perf: bill

This commit is contained in:
archer
2023-07-13 22:53:44 +08:00
parent 726de0396b
commit f3715731c4
67 changed files with 915 additions and 1254 deletions

View File

@@ -39,7 +39,6 @@ export const useAppRoute = (app) => {
userId: app.userId,
name: app.name,
intro: app.intro,
app: app.chat?.chatModel,
relatedKbs: kbNames, // 将relatedKbs的id转换为相应的Kb名称
systemPrompt: app.chat?.systemPrompt || '',
temperature: app.chat?.temperature || 0,

View File

@@ -62,12 +62,6 @@ const appSchema = new mongoose.Schema({
avatar: String,
status: String,
intro: String,
chat: {
relatedKbs: [mongoose.Schema.Types.ObjectId],
systemPrompt: String,
temperature: Number,
chatModel: String
},
share: {
topNum: Number,
isShare: Boolean,

View File

@@ -0,0 +1,26 @@
{
"Gpt35-4k": {
"model": "gpt-3.5-turbo",
"name": "Gpt35-4k",
"contextMaxToken": 4000,
"systemMaxToken": 2400,
"maxTemperature": 1.2,
"price": 1.5
},
"Gpt35-16k": {
"model": "gpt-3.5-turbo-16k",
"name": "Gpt35-16k",
"contextMaxToken": 16000,
"systemMaxToken": 8000,
"maxTemperature": 1.2,
"price": 3
},
"Gpt4": {
"model": "gpt-4",
"name": "Gpt4",
"contextMaxToken": 8000,
"systemMaxToken": 4000,
"maxTemperature": 1.2,
"price": 45
}
}

View File

@@ -0,0 +1,8 @@
{
"Gpt35-16k": {
"model": "gpt-3.5-turbo-16k",
"name": "Gpt35-16k",
"maxToken": 16000,
"price": 3
}
}

View File

@@ -0,0 +1,6 @@
{
"vectorMaxProcess": 10,
"qaMaxProcess": 10,
"pgIvfflatProbe": 10,
"sensitiveCheck": false
}

View File

@@ -0,0 +1,7 @@
{
"text-embedding-ada-002": {
"model": "text-embedding-ada-002",
"name": "Embedding-2",
"price": 0.2
}
}

View File

@@ -1,8 +0,0 @@
var _hmt = _hmt || [];
(function () {
const hm = document.createElement('script');
hm.src = 'https://hm.baidu.com/hm.js?a5357e9dab086658bac0b6faf148882e';
const s = document.getElementsByTagName('script')[0];
s.parentNode.insertBefore(hm, s);
})();

View File

@@ -2,7 +2,6 @@ import { GET, POST, PUT, DELETE } from '../request';
import type { KbItemType } from '@/types/plugin';
import { RequestPaging } from '@/types/index';
import { TrainingModeEnum } from '@/constants/plugin';
import { type QuoteItemType } from '@/pages/api/openapi/kb/appKbSearch';
import {
Props as PushDataProps,
Response as PushDateResponse
@@ -60,7 +59,7 @@ export const getTrainingData = (data: { kbId: string; init: boolean }) =>
}>(`/plugins/kb/data/getTrainingData`, data);
export const getKbDataItemById = (dataId: string) =>
GET<QuoteItemType>(`/plugins/kb/data/getDataById`, { dataId });
GET(`/plugins/kb/data/getDataById`, { dataId });
/**
* 直接push数据

View File

@@ -1,9 +1,6 @@
import { GET, POST, PUT } from './request';
import type { ChatModelItemType } from '@/constants/model';
import type { InitDateResponse } from '@/pages/api/system/getInitData';
export const getInitData = () => GET<InitDateResponse>('/system/getInitData');
export const getSystemModelList = () => GET<ChatModelItemType[]>('/system/getModels');
export const uploadImg = (base64Img: string) => POST<string>('/system/uploadImage', { base64Img });

