mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 21:13:50 +00:00
feat: lafgpt。openapi schema
This commit is contained in:
@@ -105,8 +105,8 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
throw new Error('对不起,我没有找到你的问题');
|
||||
}
|
||||
|
||||
// textArr 筛选,最多 3000 tokens
|
||||
const systemPrompt = systemPromptFilter(formatRedisPrompt, 3400);
|
||||
// textArr 筛选,最多 3200 tokens
|
||||
const systemPrompt = systemPromptFilter(formatRedisPrompt, 3200);
|
||||
|
||||
prompts.unshift({
|
||||
obj: 'SYSTEM',
|
||||
|
@@ -1,20 +1,18 @@
|
||||
import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { createParser, ParsedEvent, ReconnectInterval } from 'eventsource-parser';
|
||||
import { connectToDatabase } from '@/service/mongo';
|
||||
import { getOpenAIApi, authChat } from '@/service/utils/chat';
|
||||
import { connectToDatabase, Model } from '@/service/mongo';
|
||||
import { getOpenAIApi } from '@/service/utils/chat';
|
||||
import { authToken } from '@/service/utils/tools';
|
||||
import { httpsAgent, openaiChatFilter, systemPromptFilter } from '@/service/utils/tools';
|
||||
import { ChatCompletionRequestMessage, ChatCompletionRequestMessageRoleEnum } from 'openai';
|
||||
import { ChatItemType } from '@/types/chat';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import type { ModelSchema } from '@/types/mongoSchema';
|
||||
import { PassThrough } from 'stream';
|
||||
import { modelList } from '@/constants/model';
|
||||
import { ChatModelNameEnum, modelList, ChatModelNameMap } from '@/constants/model';
|
||||
import { pushChatBill } from '@/service/events/pushBill';
|
||||
import { connectRedis } from '@/service/redis';
|
||||
import { VecModelDataPrefix } from '@/constants/redis';
|
||||
import { vectorToBuffer } from '@/utils/tools';
|
||||
import { openaiCreateEmbedding } from '@/service/utils/openai';
|
||||
import { gpt35StreamResponse } from '@/service/utils/openai';
|
||||
import { openaiCreateEmbedding, getOpenApiKey, gpt35StreamResponse } from '@/service/utils/openai';
|
||||
|
||||
/* 发送提示词 */
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
|
||||
@@ -33,13 +31,13 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
});
|
||||
|
||||
try {
|
||||
const { chatId, prompt } = req.body as {
|
||||
const { prompt, modelId } = req.body as {
|
||||
prompt: ChatItemType;
|
||||
chatId: string;
|
||||
modelId: string;
|
||||
};
|
||||
|
||||
const { authorization } = req.headers;
|
||||
if (!chatId || !prompt) {
|
||||
if (!prompt) {
|
||||
throw new Error('缺少参数');
|
||||
}
|
||||
|
||||
@@ -47,49 +45,57 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
const redis = await connectRedis();
|
||||
let startTime = Date.now();
|
||||
|
||||
const { chat, userApiKey, systemKey, userId } = await authChat(chatId, authorization);
|
||||
/* 凭证校验 */
|
||||
const userId = await authToken(authorization);
|
||||
const { userApiKey, systemKey } = await getOpenApiKey(userId);
|
||||
|
||||
const model: ModelSchema = chat.modelId;
|
||||
const modelConstantsData = modelList.find((item) => item.model === model.service.modelName);
|
||||
if (!modelConstantsData) {
|
||||
throw new Error('模型加载异常');
|
||||
/* 查找数据库里的模型信息 */
|
||||
const model = await Model.findById(modelId);
|
||||
if (!model) {
|
||||
throw new Error('找不到模型');
|
||||
}
|
||||
|
||||
const modelConstantsData = modelList.find(
|
||||
(item) => item.model === ChatModelNameEnum.VECTOR_GPT
|
||||
);
|
||||
if (!modelConstantsData) {
|
||||
throw new Error('模型已下架');
|
||||
}
|
||||
|
||||
// 获取 chatAPI
|
||||
const chatAPI = getOpenAIApi(userApiKey || systemKey);
|
||||
|
||||
// 请求一次 chatgpt 拆解需求
|
||||
const promptResponse = await chatAPI.createChatCompletion(
|
||||
{
|
||||
model: model.service.chatModel,
|
||||
model: ChatModelNameMap[ChatModelNameEnum.GPT35],
|
||||
temperature: 0,
|
||||
// max_tokens: modelConstantsData.maxToken,
|
||||
messages: [
|
||||
{
|
||||
role: 'system',
|
||||
content: `服务端逻辑生成器。根据用户输入的需求,拆解成代码实现的步骤,并按格式返回: 1.\n2.\n3.\n ......
