feat: lafgpt。openapi schema

This commit is contained in:
archer
2023-04-06 15:25:48 +08:00
parent 8a02b3b04a
commit f88c6031f5
6 changed files with 85 additions and 54 deletions

View File

@@ -105,8 +105,8 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
throw new Error('对不起,我没有找到你的问题');
}
// textArr 筛选,最多 3000 tokens
const systemPrompt = systemPromptFilter(formatRedisPrompt, 3400);
// textArr 筛选,最多 3200 tokens
const systemPrompt = systemPromptFilter(formatRedisPrompt, 3200);
prompts.unshift({
obj: 'SYSTEM',

View File

@@ -1,20 +1,18 @@
import type { NextApiRequest, NextApiResponse } from 'next';
import { createParser, ParsedEvent, ReconnectInterval } from 'eventsource-parser';
import { connectToDatabase } from '@/service/mongo';
import { getOpenAIApi, authChat } from '@/service/utils/chat';
import { connectToDatabase, Model } from '@/service/mongo';
import { getOpenAIApi } from '@/service/utils/chat';
import { authToken } from '@/service/utils/tools';
import { httpsAgent, openaiChatFilter, systemPromptFilter } from '@/service/utils/tools';
import { ChatCompletionRequestMessage, ChatCompletionRequestMessageRoleEnum } from 'openai';
import { ChatItemType } from '@/types/chat';
import { jsonRes } from '@/service/response';
import type { ModelSchema } from '@/types/mongoSchema';
import { PassThrough } from 'stream';
import { modelList } from '@/constants/model';
import { ChatModelNameEnum, modelList, ChatModelNameMap } from '@/constants/model';
import { pushChatBill } from '@/service/events/pushBill';
import { connectRedis } from '@/service/redis';
import { VecModelDataPrefix } from '@/constants/redis';
import { vectorToBuffer } from '@/utils/tools';
import { openaiCreateEmbedding } from '@/service/utils/openai';
import { gpt35StreamResponse } from '@/service/utils/openai';
import { openaiCreateEmbedding, getOpenApiKey, gpt35StreamResponse } from '@/service/utils/openai';
/* 发送提示词 */
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
@@ -33,13 +31,13 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
});
try {
const { chatId, prompt } = req.body as {
const { prompt, modelId } = req.body as {
prompt: ChatItemType;
chatId: string;
modelId: string;
};
const { authorization } = req.headers;
if (!chatId || !prompt) {
if (!prompt) {
throw new Error('缺少参数');
}
@@ -47,49 +45,57 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
const redis = await connectRedis();
let startTime = Date.now();
const { chat, userApiKey, systemKey, userId } = await authChat(chatId, authorization);
/* 凭证校验 */
const userId = await authToken(authorization);
const { userApiKey, systemKey } = await getOpenApiKey(userId);
const model: ModelSchema = chat.modelId;
const modelConstantsData = modelList.find((item) => item.model === model.service.modelName);
if (!modelConstantsData) {
throw new Error('模型加载异常');
/* 查找数据库里的模型信息 */
const model = await Model.findById(modelId);
if (!model) {
throw new Error('找不到模型');
}
const modelConstantsData = modelList.find(
(item) => item.model === ChatModelNameEnum.VECTOR_GPT
);
if (!modelConstantsData) {
throw new Error('模型已下架');
}
// 获取 chatAPI
const chatAPI = getOpenAIApi(userApiKey || systemKey);
// 请求一次 chatgpt 拆解需求
const promptResponse = await chatAPI.createChatCompletion(
{
model: model.service.chatModel,
model: ChatModelNameMap[ChatModelNameEnum.GPT35],
temperature: 0,
// max_tokens: modelConstantsData.maxToken,
messages: [
{
role: 'system',
content: `服务端逻辑生成器根据用户输入的需求拆解成代码实现的步骤并按格式返回 1.\n2.\n3.\n ......
下面是一些例子:
实现一个手机号注册账号的方法,包含两个函数
* 发送手机验证码函数:
1. 从 query 中获取 phone
2. 校验手机号格式是否正确,不正确返回{error: "手机号格式错误"}
3. 给 phone 发送一个短信验证码验证码长度为6位字符串内容为你正在注册laf, 验证码为code
4. 数据库添加数据,表为"codes",内容为 {phone, code}
* 注册函数
1. 从 body 中获取 phone 和 code
2. 校验手机号格式是否正确,不正确返回{error: "手机号格式错误"}
2. 获取数据库数据表为"codes",查找是否有符合 phone, code 等于body参数的记录没有的话返回 {error:"验证码不正确"}
4. 添加数据库数据,表为"users" ,内容为{phone, code, createTime}
5. 删除数据库数据,删除 code 记录
---------------
更新博客记录。传入blogIdblogTexttags,还需要记录更新的时间
1. 从 body 中获取 blogIdblogText 和 tags
2. 校验 blogId 是否为空为空则返回 {error: "博客ID不能为空"}
3. 校验 blogText 是否为空,为空则返回 {error: "博客内容不能为空"}
4. 校验 tags 是否为数组,不是则返回 {error: "标签必须为数组"}
5. 获取当前时间,记录为 updateTime
6. 更新数据库数据,表为"blogs",更新符合 blogId 的记录的内容为{blogText, tags, updateTime}
7. 返回结果 {message: "更新博客记录成功"}`
content: `服务端逻辑生成器.根据用户输入的需求,拆解成代码实现的步骤,并按格式返回: 1.\n2.\n3.\n ......
下面是一些例子:
实现一个手机号发生注册验证码方法.
1. 从 query 中获取 phone.
2. 校验手机号格式是否正确,不正确返回{error: "手机号格式错误"}.
3. 给 phone 发送一个短信验证码,验证码长度为6位字符串,内容为:你正在注册laf,验证码为:code.
4. 数据库添加数据,表为"codes",内容为 {phone, code}.
实现根据手机号注册账号,需要验证手机验证码.
1. 从 body 中获取 phone 和 code.
2. 校验手机号格式是否正确,不正确返回{error: "手机号格式错误"}.
2. 获取数据库数据,表为"codes",查找是否有符合 phone, code 等于body参数的记录,没有的话返回 {error:"验证码不正确"}.
4. 添加数据库数据,表为"users" ,内容为{phone, code, createTime}.
5. 删除数据库数据,删除 code 记录.
更新博客记录。传入blogId,blogText,tags,还需要记录更新的时间.
1. 从 body 中获取 blogId,blogTexttags.
2. 校验 blogId 是否为空,为空则返回 {error: "博客ID不能为空"}.
3. 校验 blogText 是否为空,为空则返回 {error: "博客内容不能为空"}.
4. 校验 tags 是否为数组,不是则返回 {error: "标签必须为数组"}.
5. 获取当前时间,记录为 updateTime.
6. 更新数据库数据,表为"blogs",更新符合 blogId 的记录的内容为{blogText, tags, updateTime}.
7. 返回结果 {message: "更新博客记录成功"}.`
},
{
role: 'user',
@@ -120,16 +126,15 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
});
// 读取对话内容
const prompts = [...chat.content, prompt];
const prompts = [prompt];
// 搜索系统提示词, 按相似度从 redis 中搜出相关的 q 和 text
const redisData: any[] = await redis.sendCommand([
'FT.SEARCH',
`idx:${VecModelDataPrefix}:hash`,
`@modelId:{${String(
chat.modelId._id
model._id
)}} @vector:[VECTOR_RANGE 0.25 $blob]=>{$YIELD_DISTANCE_AS: score}`,
// `@modelId:{${String(chat.modelId._id)}}=>[KNN 10 @vector $blob AS score]`,
'RETURN',
'1',
'text',
@@ -162,8 +167,8 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
throw new Error('对不起,我没有找到你的问题');
}
// textArr 筛选,最多 3000 tokens
const systemPrompt = systemPromptFilter(formatRedisPrompt, 3400);
// textArr 筛选,最多 3200 tokens
const systemPrompt = systemPromptFilter(formatRedisPrompt, 3200);
prompts.unshift({
obj: 'SYSTEM',
@@ -185,7 +190,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
content: item.value
})
);
console.log(formatPrompts);
// console.log(formatPrompts);
// 计算温度
const temperature = modelConstantsData.maxTemperature * (model.temperature / 10);
@@ -207,7 +212,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
}
);
console.log('api response time:', `${(Date.now() - startTime) / 1000}s`);
console.log('api response. time:', `${(Date.now() - startTime) / 1000}s`);
step = 1;
const { responseContent } = await gpt35StreamResponse({
@@ -215,6 +220,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
stream,
chatResponse
});
console.log('response done. time:', `${(Date.now() - startTime) / 1000}s`);
const promptsContent = formatPrompts.map((item) => item.content).join('');
// 只有使用平台的 key 才计费
@@ -222,7 +228,6 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
isPay: !userApiKey,
modelName: model.service.modelName,
userId,
chatId,
text: promptsContent + responseContent
});
} catch (err: any) {

