Files
FastGPT/docSite/content/docs/use-cases/ai_settings.md
2024-01-06 10:36:31 +08:00

135 lines
6.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: "AI 高级配置说明"
description: "FastGPT AI 高级配置说明"
icon: "sign_language"
draft: false
toc: true
weight: 501
---
在 FastGPT 的 AI 对话模块中,有一个 AI 高级配置,里面包含了 AI 模型的参数配置,本文详细介绍这些配置的含义。
## 返回AI内容
这是一个开关,打开的时候,当 AI 对话模块运行时会将其输出的内容返回到浏览器API响应如果关闭AI 输出的内容不会返回到浏览器但是生成的内容仍可以通过【AI回复】进行输出。你可以将【AI回复】连接到其他模块中。
## 温度
可选范围0-10约大代表生成的内容约自由扩散越小代表约严谨。调节能力有限知识库问答场景通常设置为0。
## 回复上限
控制 AI 回复的最大 Tokens较小的值可以一定程度上减少 AI 的废话,但也可能导致 AI 回复不完整。
## 引用模板 & 引用提示词
这两个参数与知识库问答场景相关,可以控制知识库相关的提示词。
### AI 对话消息组成
想使用明白这两个变量,首先要了解传递传递给 AI 模型的消息格式。它是一个数组FastGPT 中这个数组的组成形式为:
```json
[
内置提示词config.json 配置,一般为空)
系统提示词 (用户输入的提示词)
历史记录
问题(由引用提示词、引用模板和用户问题组成)
]
```
{{% alert icon="🍅" context="success" %}}
Tips: 可以通过点击上下文按键查看完整的上下文组成,便于调试。
{{% /alert %}}
### 引用模板和提示词设计
引用模板和引用提示词通常是成对出现,引用提示词依赖引用模板。
FastGPT 知识库采用 QA 对(不一定都是问答格式,仅代表两个变量)的格式存储,在转义成字符串时候会根据**引用模板**来进行格式化。知识库包含多个可用变量: q, a, sourceId数据的ID, index(第n个数据), source(数据的集合名、文件名)score(距离得分0-1) 可以通过 {{q}} {{a}} {{sourceId}} {{index}} {{source}} {{score}} 按需引入。下面一个模板例子:
可以通过 [知识库结构讲解](/docs/use-cases/datasetEngine/) 了解详细的知识库的结构。
#### 引用模板
```
{instruction:"{{q}}",output:"{{a}}",source:"{{source}}"}
```
搜索到的知识库,会自动将 q,a,source 替换成对应的内容。每条搜索到的内容,会通过 `\n` 隔开。例如:
```
{instruction:"电影《铃芽之旅》的导演是谁?",output:"电影《铃芽之旅》的导演是新海诚。",source:"手动输入"}
{instruction:"本作的主人公是谁?",output:"本作的主人公是名叫铃芽的少女。",source:""}
{instruction:"电影《铃芽之旅》男主角是谁?",output:"电影《铃芽之旅》男主角是宗像草太,由松村北斗配音。",source:""}
{instruction:"电影《铃芽之旅》的编剧是谁22",output:"新海诚是本片的编剧。",source:"手动输入"}
```
#### 引用提示词
引用模板需要和引用提示词一起使用,提示词中可以写引用模板的格式说明以及对话的要求等。可以使用 {{quote}} 来使用 **引用模板**,使用 {{question}} 来引入问题。例如:
```
你的背景知识:
"""
{{quote}}
"""
对话要求:
1. 背景知识是最新的,其中 instruction 是相关介绍output 是预期回答或补充。
2. 使用背景知识回答问题。
3. 背景知识无法回答问题时,你可以礼貌的的回答用户问题。
我的问题是:"{{question}}"
```
转义后则为:
```
你的背景知识:
"""
{instruction:"电影《铃芽之旅》的导演是谁?",output:"电影《铃芽之旅》的导演是新海诚。",source:"手动输入"}
{instruction:"本作的主人公是谁?",output:"本作的主人公是名叫铃芽的少女。",source:""}
{instruction:"电影《铃芽之旅》男主角是谁?",output:"电影《铃芽之旅》男主角是宗像草太,由松村北斗配音}
"""
对话要求:
1. 背景知识是最新的,其中 instruction 是相关介绍output 是预期回答或补充。
2. 使用背景知识回答问题。
3. 背景知识无法回答问题时,你可以礼貌的的回答用户问题。
我的问题是:"{{question}}"
```
#### 总结
引用模板规定了搜索出来的内容如何组成一句话,其由 q,a,index,source 多个变量组成。
引用提示词由`引用模板``提示词`组成,提示词通常是对引用模板的一个描述,加上对模型的要求。
### 引用模板和提示词设计 示例
#### 通用模板与问答模板对比
我们通过一组`你是谁`的手动数据,对通用模板与问答模板的效果进行对比。此处特意打了个搞笑的答案,通用模板下 GPT35 就变得不那么听话了,而问答模板下 GPT35 依然能够回答正确。这是由于结构化的提示词,在大语言模型中具有更强的引导作用。
{{% alert icon="🍅" context="success" %}}
Tips: 建议根据不同的场景每种知识库仅选择1类数据类型这样有利于充分发挥提示词的作用。
{{% /alert %}}
| 通用模板配置及效果 | 问答模板配置及效果 |
| --- | --- |
| ![](/imgs/datasetprompt1.jpg) | ![](/imgs/datasetprompt2.jpg) |
| ![](/imgs/datasetprompt3.jpg) | ![](/imgs/datasetprompt5.jpg) |
| ![](/imgs/datasetprompt4.jpg) | ![](/imgs/datasetprompt6.jpg) |
#### 严格模板
使用非严格模板,我们随便询问一个不在知识库中的内容,模型通常会根据其自身知识进行回答。
| 非严格模板效果 | 选择严格模板 | 严格模板效果 |
| --- | --- | --- |
| ![](/imgs/datasetprompt7.jpg) | ![](/imgs/datasetprompt8.jpg) |![](/imgs/datasetprompt9.jpg) |
#### 提示词设计思路
1. 使用序号进行不同要求描述。
2. 使用首先、然后、最后等词语进行描述。
3. 列举不同场景的要求时尽量完整不要遗漏。例如背景知识完全可以回答、背景知识可以回答一部分、背景知识与问题无关3种场景都说明清楚。
4. 巧用结构化提示,例如在问答模板中,利用了`instruction``output`,清楚的告诉模型,`output`是一个预期的答案。
5. 标点符号正确且完整。