mirror of
https://github.com/labring/FastGPT.git
synced 2025-08-01 11:58:38 +00:00
perf: bill
This commit is contained in:
@@ -8,6 +8,8 @@ import { type ChatCompletionRequestMessage } from 'openai';
|
||||
import { AppModuleItemType } from '@/types/app';
|
||||
import { dispatchModules } from '../openapi/v1/chat/completions';
|
||||
import { gptMessage2ChatType } from '@/utils/adapt';
|
||||
import { createTaskBill, delTaskBill, finishTaskBill } from '@/service/events/pushBill';
|
||||
import { BillSourceEnum } from '@/constants/user';
|
||||
|
||||
export type MessageItemType = ChatCompletionRequestMessage & { _id?: string };
|
||||
export type Props = {
|
||||
@@ -15,10 +17,8 @@ export type Props = {
|
||||
prompt: string;
|
||||
modules: AppModuleItemType[];
|
||||
variables: Record<string, any>;
|
||||
};
|
||||
export type ChatResponseType = {
|
||||
newChatId: string;
|
||||
quoteLen?: number;
|
||||
appId: string;
|
||||
appName: string;
|
||||
};
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
|
||||
@@ -30,8 +30,8 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
res.end();
|
||||
});
|
||||
|
||||
let { modules = [], history = [], prompt, variables = {} } = req.body as Props;
|
||||
|
||||
let { modules = [], history = [], prompt, variables = {}, appName, appId } = req.body as Props;
|
||||
let billId = '';
|
||||
try {
|
||||
if (!history || !modules || !prompt) {
|
||||
throw new Error('Prams Error');
|
||||
@@ -45,6 +45,13 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
/* user auth */
|
||||
const { userId } = await authUser({ req });
|
||||
|
||||
billId = await createTaskBill({
|
||||
userId,
|
||||
appName,
|
||||
appId,
|
||||
source: BillSourceEnum.fastgpt
|
||||
});
|
||||
|
||||
/* start process */
|
||||
const { responseData } = await dispatchModules({
|
||||
res,
|
||||
@@ -54,7 +61,8 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
history: gptMessage2ChatType(history),
|
||||
userChatInput: prompt
|
||||
},
|
||||
stream: true
|
||||
stream: true,
|
||||
billId
|
||||
});
|
||||
|
||||
sseResponse({
|
||||
@@ -70,7 +78,11 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
res.end();
|
||||
|
||||
// bill
|
||||
finishTaskBill({
|
||||
billId
|
||||
});
|
||||
} catch (err: any) {
|
||||
delTaskBill(billId);
|
||||
res.status(500);
|
||||
sseErrRes(res, err);
|
||||
res.end();
|
||||
|
@@ -53,14 +53,6 @@ export async function saveChat({
|
||||
await connectToDatabase();
|
||||
const { app } = await authApp({ appId, userId, authOwner: false });
|
||||
|
||||
const content = prompts.map((item) => ({
|
||||
_id: item._id,
|
||||
obj: item.obj,
|
||||
value: item.value,
|
||||
systemPrompt: item.systemPrompt || '',
|
||||
quote: item.quote || []
|
||||
}));
|
||||
|
||||
if (String(app.userId) === userId) {
|
||||
await App.findByIdAndUpdate(appId, {
|
||||
updateTime: new Date()
|
||||
@@ -73,12 +65,11 @@ export async function saveChat({
|
||||
Chat.findByIdAndUpdate(historyId, {
|
||||
$push: {
|
||||
content: {
|
||||
$each: content
|
||||
$each: prompts
|
||||
}
|
||||
},
|
||||
variables,
|
||||
title: content[0].value.slice(0, 20),
|
||||
latestChat: content[1].value,
|
||||
title: prompts[0].value.slice(0, 20),
|
||||
updateTime: new Date()
|
||||
}).then(() => ({
|
||||
newHistoryId: ''
|
||||
@@ -90,9 +81,8 @@ export async function saveChat({
|
||||
userId,
|
||||
appId,
|
||||
variables,
|
||||
content,
|
||||
title: content[0].value.slice(0, 20),
|
||||
latestChat: content[1].value
|
||||
content: prompts,
|
||||
title: prompts[0].value.slice(0, 20)
|
||||
}).then((res) => ({
|
||||
newHistoryId: String(res._id)
|
||||
}))
|
||||
|
@@ -1,186 +0,0 @@
|
||||
import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { authUser } from '@/service/utils/auth';
|
||||
import { PgClient } from '@/service/pg';
|
||||
import { withNextCors } from '@/service/utils/tools';
|
||||
import type { ChatItemType } from '@/types/chat';
|
||||
import type { AppSchema } from '@/types/mongoSchema';
|
||||
import { authApp } from '@/service/utils/auth';
|
||||
import { ChatModelMap } from '@/constants/model';
|
||||
import { ChatRoleEnum } from '@/constants/chat';
|
||||
import { openaiEmbedding } from '../plugin/openaiEmbedding';
|
||||
import { modelToolMap } from '@/utils/plugin';
|
||||
|
||||
export type QuoteItemType = {
|
||||
id: string;
|
||||
q: string;
|
||||
a: string;
|
||||
source?: string;
|
||||
};
|
||||
type Props = {
|
||||
prompts: ChatItemType[];
|
||||
similarity: number;
|
||||
limit: number;
|
||||