|
||||
|
||||
下面是一些例子:
|
||||
实现一个手机号注册账号的方法,包含两个函数
|
||||
* 发送手机验证码函数:
|
||||
1. 从 query 中获取 phone
|
||||
2. 校验手机号格式是否正确,不正确返回{error: "手机号格式错误"}
|
||||
3. 给 phone 发送一个短信验证码,验证码长度为6位字符串,内容为:你正在注册laf, 验证码为:code
|
||||
4. 数据库添加数据,表为"codes",内容为 {phone, code}
|
||||
* 注册函数
|
||||
1. 从 body 中获取 phone 和 code
|
||||
2. 校验手机号格式是否正确,不正确返回{error: "手机号格式错误"}
|
||||
2. 获取数据库数据,表为"codes",查找是否有符合 phone, code 等于body参数的记录,没有的话返回 {error:"验证码不正确"}
|
||||
4. 添加数据库数据,表为"users" ,内容为{phone, code, createTime}
|
||||
5. 删除数据库数据,删除 code 记录
|
||||
---------------
|
||||
更新博客记录。传入blogId,blogText,tags,还需要记录更新的时间
|
||||
1. 从 body 中获取 blogId,blogText 和 tags
|
||||
2. 校验 blogId 是否为空,为空则返回 {error: "博客ID不能为空"}
|
||||
3. 校验 blogText 是否为空,为空则返回 {error: "博客内容不能为空"}
|
||||
4. 校验 tags 是否为数组,不是则返回 {error: "标签必须为数组"}
|
||||
5. 获取当前时间,记录为 updateTime
|
||||
6. 更新数据库数据,表为"blogs",更新符合 blogId 的记录的内容为{blogText, tags, updateTime}
|
||||
7. 返回结果 {message: "更新博客记录成功"}`
|
||||
content: `服务端逻辑生成器.根据用户输入的需求,拆解成代码实现的步骤,并按格式返回: 1.\n2.\n3.\n ......
|
||||
下面是一些例子:
|
||||
实现一个手机号发生注册验证码方法.
|
||||
1. 从 query 中获取 phone.
|
||||
2. 校验手机号格式是否正确,不正确返回{error: "手机号格式错误"}.
|
||||
3. 给 phone 发送一个短信验证码,验证码长度为6位字符串,内容为:你正在注册laf,验证码为:code.
|
||||
4. 数据库添加数据,表为"codes",内容为 {phone, code}.
|
||||
|
||||
实现根据手机号注册账号,需要验证手机验证码.
|
||||
1. 从 body 中获取 phone 和 code.
|
||||
2. 校验手机号格式是否正确,不正确返回{error: "手机号格式错误"}.
|
||||
2. 获取数据库数据,表为"codes",查找是否有符合 phone, code 等于body参数的记录,没有的话返回 {error:"验证码不正确"}.
|
||||
4. 添加数据库数据,表为"users" ,内容为{phone, code, createTime}.
|
||||
5. 删除数据库数据,删除 code 记录.
|
||||
|
||||
更新博客记录。传入blogId,blogText,tags,还需要记录更新的时间.
|
||||
1. 从 body 中获取 blogId,blogText 和 tags.
|
||||
2. 校验 blogId 是否为空,为空则返回 {error: "博客ID不能为空"}.
|
||||
3. 校验 blogText 是否为空,为空则返回 {error: "博客内容不能为空"}.
|
||||
4. 校验 tags 是否为数组,不是则返回 {error: "标签必须为数组"}.
|
||||
5. 获取当前时间,记录为 updateTime.
|
||||
6. 更新数据库数据,表为"blogs",更新符合 blogId 的记录的内容为{blogText, tags, updateTime}.