View File

@@ -120,7 +120,6 @@ const Chat = ({ chatId }: { chatId: string }) => {
const urlMap: Record<string, string> = {
[ChatModelNameEnum.GPT35]: '/api/chat/chatGpt',
[ChatModelNameEnum.VECTOR_GPT]: '/api/chat/vectorGpt',
// [ChatModelNameEnum.VECTOR_GPT]: '/api/chat/lafGpt',
[ChatModelNameEnum.GPT3]: '/api/chat/gpt3'
};

View File

@@ -15,7 +15,7 @@ export const pushChatBill = async ({
isPay: boolean;
modelName: string;
userId: string;
chatId: string;
chatId?: string;
text: string;
}) => {
let billId;

View File

@@ -0,0 +1,20 @@
import { Schema, model, models, Model } from 'mongoose';
import { OpenApiSchema } from '@/types/mongoSchema';
const OpenApiSchema = new Schema({
userId: {
type: Schema.Types.ObjectId,
ref: 'user',
required: true
},
createTime: {
type: Date,
default: () => new Date()
},
lastUsedTime: {
type: Date,
default: () => new Date()
}
});
export const OpenApi: Model<OpenApiSchema> = models['openapi'] || model('openapi', OpenApiSchema);

View File

@@ -125,7 +125,7 @@ export interface DataSchema {
_id: string;
userId: string;
name: string;
createTime: string;
createTime: Date;
type: DataType;
}
@@ -148,3 +148,10 @@ export interface DataItemSchema {
export interface DataItemPopulate extends DataItemSchema {
userId: UserModelSchema;
}
export interface OpenApiSchema {
_id: string;
userId: string;
createTime: Date;
lastUsedTime: Date;
}