Files
FastGPT/docSite/content/docs/course/data_search.md
2023-12-31 14:12:51 +08:00

58 lines
2.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: '知识库搜索参数'
description: '知识库搜索原理'
icon: 'language'
draft: false
toc: true
weight: 106
---
在知识库搜索的方式上FastGPT提供了三种方式分别为“语义检索”“增强语义检索”“混合检索”。
![](/imgs/dataset_search_params1.png)
## 搜索模式
### 语义检索
语义检索是通过向量距离,计算用户问题与知识库内容的距离,从而得出“相似度”,当然这并不是语文上的相似度,而是数学上的。
优点:
- 相近语义理解
- 跨多语言理解(例如输入中文问题匹配英文知识点)
- 多模态理解(文本,图片,音视频等)
缺点:
- 依赖模型训练效果
- 精度不稳定
- 受关键词和句子完整度影响
### 全文检索
才用传统的全文检索方式。适合查找关键的主谓语等。
### 混合检索
同时使用向量检索和全文检索,并通过 RRF 公式进行两个搜索结果合并,一般情况下搜索结果会更加丰富准确。
由于混合检索后的查找范围很大,并且无法直接进行相似度过滤,通常需要进行利用重排模型进行一次结果重新排序,并利用重排的得分进行过滤。
## 结果重排
利用`ReRank`模型对搜索结果进行重排,绝大多数情况下,可以有效提高搜索结果的准确率。不过,重排模型与问题的完整度(主谓语齐全)有一些关系,通常会先走问题补全后再进行搜索-重排。重排后可以得到一个`0-1`的得分,代表着搜索内容与问题的相关度,该分数通常比向量的得分更加精确,可以根据得分进行过滤。
FastGPT 会使用 `RRF` 对重排结果、向量搜索结果、全文检索结果进行合并,得到最终的搜索结果。
## 引用上限
每次搜索最多引用`n``tokens`的内容。
之所以不采用`top k`,是发现在混合知识库(问答库、文档库)时,不同`chunk`的长度差距很大,会导致`top k`的结果不稳定,因此采用了`tokens`的方式进行引用上限的控制。
## 最低相关度
一个`0-1`的数值,会过滤掉一些低相关度的搜索结果。
该值仅在`语义检索`或使用`结果重排`时生效。