Files
FastGPT/docSite/content/zh-cn/docs/development/custom-models/chatglm2-m3e.md
Archer a209856d48 Fix config (#3476)
* feat: SiliconCloud doc

* feat: SiliconCloud doc

* perf: silicon cloud doc

* perf: silicon cloud doc
2024-12-26 21:36:09 +08:00

118 lines
3.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: '接入 ChatGLM2-m3e 模型'
description: ' 将 FastGPT 接入私有化模型 ChatGLM2和m3e-large'
icon: 'model_training'
draft: false
toc: true
weight: 950
---
## 前言
FastGPT 默认使用了 OpenAI 的 LLM 模型和向量模型,如果想要私有化部署的话,可以使用 ChatGLM2 和 m3e-large 模型。以下是由用户@不做了睡大觉 提供的接入方法。该镜像直接集成了 M3E-Large 和 ChatGLM2-6B 模型,可以直接使用。
## 部署镜像
+ 镜像名: `stawky/chatglm2-m3e:latest`
+ 国内镜像名: `registry.cn-hangzhou.aliyuncs.com/fastgpt_docker/chatglm2-m3e:latest`
+ 端口号: 6006
```
# 设置安全凭证即oneapi中的渠道密钥
默认值sk-aaabbbcccdddeeefffggghhhiiijjjkkk
也可以通过环境变量引入sk-key。有关docker环境变量引入的方法请自寻教程此处不再赘述。
```
## 接入 [One API](/docs/development/modelconfig/one-api/)
为 chatglm2 和 m3e-large 各添加一个渠道,参数如下:
![](/imgs/model-m3e1.png)
这里我填入 m3e 作为向量模型chatglm2 作为语言模型
## 测试
curl 例子:
```bash
curl --location --request POST 'https://domain/v1/embeddings' \
--header 'Authorization: Bearer sk-aaabbbcccdddeeefffggghhhiiijjjkkk' \
--header 'Content-Type: application/json' \
--data-raw '{
"model": "m3e",
"input": ["laf是什么"]
}'
```
```bash
curl --location --request POST 'https://domain/v1/chat/completions' \
--header 'Authorization: Bearer sk-aaabbbcccdddeeefffggghhhiiijjjkkk' \
--header 'Content-Type: application/json' \
--data-raw '{
"model": "chatglm2",
"messages": [{"role": "user", "content": "Hello!"}]
}'
```
Authorization 为 sk-aaabbbcccdddeeefffggghhhiiijjjkkk。model 为刚刚在 One API 填写的自定义模型。
## 接入 FastGPT
修改 config.json 配置文件,在 llmModels 中加入 chatglm2, 在 vectorModels 中加入 M3E 模型:
```json
"llmModels": [
//其他对话模型
{
"model": "chatglm2",
"name": "chatglm2",
"maxToken": 8000,
"price": 0,
"quoteMaxToken": 4000,
"maxTemperature": 1.2,
"defaultSystemChatPrompt": ""
}
],
"vectorModels": [
{
"model": "text-embedding-ada-002",
"name": "Embedding-2",
"price": 0.2,
"defaultToken": 500,
"maxToken": 3000
},
{
"model": "m3e",
"name": "M3E测试使用",
"price": 0.1,
"defaultToken": 500,
"maxToken": 1800
}
],
```
## 测试使用
M3E 模型的使用方法如下:
1. 创建知识库时候选择 M3E 模型。
注意,一旦选择后,知识库将无法修改向量模型。
![](/imgs/model-m3e2.png)
2. 导入数据
3. 搜索测试
![](/imgs/model-m3e3.png)
4. 应用绑定知识库
注意,应用只能绑定同一个向量模型的知识库,不能跨模型绑定。并且,需要注意调整相似度,不同向量模型的相似度(距离)会有所区别,需要自行测试实验。
![](/imgs/model-m3e4.png)
chatglm2 模型的使用方法如下:
模型选择 chatglm2 即可