appId: string;
|
||||
};
|
||||
type Response = {
|
||||
rawSearch: QuoteItemType[];
|
||||
userSystemPrompt: {
|
||||
obj: ChatRoleEnum;
|
||||
value: string;
|
||||
}[];
|
||||
userLimitPrompt: {
|
||||
obj: ChatRoleEnum;
|
||||
value: string;
|
||||
}[];
|
||||
quotePrompt: {
|
||||
obj: ChatRoleEnum;
|
||||
value: string;
|
||||
};
|
||||
};
|
||||
|
||||
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
try {
|
||||
const { userId } = await authUser({ req });
|
||||
|
||||
if (!userId) {
|
||||
throw new Error('userId is empty');
|
||||
}
|
||||
|
||||
const { prompts, similarity, limit, appId } = req.body as Props;
|
||||
|
||||
if (!similarity || !Array.isArray(prompts) || !appId) {
|
||||
throw new Error('params is error');
|
||||
}
|
||||
|
||||
// auth app
|
||||
const { app } = await authApp({
|
||||
appId,
|
||||
userId
|
||||
});
|
||||
|
||||
const result = await appKbSearch({
|
||||
app,
|
||||
userId,
|
||||
fixedQuote: [],
|
||||
prompt: prompts[prompts.length - 1],
|
||||
similarity,
|
||||
limit
|
||||
});
|
||||
|
||||
jsonRes<Response>(res, {
|
||||
data: result
|
||||
});
|
||||
} catch (err) {
|
||||
console.log(err);
|
||||
jsonRes(res, {
|
||||
code: 500,
|
||||
error: err
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
export async function appKbSearch({
|
||||
app,
|
||||
userId,
|
||||
fixedQuote = [],
|
||||
prompt,
|
||||
similarity = 0.8,
|
||||
limit = 5
|
||||
}: {
|
||||
app: AppSchema;
|
||||
userId: string;
|
||||
fixedQuote?: QuoteItemType[];
|
||||
prompt: ChatItemType;
|
||||
similarity: number;
|
||||
limit: number;
|
||||
}): Promise<Response> {
|
||||
const modelConstantsData = ChatModelMap[app.chat.chatModel];
|
||||
|
||||
// get vector
|
||||
const promptVector = await openaiEmbedding({
|
||||
userId,
|
||||
input: [prompt.value]
|
||||
});
|
||||
|
||||
// search kb
|
||||
const res: any = await PgClient.query(
|
||||
`BEGIN;
|
||||
SET LOCAL ivfflat.probes = ${global.systemEnv.pgIvfflatProbe || 10};
|
||||
select id,q,a,source from modelData where kb_id IN (${app.chat.relatedKbs
|
||||
.map((item) => `'${item}'`)
|
||||
.join(',')}) AND vector <#> '[${promptVector[0]}]' < -${similarity} order by vector <#> '[${
|
||||
promptVector[0]
|
||||
}]' limit ${limit};
|
||||
COMMIT;`
|
||||
);
|
||||
|
||||
const searchRes: QuoteItemType[] = res?.[2]?.rows || [];
|
||||
|
||||
// filter same search result
|
||||
const idSet = new Set<string>();
|
||||
const filterSearch = [
|
||||
...searchRes.slice(0, 3),
|
||||
...fixedQuote.slice(0, 2),
|
||||
...searchRes.slice(3),
|
||||
...fixedQuote.slice(2, Math.floor(fixedQuote.length * 0.4))
|
||||
].filter((item) => {
|
||||
if (idSet.has(item.id)) {
|
||||
return false;
|
||||
}
|
||||
idSet.add(item.id);
|
||||
return true;
|
||||
});
|
||||
|
||||
// 计算固定提示词的 token 数量
|
||||
const userSystemPrompt = app.chat.systemPrompt // user system prompt
|
||||
? [
|
||||
{
|
||||
obj: ChatRoleEnum.System,
|
||||
value: app.chat.systemPrompt
|
||||
}
|
||||
]
|
||||
: [];
|
||||
const userLimitPrompt = [
|
||||
{
|
||||
obj: ChatRoleEnum.Human,
|
||||
value: app.chat.limitPrompt
|
||||
? app.chat.limitPrompt
|
||||
: `知识库是关于 ${app.name} 的内容,参考知识库回答问题。与 "${app.name}" 无关内容,直接回复: "我不知道"。`
|
||||
}
|
||||
];
|
||||
|
||||
const fixedSystemTokens = modelToolMap.countTokens({
|
||||
model: app.chat.chatModel,
|
||||
messages: [...userSystemPrompt, ...userLimitPrompt]
|
||||
});
|
||||
|
||||
// filter part quote by maxToken
|
||||
const sliceResult = modelToolMap
|
||||
.tokenSlice({
|
||||
model: app.chat.chatModel,
|
||||
maxToken: modelConstantsData.systemMaxToken - fixedSystemTokens,
|
||||
messages: filterSearch.map((item, i) => ({
|
||||
obj: ChatRoleEnum.System,
|
||||
value: `${i + 1}: [${item.q}\n${item.a}]`
|
||||
}))
|
||||
})
|
||||
.map((item) => item.value)
|
||||
.join('\n')
|
||||
.trim();
|
||||
|
||||
// slice filterSearch
|
||||
const rawSearch = filterSearch.slice(0, sliceResult.length);
|
||||
|
||||
const quoteText = sliceResult ? `知识库:\n${sliceResult}` : '';
|
||||
|
||||
return {
|
||||
rawSearch,
|
||||
userSystemPrompt,
|
||||
userLimitPrompt,
|
||||
quotePrompt: {
|
||||
obj: ChatRoleEnum.System,
|
||||
value: quoteText
|
||||
}
|
||||
};
|
||||
}
|
@@ -15,6 +15,7 @@ type DateItemType = { a: string; q: string; source?: string };
|
||||
export type Props = {
|
||||
kbId: string;
|
||||
data: DateItemType[];
|
||||
model: string;
|
||||
mode: `${TrainingModeEnum}`;
|
||||
prompt?: string;
|
||||
};
|
||||
@@ -25,14 +26,14 @@ export type Response = {
|
||||
|