View File

@@ -10,7 +10,7 @@ import React, {
import { throttle } from 'lodash';
import { ChatItemType, ChatSiteItemType, ExportChatType } from '@/types/chat';
import { useToast } from '@/hooks/useToast';
import { useCopyData, voiceBroadcast, hasVoiceApi } from '@/utils/tools';
import { useCopyData, voiceBroadcast, hasVoiceApi, getErrText } from '@/utils/tools';
import { Box, Card, Flex, Input, Textarea, Button, useTheme } from '@chakra-ui/react';
import { useUserStore } from '@/store/user';
@@ -241,33 +241,34 @@ const ChatBox = (
variables: data
});
// 设置聊天内容为完成状态
setChatHistory((state) =>
state.map((item, index) => {
if (index !== state.length - 1) return item;
return {
...item,
status: 'finish'
};
})
);
setTimeout(() => {
generatingScroll();
TextareaDom.current?.focus();
}, 100);
} catch (err: any) {
toast({
title: typeof err === 'string' ? err : err?.message || '聊天出错了~',
status: 'warning',
title: getErrText(err, '聊天出错了~'),
status: 'error',
duration: 5000,
isClosable: true
});
resetInputVal(value);
setChatHistory(newChatList.slice(0, newChatList.length - 2));
if (!err?.responseText) {
resetInputVal(value);
setChatHistory(newChatList.slice(0, newChatList.length - 2));
}
}
// set finish status
setChatHistory((state) =>
state.map((item, index) => {
if (index !== state.length - 1) return item;
return {
...item,
status: 'finish'
};
})
);
},
[
isChatting,
@@ -404,7 +405,7 @@ const ChatBox = (
py={4}
_hover={{
'& .control': {
display: 'flex'
display: item.status === 'finish' ? 'flex' : 'none'
}
}}
>

View File

@@ -965,8 +965,8 @@ export const appTemplates: (AppItemType & { avatar: string; intro: string })[] =
name: '意图识别',
intro: '可以判断用户问题属于哪方面问题,从而执行不同的操作。',
type: 'http',
url: '/openapi/modules/agent/classifyQuestion',
flowType: 'classifyQuestionNode',
url: '/openapi/modules/agent/recognizeIntention',
flowType: 'recognizeIntention',
inputs: [
{
key: 'systemPrompt',

View File

@@ -1,12 +0,0 @@
export enum ChatModelEnum {
'GPT35' = 'gpt-3.5-turbo',
'GPT3516k' = 'gpt-3.5-turbo-16k',
'GPT4' = 'gpt-4',
'GPT432k' = 'gpt-4-32k'
}
export const chatModelList = [
{ label: 'Gpt35-16k', value: ChatModelEnum.GPT3516k },
{ label: 'Gpt35-4k', value: ChatModelEnum.GPT35 },
{ label: 'Gpt4-8k', value: ChatModelEnum.GPT4 }
];

View File

@@ -1,7 +1,7 @@
import { AppModuleItemTypeEnum, SystemInputEnum, SpecificInputEnum } from '../app';
import { FlowModuleTypeEnum, FlowInputItemTypeEnum, FlowOutputItemTypeEnum } from './index';
import type { AppModuleTemplateItemType } from '@/types/app';
import { chatModelList } from '../data';
import { chatModelList } from '@/store/static';
import {
Input_Template_History,
Input_Template_TFSwitch,
@@ -96,8 +96,8 @@ export const ChatModule: AppModuleTemplateItemType = {
key: 'model',
type: FlowInputItemTypeEnum.select,
label: '对话模型',
value: chatModelList[0].value,
list: chatModelList
value: chatModelList[0]?.model,
list: chatModelList.map((item) => ({ label: item.name, value: item.model }))
},
{
key: 'temperature',
@@ -278,13 +278,13 @@ export const TFSwitchModule: AppModuleTemplateItemType = {
}
]
};
export const ClassifyQuestionModule: AppModuleTemplateItemType = {
export const RecognizeIntentionModule: AppModuleTemplateItemType = {
logo: '/imgs/module/cq.png',
name: '意图识别',
intro: '可以判断用户问题属于哪方面问题,从而执行不同的操作。',
type: AppModuleItemTypeEnum.http,
url: '/openapi/modules/agent/classifyQuestion',
flowType: FlowModuleTypeEnum.classifyQuestionNode,
url: '/openapi/modules/agent/recognizeIntention',
flowType: FlowModuleTypeEnum.recognizeIntention,
inputs: [
{
key: 'systemPrompt',
@@ -348,6 +348,6 @@ export const ModuleTemplates = [
},
{
label: 'Agent',
list: [ClassifyQuestionModule]
list: [RecognizeIntentionModule]
}
];

