mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-27 16:33:49 +00:00

Signed-off-by: EthanD <EthanD4869@gmail.com> Co-authored-by: EthanD <EthanD4869@gmail.com>
211 lines
7.6 KiB
Markdown
211 lines
7.6 KiB
Markdown
---
|
||
frameworks:
|
||
- Pytorch
|
||
license: Apache License 2.0
|
||
tasks:
|
||
- auto-speech-recognition
|
||
|
||
#model-type:
|
||
##如 gpt、phi、llama、chatglm、baichuan 等
|
||
#- gpt
|
||
|
||
#domain:
|
||
##如 nlp、cv、audio、multi-modal
|
||
#- nlp
|
||
|
||
#language:
|
||
##语言代码列表 https://help.aliyun.com/document_detail/215387.html?spm=a2c4g.11186623.0.0.9f8d7467kni6Aa
|
||
#- cn
|
||
|
||
#metrics:
|
||
##如 CIDEr、Blue、ROUGE 等
|
||
#- CIDEr
|
||
|
||
#tags:
|
||
##各种自定义,包括 pretrained、fine-tuned、instruction-tuned、RL-tuned 等训练方法和其他
|
||
#- pretrained
|
||
|
||
#tools:
|
||
##如 vllm、fastchat、llamacpp、AdaSeq 等
|
||
#- vllm
|
||
---
|
||
|
||
# Highlights
|
||
**SenseVoice**专注于高精度多语言语音识别、情感辨识和音频事件检测
|
||
- **多语言识别:** 采用超过40万小时数据训练,支持超过50种语言,识别效果上优于Whisper模型。
|
||
- **富文本识别:**
|
||
- 具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。
|
||
- 支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。
|
||
- **高效推理:** SenseVoice-Small模型采用非自回归端到端框架,推理延迟极低,10s音频推理仅耗时70ms,15倍优于Whisper-Large。
|
||
- **微调定制:** 具备便捷的微调脚本与策略,方便用户根据业务场景修复长尾样本问题。
|
||
- **服务部署:** 具有完整的服务部署链路,支持多并发请求,支持客户端语言有,python、c++、html、java与c#等。
|
||
|
||
|
||
## <strong>[SenseVoice开源项目介绍]()</strong>
|
||
<strong>[SenseVoice]()</strong>开源模型是多语言音频理解模型,具有包括语音识别、语种识别、语音情感识别,声学事件检测能力。
|
||
|
||
[**github仓库**]()
|
||
| [**最新动态**]()
|
||
| [**环境安装**]()
|
||
|
||
# 模型结构图
|
||
SenseVoice多语言音频理解模型,支持语音识别、语种识别、语音情感识别、声学事件检测、逆文本正则化等能力,采用工业级数十万小时的标注音频进行模型训练,保证了模型的通用识别效果。模型可以被应用于中文、粤语、英语、日语、韩语音频识别,并输出带有情感和事件的富文本转写结果。
|
||
|
||
<p align="center">
|
||
<img src="fig/sensevoice.png" alt="SenseVoice模型结构" width="1500" />
|
||
</p>
|
||
|
||
SenseVoice-Small是基于非自回归端到端框架模型,为了指定任务,我们在语音特征前添加四个嵌入作为输入传递给编码器:
|
||
- LID:用于预测音频语种标签。
|
||
- SER:用于预测音频情感标签。
|
||
- AED:用于预测音频包含的事件标签。
|
||
- ITN:用于指定识别输出文本是否进行逆文本正则化。
|
||
|
||
|
||
# 用法
|
||
|
||
## 推理
|
||
|
||
### modelscope pipeline推理
|
||
```python
|
||
from modelscope.pipelines import pipeline
|
||
from modelscope.utils.constant import Tasks
|
||
|
||
inference_pipeline = pipeline(
|
||
task=Tasks.auto_speech_recognition,
|
||
model='iic/SenseVoiceSmall',
|
||
model_revision="master")
|
||
|
||
rec_result = inference_pipeline('https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
|
||
print(rec_result)
|
||
```
|
||
|
||
### 直接推理
|
||
|
||
```python
|
||
from model import SenseVoiceSmall
|
||
|
||
model_dir = "iic/SenseVoiceSmall"
|
||
m, kwargs = SenseVoiceSmall.from_pretrained(model=model_dir)
|
||
|
||
|
||
res = m.inference(
|
||
data_in="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
|
||
language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech"
|
||
use_itn=False,
|
||
**kwargs,
|
||
)
|
||
|
||
print(res)
|
||
```
|
||
|
||
### 使用funasr推理
|
||
|
||
```python
|
||
from funasr import AutoModel
|
||
|
||
model_dir = "iic/SenseVoiceSmall"
|
||
input_file = (
|
||