||||
const modeMaxToken = {
|
||||
[TrainingModeEnum.index]: 6000,
|
||||
[TrainingModeEnum.qa]: 10000
|
||||
[TrainingModeEnum.qa]: 12000
|
||||
};
|
||||
|
||||
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
try {
|
||||
const { kbId, data, mode, prompt } = req.body as Props;
|
||||
const { kbId, data, mode, prompt, model } = req.body as Props;
|
||||
|
||||
if (!kbId || !Array.isArray(data)) {
|
||||
if (!kbId || !Array.isArray(data) || !model) {
|
||||
throw new Error('缺少参数');
|
||||
}
|
||||
await connectToDatabase();
|
||||
@@ -46,7 +47,8 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
|
||||
data,
|
||||
userId,
|
||||
mode,
|
||||
prompt
|
||||
prompt,
|
||||
model
|
||||
})
|
||||
});
|
||||
} catch (err) {
|
||||
@@ -62,7 +64,8 @@ export async function pushDataToKb({
|
||||
kbId,
|
||||
data,
|
||||
mode,
|
||||
prompt
|
||||
prompt,
|
||||
model
|
||||
}: { userId: string } & Props): Promise<Response> {
|
||||
await authKb({
|
||||
userId,
|
||||
@@ -79,7 +82,7 @@ export async function pushDataToKb({
|
||||
if (mode === TrainingModeEnum.qa) {
|
||||
// count token
|
||||
const token = modelToolMap.countTokens({
|
||||
model: OpenAiChatEnum.GPT3516k,
|
||||
model: 'gpt-3.5-turbo-16k',
|
||||
messages: [{ obj: 'System', value: item.q }]
|
||||
});
|
||||
if (token > modeMaxToken[TrainingModeEnum.qa]) {
|
||||
@@ -144,6 +147,7 @@ export async function pushDataToKb({
|
||||
insertData.map((item) => ({
|
||||
q: item.q,
|
||||
a: item.a,
|
||||
model,
|
||||
source: item.source,
|
||||
userId,
|
||||
kbId,
|
||||
|
@@ -3,7 +3,7 @@ import { jsonRes } from '@/service/response';
|
||||
import { authUser } from '@/service/utils/auth';
|
||||
import { PgClient } from '@/service/pg';
|
||||
import { withNextCors } from '@/service/utils/tools';
|
||||
import { openaiEmbedding } from '../plugin/openaiEmbedding';
|
||||
import { getVector } from '../plugin/vector';
|
||||
import type { KbTestItemType } from '@/types/plugin';
|
||||
|
||||
export type Props = {
|
||||
@@ -27,7 +27,7 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
|
||||
throw new Error('缺少用户ID');
|
||||
}
|
||||
|
||||
const vector = await openaiEmbedding({
|
||||
const vector = await getVector({
|
||||
userId,
|
||||
input: [text]
|
||||
});
|
||||
|
@@ -3,7 +3,7 @@ import { jsonRes } from '@/service/response';
|
||||
import { authUser } from '@/service/utils/auth';
|
||||
import { PgClient } from '@/service/pg';
|
||||
import { withNextCors } from '@/service/utils/tools';
|
||||
import { openaiEmbedding } from '../plugin/openaiEmbedding';
|
||||
import { getVector } from '../plugin/vector';
|
||||
|
||||
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
try {
|
||||
@@ -19,7 +19,7 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
|
||||
// get vector
|
||||
const vector = await (async () => {
|
||||
if (q) {
|
||||
return openaiEmbedding({
|
||||
return getVector({
|
||||
userId,
|
||||
input: [q]
|
||||
});
|
||||
|
@@ -6,12 +6,12 @@ import { ChatContextFilter } from '@/service/utils/chat/index';
|
||||
import type { ChatItemType } from '@/types/chat';
|
||||
import { ChatRoleEnum } from '@/constants/chat';
|
||||
import { getOpenAIApi, axiosConfig } from '@/service/ai/openai';
|
||||
import type { ClassifyQuestionAgentItemType } from '@/types/app';
|
||||
import type { RecognizeIntentionAgentItemType } from '@/types/app';
|
||||
|
||||
export type Props = {
|
||||
history?: ChatItemType[];
|
||||
userChatInput: string;
|
||||
agents: ClassifyQuestionAgentItemType[];
|
||||
agents: RecognizeIntentionAgentItemType[];
|
||||
description: string;
|
||||
};
|
||||
export type Response = { history: ChatItemType[] };
|
||||
|
@@ -6,29 +6,30 @@ import { ChatContextFilter } from '@/service/utils/chat/index';
|
||||
import type { ChatItemType } from '@/types/chat';
|
||||
import { ChatRoleEnum } from '@/constants/chat';
|
||||
import { getOpenAIApi, axiosConfig } from '@/service/ai/openai';
|
||||
import type { ClassifyQuestionAgentItemType } from '@/types/app';
|
||||
import type { RecognizeIntentionAgentItemType } from '@/types/app';
|
||||
import { countModelPrice, pushTaskBillListItem } from '@/service/events/pushBill';
|
||||
|
||||
export type Props = {
|
||||
systemPrompt?: string;
|
||||
history?: ChatItemType[];
|
||||
userChatInput: string;
|
||||
agents: ClassifyQuestionAgentItemType[];
|
||||
agents: RecognizeIntentionAgentItemType[];
|
||||
billId?: string;
|
||||
};
|
||||
export type Response = { history: ChatItemType[] };
|
||||
|
||||
const agentModel = 'gpt-3.5-turbo-16k';
