mirror of
https://github.com/labring/FastGPT.git
synced 2025-10-16 16:04:34 +00:00
d4aa19d8f24b05e859222f8170784d9410276e30
![imgbot[bot]](/assets/img/avatar_default.png)
*Total -- 1,066.38kb -> 626.26kb (41.27%) /docSite/assets/imgs/dataset_search_process.png -- 427.67kb -> 91.64kb (78.57%) /docSite/assets/imgs/dataset_tree.png -- 100.17kb -> 24.38kb (75.66%) /docSite/assets/imgs/http1.jpg -- 30.60kb -> 26.77kb (12.54%) /docSite/static/android-chrome-256x256.png -- 5.57kb -> 4.93kb (11.41%) /docSite/assets/imgs/sealos_price.jpg -- 148.36kb -> 135.89kb (8.41%) /docSite/static/android-chrome-512x512.png -- 11.31kb -> 10.37kb (8.3%) /docSite/static/android-chrome-192x192.png -- 4.11kb -> 3.77kb (8.15%) /docSite/static/apple-touch-icon.png -- 3.87kb -> 3.55kb (8.08%) /docSite/static/docs/mstile-150x150.png -- 3.01kb -> 2.77kb (8%) /docSite/static/mstile-150x150.png -- 3.01kb -> 2.77kb (8%) /docSite/assets/imgs/demo-appointment5.jpg -- 160.47kb -> 154.53kb (3.7%) /docSite/assets/imgs/1.png -- 108.90kb -> 106.11kb (2.56%) /docSite/static/favicon-32x32.png -- 1.01kb -> 0.99kb (2.13%) /docSite/assets/imgs/2.png -- 32.49kb -> 31.97kb (1.6%) /docSite/assets/imgs/versatile_assistant_5.png -- 25.81kb -> 25.80kb (0.06%) Signed-off-by: ImgBotApp <ImgBotHelp@gmail.com> Co-authored-by: ImgBotApp <ImgBotHelp@gmail.com>
FastGPT
FastGPT is a knowledge-based Q&A system built on the LLM, offers out-of-the-box data processing and model invocation capabilities, allows for workflow orchestration through Flow visualization!
https://github.com/labring/FastGPT/assets/15308462/7d3a38df-eb0e-4388-9250-2409bd33f6d4
🛸 Use Cloud Services
Cloud: fastgpt.in
![]() |
![]() |
![]() |
![]() |
💡 Features
1
Application Orchestration Features
- Offers a straightforward mode, eliminating the need for complex orchestration
- Provides clear next-step instructions in dialogues
- Facilitates workflow orchestration
- Tracks references in source files
- Encapsulates modules for enhanced reuse at multiple levels
- Combines search and reordering functions
- Includes a tool module
- Integrates Laf for online HTTP module creation
- Plugin encapsulation capabilities
2
Knowledge Base Features
- Allows for the mixed use of multiple databases
- Keeps track of modifications and deletions in data chunks
- Enables specific vector models for each knowledge base
- Stores original source files
- Supports direct input and segment-based QA import
- Compatible with a variety of file formats: pdf, docx, txt, html, md, csv
- Facilitates URL reading and bulk CSV importing
- Supports PPT and Excel file import
- Features a file reader
- Offers diverse data preprocessing options
3
Application Debugging Features
- Enables targeted search testing within the knowledge base
- Allows feedback, editing, and deletion during conversations
- Presents the full context of interactions
- Displays all intermediate values within modules
- Advanced DeBug mode for orchestration
4
OpenAPI Interface
- The completions interface (aligned with GPT's chat mode interface)
- CRUD operations for the knowledge base
- CRUD operations for conversations
5
Operational Features
- Share without requiring login
- Easy embedding with Iframe
- Customizable chat window embedding with features like default open, drag-and-drop
- Centralizes conversation records for review and annotation
👨💻 Development
Project tech stack: NextJs + TS + ChakraUI + Mongo + Postgres (Vector plugin)
-
⚡ Deployment
Give it a 2-4 minute wait after deployment as it sets up the database. Initially, it might be a tad slow since we're using the basic settings.
👀 Others
- FastGPT FAQ
- Docker Deployment Tutorial Video
- Official Account Integration Video Tutorial
- FastGPT Knowledge Base Demo
💪 Related Projects
- Laf: 3-minute quick access to third-party applications
- Sealos: Rapid deployment of cluster applications
- One API: Multi-model management, supports Azure, Wenxin Yiyuan, etc.
- TuShan: Build a backend management system in 5 minutes
🤝 Third-party Ecosystem
🌟 Star History
Description
FastGPT is a knowledge-based platform built on the LLM, offers out-of-the-box data processing and model invocation capabilities, allows for workflow orchestration through Flow visualization!
Languages
JavaScript
52.1%
TypeScript
38.2%
MDX
5.3%
HTML
3.4%
Python
0.7%