|
||||
7. 返回结果 {message: "更新博客记录成功"}.`
|
||||
},
|
||||
{
|
||||
role: 'user',
|
||||
@@ -120,16 +126,15 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
});
|
||||
|
||||
// 读取对话内容
|
||||
const prompts = [...chat.content, prompt];
|
||||
const prompts = [prompt];
|
||||
|
||||
// 搜索系统提示词, 按相似度从 redis 中搜出相关的 q 和 text
|
||||
const redisData: any[] = await redis.sendCommand([
|
||||
'FT.SEARCH',
|
||||
`idx:${VecModelDataPrefix}:hash`,
|
||||
`@modelId:{${String(
|
||||
chat.modelId._id
|
||||
model._id
|
||||
)}} @vector:[VECTOR_RANGE 0.25 $blob]=>{$YIELD_DISTANCE_AS: score}`,
|
||||
// `@modelId:{${String(chat.modelId._id)}}=>[KNN 10 @vector $blob AS score]`,
|
||||
'RETURN',
|
||||
'1',
|
||||
'text',
|
||||
@@ -162,8 +167,8 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
throw new Error('对不起,我没有找到你的问题');
|
||||
}
|
||||
|
||||
// textArr 筛选,最多 3000 tokens
|
||||
const systemPrompt = systemPromptFilter(formatRedisPrompt, 3400);
|
||||
// textArr 筛选,最多 3200 tokens
|
||||
const systemPrompt = systemPromptFilter(formatRedisPrompt, 3200);
|
||||
|
||||
prompts.unshift({
|
||||
obj: 'SYSTEM',
|
||||
@@ -185,7 +190,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
content: item.value
|
||||
})
|
||||
);
|
||||
console.log(formatPrompts);
|
||||
// console.log(formatPrompts);
|
||||
// 计算温度
|
||||
const temperature = modelConstantsData.maxTemperature * (model.temperature / 10);
|
||||
|
||||
@@ -207,7 +212,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
}
|
||||
);
|
||||
|
||||
console.log('api response time:', `${(Date.now() - startTime) / 1000}s`);
|
||||
console.log('api response. time:', `${(Date.now() - startTime) / 1000}s`);
|
||||
|
||||
step = 1;
|
||||
const { responseContent } = await gpt35StreamResponse({
|
||||
@@ -215,6 +220,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
stream,
|
||||
chatResponse
|
||||
});
|
||||
console.log('response done. time:', `${(Date.now() - startTime) / 1000}s`);
|
||||
|
||||
const promptsContent = formatPrompts.map((item) => item.content).join('');
|
||||
// 只有使用平台的 key 才计费
|
||||
@@ -222,7 +228,6 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
isPay: !userApiKey,
|
||||
modelName: model.service.modelName,
|
||||
userId,
|
||||
chatId,
|
||||
text: promptsContent + responseContent
|
||||
});
|
||||
} catch (err: any) {
|
||||
|
@@ -120,7 +120,6 @@ const Chat = ({ chatId }: { chatId: string }) => {
|
||||
const urlMap: Record<string, string> = {
|
||||
[ChatModelNameEnum.GPT35]: '/api/chat/chatGpt',
|
||||
[ChatModelNameEnum.VECTOR_GPT]: '/api/chat/vectorGpt',
|
||||
// [ChatModelNameEnum.VECTOR_GPT]: '/api/chat/lafGpt',
|
||||
[ChatModelNameEnum.GPT3]: '/api/chat/gpt3'
|
||||
};
|
||||
|
||||
|
@@ -15,7 +15,7 @@ export const pushChatBill = async ({
|
||||
isPay: boolean;
|
||||
modelName: string;
|
||||
userId: string;
|
||||
chatId: string;
|
||||
chatId?: string;
|
||||
text: string;
|
||||
}) => {
|
||||
let billId;
|
||||
|
20
src/service/models/openapi.ts
Normal file
20
src/service/models/openapi.ts
Normal file
@@ -0,0 +1,20 @@
|
||||
import { Schema, model, models, Model } from 'mongoose';
|
||||
import { OpenApiSchema } from '@/types/mongoSchema';
|
||||
|
||||
const OpenApiSchema = new Schema({
|
||||
userId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'user',
|
||||
required: true
|
||||
},
|
||||
createTime: {
|
||||
type: Date,
|
||||
default: () => new Date()
|
||||
},
|
||||
lastUsedTime: {
|
||||
type: Date,
|
||||
default: () => new Date()
|
||||
}
|
||||
});
|
||||
|
||||
export const OpenApi: Model<OpenApiSchema> = models['openapi'] || model('openapi', OpenApiSchema);
|
9
src/types/mongoSchema.d.ts
vendored
9
src/types/mongoSchema.d.ts
vendored
@@ -125,7 +125,7 @@ export interface DataSchema {
|
||||
_id: string;
|
||||
userId: string;
|
||||
name: string;
|
||||
createTime: string;
|
||||
createTime: Date;
|
||||
type: DataType;
|
||||
}
|
||||
|
||||
@@ -148,3 +148,10 @@ export interface DataItemSchema {
|
||||
export interface DataItemPopulate extends DataItemSchema {
|
||||
userId: UserModelSchema;
|
||||
}
|
||||
|
||||
export interface OpenApiSchema {
|
||||
_id: string;
|
||||
userId: string;
|
||||
createTime: Date;
|
||||
lastUsedTime: Date;
|
||||
}
|
||||
|
Reference in New Issue
Block a user