|
||||
const agentModel = 'gpt-3.5-turbo';
|
||||
const agentFunName = 'agent_user_question';
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
|
||||
try {
|
||||
let { systemPrompt, agents, history = [], userChatInput } = req.body as Props;
|
||||
let { userChatInput } = req.body as Props;
|
||||
|
||||
const response = await classifyQuestion({
|
||||
systemPrompt,
|
||||
history,
|
||||
userChatInput,
|
||||
agents
|
||||
});
|
||||
if (!userChatInput) {
|
||||
throw new Error('userChatInput is empty');
|
||||
}
|
||||
|
||||
const response = await classifyQuestion(req.body);
|
||||
|
||||
jsonRes(res, {
|
||||
data: response
|
||||
@@ -46,7 +47,8 @@ export async function classifyQuestion({
|
||||
agents,
|
||||
systemPrompt,
|
||||
history = [],
|
||||
userChatInput
|
||||
userChatInput,
|
||||
billId
|
||||
}: Props) {
|
||||
const messages: ChatItemType[] = [
|
||||
...(systemPrompt
|
||||
@@ -106,8 +108,19 @@ export async function classifyQuestion({
|
||||
if (!arg.type) {
|
||||
throw new Error('');
|
||||
}
|
||||
|
||||
const totalTokens = response.data.usage?.total_tokens || 0;
|
||||
|
||||
await pushTaskBillListItem({
|
||||
billId,
|
||||
moduleName: 'Recognize Intention',
|
||||
amount: countModelPrice({ model: agentModel, tokens: totalTokens }),
|
||||
model: agentModel,
|
||||
tokenLen: totalTokens
|
||||
});
|
||||
|
||||
console.log(
|
||||
'意图结果',
|
||||
'CQ',
|
||||
agents.findIndex((item) => item.key === arg.type)
|
||||
);
|
||||
|
@@ -1,9 +1,9 @@
|
||||
// Next.js API route support: https://nextjs.org/docs/api-routes/introduction
|
||||
import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { jsonRes, sseErrRes } from '@/service/response';
|
||||
import { sseResponse } from '@/service/utils/tools';
|
||||
import { ChatModelMap, OpenAiChatEnum } from '@/constants/model';
|
||||
import { adaptChatItem_openAI } from '@/utils/plugin/openai';
|
||||
import { OpenAiChatEnum } from '@/constants/model';
|
||||
import { adaptChatItem_openAI, countOpenAIToken } from '@/utils/plugin/openai';
|
||||
import { modelToolMap } from '@/utils/plugin';
|
||||
import { ChatContextFilter } from '@/service/utils/chat/index';
|
||||
import type { ChatItemType } from '@/types/chat';
|
||||
@@ -11,6 +11,8 @@ import { ChatRoleEnum, sseResponseEventEnum } from '@/constants/chat';
|
||||
import { parseStreamChunk, textAdaptGptResponse } from '@/utils/adapt';
|
||||
import { getOpenAIApi, axiosConfig } from '@/service/ai/openai';
|
||||
import { SpecificInputEnum } from '@/constants/app';
|
||||
import { getChatModel } from '@/service/utils/data';
|
||||
import { countModelPrice, pushTaskBillListItem } from '@/service/events/pushBill';
|
||||
|
||||
export type Props = {
|
||||
model: `${OpenAiChatEnum}`;
|
||||
@@ -22,39 +24,28 @@ export type Props = {
|
||||
quotePrompt?: string;
|
||||
systemPrompt?: string;
|
||||
limitPrompt?: string;
|
||||
billId?: string;
|
||||
};
|
||||
export type Response = { [SpecificInputEnum.answerText]: string };
|
||||
export type Response = { [SpecificInputEnum.answerText]: string; totalTokens: number };
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
|
||||
let { model, temperature = 0, stream } = req.body as Props;
|
||||
try {
|
||||
let {
|
||||
model,
|
||||
stream = false,
|
||||
temperature = 0,
|
||||
maxToken = 4000,
|
||||
history = [],
|
||||
quotePrompt,
|
||||
userChatInput,
|
||||
systemPrompt,
|
||||
limitPrompt
|
||||
} = req.body as Props;
|
||||
|
||||
// temperature adapt
|
||||
const modelConstantsData = ChatModelMap[model];
|
||||
const modelConstantsData = getChatModel(model);
|
||||
|
||||
if (!modelConstantsData) {
|
||||
throw new Error('The chat model is undefined');
|
||||
}
|
||||
|
||||
// FastGpt temperature range: 1~10
|
||||
temperature = +(modelConstantsData.maxTemperature * (temperature / 10)).toFixed(2);
|
||||
|
||||
const response = await chatCompletion({
|
||||
...req.body,
|
||||
res,
|
||||
model,
|
||||
temperature,
|
||||
maxToken,
|
||||
stream,
|
||||
history,
|
||||
userChatInput,
|
||||
systemPrompt,
|
||||
limitPrompt,
|
||||
quotePrompt
|
||||
temperature
|
||||
});
|
||||
|
||||
if (stream) {
|
||||
@@ -70,25 +61,32 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
});
|
||||
}
|
||||
} catch (err) {
|
||||
jsonRes(res, {
|
||||
code: 500,
|
||||
error: err
|
||||
});
|
||||
if (stream) {
|
||||
res.status(500);
|
||||
sseErrRes(res, err);
|
||||
res.end();
|
||||
} else {
|
||||
jsonRes(res, {
|
||||
code: 500,
|
||||
error: err