View File

@@ -26,7 +26,7 @@ export enum FlowModuleTypeEnum {
kbSearchNode = 'kbSearchNode',
tfSwitchNode = 'tfSwitchNode',
answerNode = 'answerNode',
classifyQuestionNode = 'classifyQuestionNode'
recognizeIntention = 'recognizeIntention'
}
export const edgeOptions = {

View File

@@ -1,11 +1,6 @@
import { getSystemModelList } from '@/api/system';
import type { ShareChatEditType } from '@/types/app';
import type { AppSchema } from '@/types/mongoSchema';
export const embeddingModel = 'text-embedding-ada-002';
export const embeddingPrice = 0.1;
export type EmbeddingModelType = 'text-embedding-ada-002';
export enum OpenAiChatEnum {
'GPT35' = 'gpt-3.5-turbo',
'GPT3516k' = 'gpt-3.5-turbo-16k',
@@ -13,58 +8,6 @@ export enum OpenAiChatEnum {
'GPT432k' = 'gpt-4-32k'
}
export type ChatModelType = `${OpenAiChatEnum}`;
export type ChatModelItemType = {
chatModel: ChatModelType;
name: string;
contextMaxToken: number;
systemMaxToken: number;
maxTemperature: number;
price: number;
};
export const ChatModelMap = {
[OpenAiChatEnum.GPT35]: {
chatModel: OpenAiChatEnum.GPT35,
name: 'Gpt35-4k',
contextMaxToken: 4000,
systemMaxToken: 2400,
maxTemperature: 1.2,
price: 1.5
},
[OpenAiChatEnum.GPT3516k]: {
chatModel: OpenAiChatEnum.GPT3516k,
name: 'Gpt35-16k',
contextMaxToken: 16000,
systemMaxToken: 8000,
maxTemperature: 1.2,
price: 3
},
[OpenAiChatEnum.GPT4]: {
chatModel: OpenAiChatEnum.GPT4,
name: 'Gpt4',
contextMaxToken: 8000,
systemMaxToken: 4000,
maxTemperature: 1.2,
price: 45
},
[OpenAiChatEnum.GPT432k]: {
chatModel: OpenAiChatEnum.GPT432k,
name: 'Gpt4-32k',
contextMaxToken: 32000,
systemMaxToken: 8000,
maxTemperature: 1.2,
price: 90
}
};
export const chatModelList: ChatModelItemType[] = [
ChatModelMap[OpenAiChatEnum.GPT3516k],
ChatModelMap[OpenAiChatEnum.GPT35],
ChatModelMap[OpenAiChatEnum.GPT4]
];
export const defaultApp: AppSchema = {
_id: '',
userId: 'userId',
@@ -72,17 +15,6 @@ export const defaultApp: AppSchema = {
avatar: '/icon/logo.png',
intro: '',
updateTime: Date.now(),
chat: {
relatedKbs: [],
searchSimilarity: 0.2,
searchLimit: 5,
searchEmptyText: '',
systemPrompt: '',
limitPrompt: '',
temperature: 0,
maxToken: 4000,
chatModel: OpenAiChatEnum.GPT35
},
share: {
isShare: false,
isShareDetail: false,

View File

@@ -1,9 +1,6 @@
export enum BillTypeEnum {
chat = 'chat',
openapiChat = 'openapiChat',
QA = 'QA',
vector = 'vector',
return = 'return'
export enum BillSourceEnum {
fastgpt = 'fastgpt',
api = 'api'
}
export enum PageTypeEnum {
login = 'login',
@@ -11,12 +8,9 @@ export enum PageTypeEnum {
forgetPassword = 'forgetPassword'
}
export const BillTypeMap: Record<`${BillTypeEnum}`, string> = {
[BillTypeEnum.chat]: '对话',
[BillTypeEnum.openapiChat]: 'api 对话',
[BillTypeEnum.QA]: 'QA拆分',
[BillTypeEnum.vector]: '索引生成',
[BillTypeEnum.return]: '退款'
export const BillSourceMap: Record<`${BillSourceEnum}`, string> = {
[BillSourceEnum.fastgpt]: 'FastGpt 平台',
[BillSourceEnum.api]: 'Api'
};
export enum PromotionEnum {