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav"
|
||
)
|
||
|
||
model = AutoModel(model=model_dir,
|
||
vad_model="fsmn-vad",
|
||
vad_kwargs={"max_single_segment_time": 30000},
|
||
trust_remote_code=True, device="cuda:0")
|
||
|
||
res = model.generate(
|
||
input=input_file,
|
||
cache={},
|
||
language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech"
|
||
use_itn=False,
|
||
batch_size_s=0,
|
||
)
|
||
|
||
print(res)
|
||
```
|
||
|
||
funasr版本已经集成了vad模型,支持任意时长音频输入,`batch_size_s`单位为秒。
|
||
如果输入均为短音频,并且需要批量化推理,为了加快推理效率,可以移除vad模型,并设置`batch_size`
|
||
|
||
```python
|
||
model = AutoModel(model=model_dir, trust_remote_code=True, device="cuda:0")
|
||
|
||
res = model.generate(
|
||
input=input_file,
|
||
cache={},
|
||
language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech"
|
||
use_itn=False,
|
||
batch_size=64,
|
||
)
|
||
```
|
||
|
||
更多详细用法,请参考 [文档](https://github.com/modelscope/FunASR/blob/main/docs/tutorial/README.md)
|
||
|
||
## 模型下载
|
||
|
||
|
||
SDK下载
|
||
```bash
|
||
#安装ModelScope
|
||
pip install modelscope
|
||
```
|
||
```python
|
||
#SDK模型下载
|
||
from modelscope import snapshot_download
|
||
model_dir = snapshot_download('iic/SenseVoiceSmall')
|
||
```
|
||
Git下载
|
||
```
|
||
#Git模型下载
|
||
git clone https://www.modelscope.cn/iic/SenseVoiceSmall.git
|
||
```
|
||
|
||
## 服务部署
|
||
|
||
Undo
|
||
|
||
# Performance
|
||
|
||
## 语音识别效果
|
||
我们在开源基准数据集(包括 AISHELL-1、AISHELL-2、Wenetspeech、Librispeech和Common Voice)上比较了SenseVoice与Whisper的多语言语音识别性能和推理效率。在中文和粤语识别效果上,SenseVoice-Small模型具有明显的效果优势。
|
||
|
||
<p align="center">
|
||
<img src="fig/asr_results.png" alt="SenseVoice模型在开源测试集上的表现" width="2500" />
|
||
</p>
|
||
|
||
|
||
|
||
## 情感识别效果
|
||
由于目前缺乏被广泛使用的情感识别测试指标和方法,我们在多个测试集的多种指标进行测试,并与近年来Benchmark上的多个结果进行了全面的对比。所选取的测试集同时包含中文/英文两种语言以及表演、影视剧、自然对话等多种风格的数据,在不进行目标数据微调的前提下,SenseVoice能够在测试数据上达到和超过目前最佳情感识别模型的效果。
|
||
|
||
<p align="center">
|
||
<img src="fig/ser_table.png" alt="SenseVoice模型SER效果1" width="1500" />
|
||
</p>
|
||
|
||
同时,我们还在测试集上对多个开源情感识别模型进行对比,结果表明,SenseVoice-Large模型可以在几乎所有数据上都达到了最佳效果,而SenseVoice-Small模型同样可以在多数数据集上取得超越其他开源模型的效果。
|
||
|
||
<p align="center">
|
||
<img src="fig/ser_figure.png" alt="SenseVoice模型SER效果2" width="500" />
|
||
</p>
|
||
|
||
## 事件检测效果
|
||
|
||
尽管SenseVoice只在语音数据上进行训练,它仍然可以作为事件检测模型进行单独使用。我们在环境音分类ESC-50数据集上与目前业内广泛使用的BEATS与PANN模型的效果进行了对比。SenseVoice模型能够在这些任务上取得较好的效果,但受限于训练数据与训练方式,其事件分类效果专业的事件检测模型相比仍然有一定的差距。
|
||
|
||
<p align="center">
|
||
<img src="fig/aed_figure.png" alt="SenseVoice模型AED效果" width="500" />
|
||
</p>
|
||
|
||
|
||
|
||
## 推理效率
|
||
SenseVoice-Small模型采用非自回归端到端架构,推理延迟极低。在参数量与Whisper-Small模型相当的情况下,比Whisper-Small模型推理速度快7倍,比Whisper-Large模型快17倍。同时SenseVoice-small模型在音频时长增加的情况下,推理耗时也无明显增加。
|
||
|
||
|
||
<p align="center">
|
||
<img src="fig/inference.png" alt="SenseVoice模型的推理效率" width="1500" />
|
||
</p>
|
||
|
||
<p style="color: lightgrey;">如果您是本模型的贡献者,我们邀请您根据<a href="https://modelscope.cn/docs/ModelScope%E6%A8%A1%E5%9E%8B%E6%8E%A5%E5%85%A5%E6%B5%81%E7%A8%8B%E6%A6%82%E8%A7%88" style="color: lightgrey; text-decoration: underline;">模型贡献文档</a>,及时完善模型卡片内容。</p>
|