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* request openai chat */
|
||||
export async function chatCompletion({
|
||||
res,
|
||||
model = OpenAiChatEnum.GPT35,
|
||||
temperature,
|
||||
model,
|
||||
temperature = 0,
|
||||
maxToken = 4000,
|
||||
stream,
|
||||
stream = false,
|
||||
history = [],
|
||||
quotePrompt,
|
||||
quotePrompt = '',
|
||||
userChatInput,
|
||||
systemPrompt,
|
||||
limitPrompt
|
||||
systemPrompt = '',
|
||||
limitPrompt = '',
|
||||
billId
|
||||
}: Props & { res: NextApiResponse }): Promise<Response> {
|
||||
const messages: ChatItemType[] = [
|
||||
...(quotePrompt
|
||||
@@ -121,7 +119,7 @@ export async function chatCompletion({
|
||||
value: userChatInput
|
||||
}
|
||||
];
|
||||
const modelTokenLimit = ChatModelMap[model]?.contextMaxToken || 4000;
|
||||
const modelTokenLimit = getChatModel(model)?.contextMaxToken || 4000;
|
||||
|
||||
const filterMessages = ChatContextFilter({
|
||||
model,
|
||||
@@ -157,37 +155,47 @@ export async function chatCompletion({
|
||||
}
|
||||
);
|
||||
|
||||
const { answer } = await (async () => {
|
||||
const { answer, totalTokens } = await (async () => {
|
||||
if (stream) {
|
||||
// sse response
|
||||
const { answer } = await streamResponse({ res, response });
|
||||
// count tokens
|
||||
// const finishMessages = filterMessages.concat({
|
||||
// obj: ChatRoleEnum.AI,
|
||||
// value: answer
|
||||
// });
|
||||
const finishMessages = filterMessages.concat({
|
||||
obj: ChatRoleEnum.AI,
|
||||
value: answer
|
||||
});
|
||||
|
||||
// const totalTokens = modelToolMap[model].countTokens({
|
||||
// messages: finishMessages
|
||||
// });
|
||||
const totalTokens = countOpenAIToken({
|
||||
messages: finishMessages,
|
||||
model: 'gpt-3.5-turbo-16k'
|
||||
});
|
||||
|
||||
return {
|
||||
answer
|
||||
// totalTokens
|
||||
answer,
|
||||
totalTokens
|
||||
};
|
||||
} else {
|
||||
const answer = stream ? '' : response.data.choices?.[0].message?.content || '';
|
||||
// const totalTokens = stream ? 0 : response.data.usage?.total_tokens || 0;
|
||||
const totalTokens = stream ? 0 : response.data.usage?.total_tokens || 0;
|
||||
|
||||
return {
|
||||
answer
|
||||
// totalTokens
|
||||
answer,
|
||||
totalTokens
|
||||
};
|
||||
}
|
||||
})();
|
||||
|
||||
await pushTaskBillListItem({
|
||||
billId,
|
||||
moduleName: 'AI Chat',
|
||||
amount: countModelPrice({ model, tokens: totalTokens }),
|
||||
model,
|
||||
tokenLen: totalTokens
|
||||
});
|
||||
|
||||
return {
|
||||
answerText: answer
|
||||
answerText: answer,
|
||||
totalTokens
|
||||
};
|
||||
}
|
||||
|
||||
|
@@ -4,8 +4,9 @@ import { PgClient } from '@/service/pg';
|
||||
import { withNextCors } from '@/service/utils/tools';
|
||||
import type { ChatItemType } from '@/types/chat';
|
||||
import { ChatRoleEnum } from '@/constants/chat';
|
||||
import { openaiEmbedding_system } from '../../plugin/openaiEmbedding';
|
||||
import { modelToolMap } from '@/utils/plugin';
|
||||
import { getVector } from '../../plugin/vector';
|
||||
import { countModelPrice, pushTaskBillListItem } from '@/service/events/pushBill';
|
||||
|
||||
export type QuoteItemType = {
|
||||
id: string;
|
||||
@@ -21,6 +22,7 @@ type Props = {
|
||||
maxToken: number;
|
||||
userChatInput: string;
|
||||
stream?: boolean;
|
||||
billId?: string;
|
||||
};
|
||||
type Response = {
|
||||
rawSearch: QuoteItemType[];
|
||||
@@ -30,25 +32,15 @@ type Response = {
|
||||
|
||||
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
try {
|
||||
const {
|
||||
kb_ids = [],
|
||||
history = [],
|
||||
similarity,
|
||||
limit,
|
||||
maxToken,
|
||||
userChatInput
|
||||
} = req.body as Props;
|
||||
const { kb_ids = [], userChatInput } = req.body as Props;
|
||||
|
||||
if (!similarity || !Array.isArray(kb_ids)) {
|
||||
if (!userChatInput || !Array.isArray(kb_ids)) {
|
||||
throw new Error('params is error');
|
||||
}
|
||||
|
||||
const result = await kbSearch({
|
||||
...req.body,
|
||||
kb_ids,
|
||||
history,
|
||||
similarity,
|
||||
limit,
|
||||
maxToken,
|
||||
userChatInput
|
||||
});
|
||||
|
||||
@@ -70,7 +62,8 @@ export async function kbSearch({
|
||||
similarity = 0.8,
|
||||
limit = 5,
|
||||
maxToken = 2500,
|
||||
userChatInput
|
||||
userChatInput,
|
||||
billId
|
||||
}: Props): Promise<Response> {
|
||||
if (kb_ids.length === 0)
|
||||
return {
|
||||
@@ -78,22 +71,34 @@ export async function kbSearch({
|
||||
rawSearch: [],
|
||||
quotePrompt: undefined
|
||||
};
|
||||
|
||||
// get vector
|
||||
const promptVector = await openaiEmbedding_system({