View File

@@ -1,4 +1,4 @@
import { useRef, useState, useCallback, useLayoutEffect, useMemo, useEffect } from 'react';
import { useRef, useState, useCallback, useMemo, useEffect } from 'react';
import type { PagingData } from '../types/index';
import { IconButton, Flex, Box, Input } from '@chakra-ui/react';
import { ArrowBackIcon, ArrowForwardIcon } from '@chakra-ui/icons';
@@ -144,7 +144,7 @@ export const usePagination = <T = any,>({
[data.length, isLoading, mutate, pageNum, total]
);
useLayoutEffect(() => {
useEffect(() => {
if (!elementRef.current || type !== 'scroll') return;
const scrolling = throttle((e: Event) => {

View File

@@ -1,4 +1,4 @@
import { useEffect } from 'react';
import { useEffect, useState } from 'react';
import type { AppProps } from 'next/app';
import Script from 'next/script';
import Head from 'next/head';
@@ -8,9 +8,9 @@ import { theme } from '@/constants/theme';
import { QueryClient, QueryClientProvider } from '@tanstack/react-query';
import NProgress from 'nprogress'; //nprogress module
import Router from 'next/router';
import { useGlobalStore } from '@/store/global';
import 'nprogress/nprogress.css';
import '@/styles/reset.scss';
import { clientInitData } from '@/store/static';
//Binding events.
Router.events.on('routeChangeStart', () => NProgress.start());
@@ -29,13 +29,15 @@ const queryClient = new QueryClient({
});
function App({ Component, pageProps }: AppProps) {
const {
loadInitData,
initData: { googleVerKey, baiduTongji }
} = useGlobalStore();
const [googleVerKey, setGoogleVerKey] = useState<string>();
const [baiduTongji, setBaiduTongji] = useState<string>();
useEffect(() => {
loadInitData();
(async () => {
const { googleVerKey, baiduTongji } = await clientInitData();
setGoogleVerKey(googleVerKey);
setBaiduTongji(baiduTongji);
})();
}, []);
return (
@@ -53,7 +55,7 @@ function App({ Component, pageProps }: AppProps) {
<Script src="/js/qrcode.min.js" strategy="lazyOnload"></Script>
<Script src="/js/pdf.js" strategy="lazyOnload"></Script>
<Script src="/js/html2pdf.bundle.min.js" strategy="lazyOnload"></Script>
{baiduTongji && <Script src="/js/baidutongji.js" strategy="lazyOnload"></Script>}
{baiduTongji && <Script src={baiduTongji} strategy="lazyOnload"></Script>}
{googleVerKey && (
<>
<Script
@@ -75,5 +77,4 @@ function App({ Component, pageProps }: AppProps) {
);
}
// @ts-ignore
export default App;

View File

@@ -8,6 +8,8 @@ import { type ChatCompletionRequestMessage } from 'openai';
import { AppModuleItemType } from '@/types/app';
import { dispatchModules } from '../openapi/v1/chat/completions';
import { gptMessage2ChatType } from '@/utils/adapt';
import { createTaskBill, delTaskBill, finishTaskBill } from '@/service/events/pushBill';
import { BillSourceEnum } from '@/constants/user';
export type MessageItemType = ChatCompletionRequestMessage & { _id?: string };
export type Props = {
@@ -15,10 +17,8 @@ export type Props = {
prompt: string;
modules: AppModuleItemType[];
variables: Record<string, any>;
};
export type ChatResponseType = {
newChatId: string;
quoteLen?: number;
appId: string;
appName: string;
};
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
@@ -30,8 +30,8 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
res.end();
});
let { modules = [], history = [], prompt, variables = {} } = req.body as Props;
let { modules = [], history = [], prompt, variables = {}, appName, appId } = req.body as Props;
let billId = '';
try {
if (!history || !modules || !prompt) {
throw new Error('Prams Error');
@@ -45,6 +45,13 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
/* user auth */
const { userId } = await authUser({ req });
billId = await createTaskBill({
userId,
appName,
appId,
source: BillSourceEnum.fastgpt
});
/* start process */
const { responseData } = await dispatchModules({
res,
@@ -54,7 +61,8 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
history: gptMessage2ChatType(history),
userChatInput: prompt
},
stream: true
stream: true,
billId
});
sseResponse({
@@ -70,7 +78,11 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
res.end();
// bill
finishTaskBill({
billId
});
} catch (err: any) {
delTaskBill(billId);
res.status(500);
sseErrRes(res, err);
res.end();

