 OneAPI 添加模型
可以通过`ip:3001`访问OneAPI默认账号为`root`密码为`123456`
在OneApi中添加合适的AI模型渠道。[点击查看相关教程](/docs/development/one-api/)
### 5. 访问 FastGPT
目前可以通过 `ip:3000` 直接访问(注意防火墙)。登录用户名为 `root`,密码为`docker-compose.yml`环境变量里设置的 `DEFAULT_ROOT_PSW`
如果需要域名访问,请自行安装并配置 Nginx。
首次运行,会自动初始化 root 用户,密码为 `1234`(与环境变量中的`DEFAULT_ROOT_PSW`一致),日志里会提示一次`MongoServerError: Unable to read from a snapshot due to pending collection catalog changes;`可忽略。
## FAQ
### Mongo 副本集自动初始化失败
最新的 docker-compose 示例优化 Mongo 副本集初始化,实现了全自动。目前在 unbuntu20,22 centos7, wsl2, mac, window 均通过测试。仍无法正常启动,大部分是因为 cpu 不支持 AUX 指令集,可以切换 Mongo4.x 版本。
如果是由于,无法自动初始化副本集合,可以手动初始化副本集:
1. 终端中执行下面命令创建mongo密钥
```bash
openssl rand -base64 756 > ./mongodb.key
chmod 600 ./mongodb.key
# 修改密钥权限部分系统是admin部分是root
chown 999:root ./mongodb.key
```
2. 修改 docker-compose.yml挂载密钥
```yml
mongo:
# image: mongo:5.0.18
# image: registry.cn-hangzhou.aliyuncs.com/fastgpt/mongo:5.0.18 # 阿里云
container_name: mongo
ports:
- 27017:27017
networks:
- fastgpt
command: mongod --keyFile /data/mongodb.key --replSet rs0
environment:
# 默认的用户名和密码,只有首次允许有效
- MONGO_INITDB_ROOT_USERNAME=myusername
- MONGO_INITDB_ROOT_PASSWORD=mypassword
volumes:
- ./mongo/data:/data/db
- ./mongodb.key:/data/mongodb.key
```
3. 重启服务
```bash
docker-compose down
docker-compose up -d
```
4. 进入容器执行副本集合初始化
```bash
# 查看 mongo 容器是否正常运行
docker ps
# 进入容器
docker exec -it mongo bash
# 连接数据库这里要填Mongo的用户名和密码
mongo -u myusername -p mypassword --authenticationDatabase admin
# 初始化副本集。如果需要外网访问mongo:27017 。如果需要外网访问需要增加Mongo连接参数directConnection=true
rs.initiate({
_id: "rs0",
members: [
{ _id: 0, host: "mongo:27017" }
]
})
# 检查状态。如果提示 rs0 状态,则代表运行成功
rs.status()
```
### 如何修改API地址和密钥
默认是写了OneAPi的连接地址和密钥可以通过修改`docker-compose.yml`fastgpt容器的环境变量实现。
`OPENAI_BASE_URL`API 接口的地址,需要加/v1
`CHAT_API_KEY`API 接口的凭证)。
修改完后重启:
```bash
docker-compose down
docker-compose up -d
```
### 如何更新版本?
1. 查看[更新文档](/docs/development/upgrading/intro/),确认要升级的版本,避免跨版本升级。
2. 修改镜像 tag 到指定版本
3. 执行下面命令会自动拉取镜像:
```bash
docker-compose pull
docker-compose up -d
```
4. 执行初始化脚本(如果有)
### 如何自定义配置文件?
修改`config.json`文件,并执行`docker-compose down`再执行`docker-compose up -d`重起容器。具体配置,参考[配置详解](/docs/development/configuration)。
### 如何检查自定义配置文件是否挂载
1. `docker logs fastgpt` 可以查看日志,在启动容器后,第一次请求网页,会进行配置文件读取,可以看看有没有读取成功以及有无错误日志。
2. `docker exec -it fastgpt sh` 进入 FastGPT 容器,可以通过`ls data`查看目录下是否成功挂载`config.json`文件。可通过`cat data/config.json`查看配置文件。
**可能不生效的原因**
1. 挂载目录不正确
2. 配置文件不正确,日志中会提示`invalid json`,配置文件需要是标准的 JSON 文件。
3. 修改后,没有`docker-compose down`再`docker-compose up -d`restart是不会重新挂载文件的。
### 如何检查环境变量是否正常加载
1. `docker exec -it fastgpt sh` 进入 FastGPT 容器。
2. 直接输入`env`命令查看所有环境变量。
### 为什么无法连接`本地模型`镜像。
`docker-compose.yml`中使用了桥接的模式建立了`fastgpt`网络如想通过0.0.0.0或镜像名访问其它镜像,需将其它镜像也加入到网络中。
### 端口冲突怎么解决?
docker-compose 端口定义为:`映射端口:运行端口`。
桥接模式下,容器运行端口不会有冲突,但是会有映射端口冲突,只需将映射端口修改成不同端口即可。
如果`容器1`需要连接`容器2`,使用`容器2:运行端口`来进行连接即可。
(自行补习 docker 基本知识)
### relation "modeldata" does not exist
PG 数据库没有连接上/初始化失败可以查看日志。FastGPT 会在每次连接上 PG 时进行表初始化,如果报错会有对应日志。
1. 检查数据库容器是否正常启动
2. 非 docker 部署的,需要手动安装 pg vector 插件
3. 查看 fastgpt 日志,有没有相关报错
### Illegal instruction
可能原因:
1. arm架构。需要使用 Mongo 官方镜像: mongo:5.0.18
2. cpu 不支持 AVX无法用 mongo5需要换成 mongo4.x。把 mongo 的 image 换成: mongo:4.4.29
### Operation `auth_codes.findOne()` buffering timed out after 10000ms
mongo连接失败查看mongo的运行状态**对应日志**。
可能原因:
1. mongo 服务有没有起来(有些 cpu 不支持 AVX无法用 mongo5需要换成 mongo4.x可以docker hub找个最新的4.x修改镜像版本重新运行
2. 连接数据库的环境变量填写错误账号密码注意host和port非容器网络连接需要用公网ip并加上 directConnection=true
3. 副本集启动失败。导致容器一直重启。
4. `Illegal instruction.... Waiting for MongoDB to start`: cpu 不支持 AVX无法用 mongo5需要换成 mongo4.x
### 首次部署root用户提示未注册
日志会有错误提示。大概率是没有启动 Mongo 副本集模式。
### 无法导出知识库、无法使用语音输入/播报
没配置 SSL 证书,无权使用部分功能。