|
||||
const vectorModel = global.vectorModels[0].model;
|
||||
const { vectors, tokenLen } = await getVector({
|
||||
model: vectorModel,
|
||||
input: [userChatInput]
|
||||
});
|
||||
|
||||
// search kb
|
||||
const res: any = await PgClient.query(
|
||||
`BEGIN;
|
||||
const [res]: any = await Promise.all([
|
||||
PgClient.query(
|
||||
`BEGIN;
|
||||
SET LOCAL ivfflat.probes = ${global.systemEnv.pgIvfflatProbe || 10};
|
||||
select id,q,a,source from modelData where kb_id IN (${kb_ids
|
||||
.map((item) => `'${item}'`)
|
||||
.join(',')}) AND vector <#> '[${promptVector[0]}]' < -${similarity} order by vector <#> '[${
|
||||
promptVector[0]
|
||||
}]' limit ${limit};
|
||||
.join(',')}) AND vector <#> '[${vectors[0]}]' < -${similarity} order by vector <#> '[${
|
||||
vectors[0]
|
||||
}]' limit ${limit};
|
||||
COMMIT;`
|
||||
);
|
||||
),
|
||||
pushTaskBillListItem({
|
||||
billId,
|
||||
moduleName: 'Vector Generate',
|
||||
amount: countModelPrice({ model: vectorModel, tokens: tokenLen }),
|
||||
model: vectorModel,
|
||||
tokenLen
|
||||
})
|
||||
]);
|
||||
|
||||
const searchRes: QuoteItemType[] = res?.[2]?.rows || [];
|
||||
|
||||
|
@@ -1,115 +0,0 @@
|
||||
import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { authUser, getApiKey, getSystemOpenAiKey } from '@/service/utils/auth';
|
||||
import { withNextCors } from '@/service/utils/tools';
|
||||
import { getOpenAIApi } from '@/service/utils/chat/openai';
|
||||
import { embeddingModel } from '@/constants/model';
|
||||
import { axiosConfig } from '@/service/utils/tools';
|
||||
import { pushGenerateVectorBill } from '@/service/events/pushBill';
|
||||
import { OpenAiChatEnum } from '@/constants/model';
|
||||
|
||||
type Props = {
|
||||
input: string[];
|
||||
};
|
||||
type Response = number[][];
|
||||
|
||||
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
try {
|
||||
const { userId } = await authUser({ req });
|
||||
let { input } = req.query as Props;
|
||||
|
||||
if (!Array.isArray(input)) {
|
||||
throw new Error('缺少参数');
|
||||
}
|
||||
|
||||
jsonRes<Response>(res, {
|
||||
data: await openaiEmbedding({ userId, input, mustPay: true })
|
||||
});
|
||||
} catch (err) {
|
||||
console.log(err);
|
||||
jsonRes(res, {
|
||||
code: 500,
|
||||
error: err
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
export async function openaiEmbedding({
|
||||
userId,
|
||||
input,
|
||||
mustPay = false
|
||||
}: { userId: string; mustPay?: boolean } & Props) {
|
||||
const { userOpenAiKey, systemAuthKey } = await getApiKey({
|
||||
model: 'gpt-3.5-turbo',
|
||||
userId,
|
||||
mustPay
|
||||
});
|
||||
const apiKey = userOpenAiKey || systemAuthKey;
|
||||
|
||||
// 获取 chatAPI
|
||||
const chatAPI = getOpenAIApi(apiKey);
|
||||
|
||||
// 把输入的内容转成向量
|
||||
const result = await chatAPI
|
||||
.createEmbedding(
|
||||
{
|
||||
model: embeddingModel,
|
||||
input
|
||||
},
|
||||
{
|
||||
timeout: 60000,
|
||||
...axiosConfig(apiKey)
|
||||
}
|
||||
)
|
||||
.then((res) => {
|
||||
if (!res.data?.usage?.total_tokens) {
|
||||
// @ts-ignore
|
||||
return Promise.reject(res.data?.error?.message || 'Embedding Error');
|
||||
}
|
||||
return {
|
||||
tokenLen: res.data.usage.total_tokens || 0,
|
||||
vectors: res.data.data.map((item) => item.embedding)
|
||||
};
|
||||
});
|
||||
|
||||
pushGenerateVectorBill({
|
||||
isPay: !userOpenAiKey,
|
||||
userId,
|
||||
text: input.join(''),
|
||||
tokenLen: result.tokenLen
|
||||
});
|
||||
|
||||
return result.vectors;
|
||||
}
|
||||
|
||||
export async function openaiEmbedding_system({ input }: Props) {
|
||||
const apiKey = getSystemOpenAiKey();
|
||||
|
||||
// 获取 chatAPI
|
||||
const chatAPI = getOpenAIApi(apiKey);
|
||||
|
||||
// 把输入的内容转成向量
|
||||
const result = await chatAPI
|
||||
.createEmbedding(
|
||||
{
|
||||
model: embeddingModel,
|
||||
input
|
||||
},
|
||||
{
|
||||
timeout: 20000,
|
||||
...axiosConfig(apiKey)
|
||||
}
|
||||
)
|
||||
.then((res) => {
|
||||
if (!res.data?.usage?.total_tokens) {
|
||||
// @ts-ignore
|
||||
return Promise.reject(res.data?.error?.message || 'Embedding Error');
|
||||
}
|
||||
return {
|
||||
tokenLen: res.data.usage.total_tokens || 0,
|
||||
vectors: res.data.data.map((item) => item.embedding)
|
||||
};
|
||||
});
|
||||
|
||||
return result.vectors;
|
||||
}
|
79
client/src/pages/api/openapi/plugin/vector.ts
Normal file
79
client/src/pages/api/openapi/plugin/vector.ts
Normal file
@@ -0,0 +1,79 @@
|
||||
import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { authBalanceByUid, authUser } from '@/service/utils/auth';
|
||||
import { withNextCors } from '@/service/utils/tools';
|
||||
import { getOpenAIApi, axiosConfig } from '@/service/ai/openai';
|
||||
import { pushGenerateVectorBill } from '@/service/events/pushBill';
|
||||
|
||||
type Props = {
|
||||
model: string;
|
||||
input: string[];
|
||||
};
|
||||
type Response = {
|
||||
tokenLen: number;
|
||||
vectors: number[][];
|
||||
};
|
||||
|
||||
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
try {
|
||||
const { userId } = await authUser({ req });
|
||||
let { input, model } = req.query as Props;
|
||||
|
||||
if (!Array.isArray(input)) {
|
||||
throw new Error('缺少参数');
|
||||
}
|
||||
|
||||
jsonRes<Response>(res, {
|
||||
data: await getVector({ userId, input, model })
|
||||
});
|
||||
} catch (err) {
|
||||
console.log(err);
|
||||
jsonRes(res, {
|
||||
code: 500,
|
||||
error: err
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
export async function getVector({
|
||||
model = 'text-embedding-ada-002',
|
||||
userId,
|
||||
input
|
||||
}: { userId?: string } & Props) {
|
||||
userId && (await authBalanceByUid(userId));
|
||||
|
||||
// 获取 chatAPI
|
||||
const chatAPI = getOpenAIApi();
|
||||
|
||||
// 把输入的内容转成向量
|
||||
const result = await chatAPI
|
||||
.createEmbedding(
|
||||
{
|
||||
model,
|
||||
input
|
||||
},
|
||||
{
|
||||
timeout: 60000,
|
||||
...axiosConfig()
|
||||
}
|
||||
)
|
||||
.then((res) => {
|
||||
if (!res.data?.usage?.total_tokens) {
|
||||
// @ts-ignore
|
||||
return Promise.reject(res.data?.error?.message || 'Embedding Error');
|
||||
}
|
||||
return {
|
||||
tokenLen: res.data.usage.total_tokens || 0,
|
||||
vectors: res.data.data.map((item) => item.embedding)
|
||||
};
|
||||
});
|
||||
|
||||
userId &&
|
||||
pushGenerateVectorBill({
|
||||
userId,
|
||||
tokenLen: result.tokenLen,
|
||||
model
|
||||
});
|
||||
|
||||
return result;
|
||||
}
|
@@ -15,8 +15,8 @@ import { Types } from 'mongoose';
|
||||
import { moduleFetch } from '@/service/api/request';
|
||||
import { AppModuleItemType, RunningModuleItemType } from '@/types/app';
|
||||
import { FlowInputItemTypeEnum } from '@/constants/flow';
|
||||
import { pushChatBill } from '@/service/events/pushBill';
|
||||
import { BillTypeEnum } from '@/constants/user';
|
||||
import { finishTaskBill, createTaskBill } from '@/service/events/pushBill';
|
||||
import { BillSourceEnum } from '@/constants/user';
|
||||
|
||||
export type MessageItemType = ChatCompletionRequestMessage & { _id?: string };
|
||||
type FastGptWebChatProps = {
|
||||
@@ -108,6 +108,13 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
|
||||
res.setHeader('newHistoryId', String(newHistoryId));
|
||||
}
|
||||
|
||||
const billId = await createTaskBill({
|
||||
userId,
|
||||
appName: app.name,
|
||||
appId,
|
||||
source: BillSourceEnum.fastgpt
|
||||
});
|
||||
|
||||
/* start process */
|
||||
const { responseData, answerText } = await dispatchModules({
|
||||
res,
|
||||
@@ -117,7 +124,8 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
|
||||
history: prompts,
|
||||
userChatInput: prompt.value
|
||||
},
|
||||
stream
|
||||
stream,
|
||||
billId: ''
|
||||
});
|
||||
|
||||
// save chat
|
||||
@@ -171,14 +179,9 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
|
||||
});
|
||||
}
|
||||
|
||||
pushChatBill({
|
||||
isPay: true,
|
||||
chatModel: 'gpt-3.5-turbo',
|
||||
userId,
|
||||
appId,
|
||||
textLen: 1,
|
||||
tokens: 100,
|
||||
type: BillTypeEnum.chat
|
||||
// bill
|
||||
finishTaskBill({
|
||||
billId
|
||||
});
|
||||
} catch (err: any) {
|
||||
if (stream) {
|
||||
@@ -199,18 +202,21 @@ export async function dispatchModules({
|
||||
modules,
|
||||
params = {},
|
||||
variables = {},
|
||||
stream = false
|
||||
stream = false,
|
||||
billId
|
||||
}: {
|
||||
res: NextApiResponse;
|
||||
modules: AppModuleItemType[];
|
||||
params?: Record<string, any>;
|
||||
variables?: Record<string, any>;
|
||||
billId: string;
|
||||
stream?: boolean;
|
||||
}) {
|
||||
const runningModules = loadModules(modules, variables);
|
||||
let storeData: Record<string, any> = {};
|
||||
let responseData: Record<string, any> = {};
|
||||
let answerText = '';
|
||||
|
||||
let storeData: Record<string, any> = {}; // after module used
|
||||
let responseData: Record<string, any> = {}; // response request and save to database
|
||||
let answerText = ''; // AI answer
|
||||
|
||||
function pushStore({
|
||||
isResponse = false,
|
||||
@@ -327,6 +333,7 @@ export async function dispatchModules({
|
||||
});
|
||||
const data = {
|
||||
stream,
|
||||
billId,
|
||||
...params
|
||||
};
|
||||
|
||||
|
@@ -1,19 +1,114 @@
|
||||
// Next.js API route support: https://nextjs.org/docs/api-routes/introduction
|
||||
import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import {
|
||||
type QAModelItemType,
|
||||
type ChatModelItemType,
|
||||
type VectorModelItemType
|
||||
} from '@/types/model';
|
||||
import { readFileSync } from 'fs';
|
||||
|
||||
export type InitDateResponse = {
|
||||
beianText: string;
|
||||
googleVerKey: string;
|
||||
baiduTongji: boolean;
|
||||
baiduTongji: string;
|
||||
chatModels: ChatModelItemType[];
|
||||
qaModels: QAModelItemType[];
|
||||
vectorModels: VectorModelItemType[];
|
||||
};
|
||||
|
||||
const defaultmodels = {
|
||||
'Gpt35-4k': {
|
||||
model: 'gpt-3.5-turbo',
|
||||
name: 'Gpt35-4k',
|
||||
contextMaxToken: 4000,
|
||||
systemMaxToken: 2400,
|
||||
maxTemperature: 1.2,
|
||||
price: 1.5
|
||||
},
|
||||
'Gpt35-16k': {
|
||||
model: 'gpt-3.5-turbo',
|
||||
name: 'Gpt35-16k',
|
||||
contextMaxToken: 16000,
|
||||
systemMaxToken: 8000,
|
||||
maxTemperature: 1.2,
|
||||
price: 3
|
||||
},
|
||||
Gpt4: {
|
||||
model: 'gpt-4',
|
||||
name: 'Gpt4',
|
||||
contextMaxToken: 8000,
|
||||
systemMaxToken: 4000,
|
||||
maxTemperature: 1.2,
|
||||
price: 45
|
||||
}
|
||||
};
|
||||
const defaultQaModels = {
|
||||
'Gpt35-16k': {
|
||||
model: 'gpt-3.5-turbo',
|
||||
name: 'Gpt35-16k',
|
||||
maxToken: 16000,
|
||||
price: 3
|
||||
}
|
||||
};
|
||||
const defaultVectorModels = {
|
||||
'text-embedding-ada-002': {
|
||||
model: 'text-embedding-ada-002',
|
||||
name: 'Embedding-2',
|
||||
price: 0.2
|
||||
}
|
||||
};
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
|
||||
const envs = {
|
||||
beianText: process.env.SAFE_BEIAN_TEXT || '',
|
||||
googleVerKey: process.env.CLIENT_GOOGLE_VER_TOKEN || '',
|
||||
baiduTongji: process.env.BAIDU_TONGJI || ''
|
||||
};
|
||||
|
||||
jsonRes<InitDateResponse>(res, {
|
||||
data: {
|
||||
beianText: process.env.SAFE_BEIAN_TEXT || '',
|
||||
googleVerKey: process.env.CLIENT_GOOGLE_VER_TOKEN || '',
|
||||
baiduTongji: process.env.BAIDU_TONGJI === '1'
|
||||
...envs,
|
||||
...initSystemModels()
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
export function initSystemModels() {
|
||||
const { chatModels, qaModels, vectorModels } = (() => {
|
||||
try {
|
||||
const chatModels = Object.values(JSON.parse(readFileSync('data/ChatModels.json', 'utf-8')));
|
||||
const qaModels = Object.values(JSON.parse(readFileSync('data/QAModels.json', 'utf-8')));
|
||||
const vectorModels = Object.values(
|
||||
JSON.parse(readFileSync('data/VectorModels.json', 'utf-8'))
|
||||
);
|
||||
|
||||
return {
|
||||
chatModels,
|
||||
qaModels,
|
||||
vectorModels
|
||||
};
|
||||
} catch (error) {
|
||||
console.log(error);
|
||||
|
||||
return {
|
||||
chatModels: Object.values(defaultmodels),
|
||||
qaModels: Object.values(defaultQaModels),
|
||||
vectorModels: Object.values(defaultVectorModels)
|
||||
};
|
||||
}
|
||||
})() as {
|
||||
chatModels: ChatModelItemType[];
|
||||
qaModels: QAModelItemType[];
|
||||
vectorModels: VectorModelItemType[];
|
||||
};
|
||||
global.chatModels = chatModels;
|
||||
global.qaModels = qaModels;
|
||||
global.vectorModels = vectorModels;
|
||||
|
||||
return {
|
||||
chatModels,
|
||||
qaModels,
|
||||
vectorModels
|
||||
};
|
||||
}
|
||||
|
@@ -1,31 +1,22 @@
|
||||
import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { System } from '@/service/models/system';
|
||||
import { authUser } from '@/service/utils/auth';
|
||||
|
||||
export type InitDateResponse = {
|
||||
beianText: string;
|
||||
googleVerKey: string;
|
||||
};
|
||||
import { readFileSync } from 'fs';
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
|
||||
await authUser({ req, authRoot: true });
|
||||
updateSystemEnv();
|
||||
jsonRes<InitDateResponse>(res);
|
||||
jsonRes(res);
|
||||
}
|
||||
|
||||
export async function updateSystemEnv() {
|
||||
try {
|
||||
const mongoData = await System.findOne();
|
||||
const res = JSON.parse(readFileSync('data/SystemParams.json', 'utf-8'));
|
||||
|
||||
if (mongoData) {
|
||||
const obj = mongoData.toObject();
|
||||
global.systemEnv = {
|
||||
...global.systemEnv,
|
||||
...obj
|
||||
};
|
||||
}
|
||||
console.log('update env', global.systemEnv);
|
||||
global.systemEnv = {
|
||||
...global.systemEnv,
|
||||
...res
|
||||
};
|
||||
} catch (error) {
|
||||
console.log('update system env error');
|
||||
}
|
||||
|
Reference in New Issue
Block a user