View File

@@ -53,14 +53,6 @@ export async function saveChat({
await connectToDatabase();
const { app } = await authApp({ appId, userId, authOwner: false });
const content = prompts.map((item) => ({
_id: item._id,
obj: item.obj,
value: item.value,
systemPrompt: item.systemPrompt || '',
quote: item.quote || []
}));
if (String(app.userId) === userId) {
await App.findByIdAndUpdate(appId, {
updateTime: new Date()
@@ -73,12 +65,11 @@ export async function saveChat({
Chat.findByIdAndUpdate(historyId, {
$push: {
content: {
$each: content
$each: prompts
}
},
variables,
title: content[0].value.slice(0, 20),
latestChat: content[1].value,
title: prompts[0].value.slice(0, 20),
updateTime: new Date()
}).then(() => ({
newHistoryId: ''
@@ -90,9 +81,8 @@ export async function saveChat({
userId,
appId,
variables,
content,
title: content[0].value.slice(0, 20),
latestChat: content[1].value
content: prompts,
title: prompts[0].value.slice(0, 20)
}).then((res) => ({
newHistoryId: String(res._id)
}))

View File

@@ -1,186 +0,0 @@
import type { NextApiRequest, NextApiResponse } from 'next';
import { jsonRes } from '@/service/response';
import { authUser } from '@/service/utils/auth';
import { PgClient } from '@/service/pg';
import { withNextCors } from '@/service/utils/tools';
import type { ChatItemType } from '@/types/chat';
import type { AppSchema } from '@/types/mongoSchema';
import { authApp } from '@/service/utils/auth';
import { ChatModelMap } from '@/constants/model';
import { ChatRoleEnum } from '@/constants/chat';
import { openaiEmbedding } from '../plugin/openaiEmbedding';
import { modelToolMap } from '@/utils/plugin';
export type QuoteItemType = {
id: string;
q: string;
a: string;
source?: string;
};
type Props = {
prompts: ChatItemType[];
similarity: number;
limit: number;
appId: string;
};
type Response = {
rawSearch: QuoteItemType[];
userSystemPrompt: {
obj: ChatRoleEnum;
value: string;
}[];
userLimitPrompt: {
obj: ChatRoleEnum;
value: string;
}[];
quotePrompt: {
obj: ChatRoleEnum;
value: string;
};
};
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
try {
const { userId } = await authUser({ req });
if (!userId) {
throw new Error('userId is empty');
}
const { prompts, similarity, limit, appId } = req.body as Props;
if (!similarity || !Array.isArray(prompts) || !appId) {
throw new Error('params is error');
}
// auth app
const { app } = await authApp({
appId,
userId
});
const result = await appKbSearch({
app,
userId,
fixedQuote: [],
prompt: prompts[prompts.length - 1],
similarity,
limit
});
jsonRes<Response>(res, {
data: result
});
} catch (err) {
console.log(err);
jsonRes(res, {
code: 500,
error: err
});
}
});
export async function appKbSearch({
app,
userId,
fixedQuote = [],
prompt,
similarity = 0.8,
limit = 5
}: {
app: AppSchema;
userId: string;
fixedQuote?: QuoteItemType[];
prompt: ChatItemType;
similarity: number;
limit: number;
}): Promise<Response> {
const modelConstantsData = ChatModelMap[app.chat.chatModel];
// get vector
const promptVector = await openaiEmbedding({
userId,
input: [prompt.value]
});
// search kb
const res: any = await PgClient.query(
`BEGIN;
SET LOCAL ivfflat.probes = ${global.systemEnv.pgIvfflatProbe || 10};
select id,q,a,source from modelData where kb_id IN (${app.chat.relatedKbs
.map((item) => `'${item}'`)
.join(',')}) AND vector <#> '[${promptVector[0]}]' < -${similarity} order by vector <#> '[${
promptVector[0]
}]' limit ${limit};
COMMIT;`
);
const searchRes: QuoteItemType[] = res?.[2]?.rows || [];
// filter same search result
const idSet = new Set<string>();
const filterSearch = [
...searchRes.slice(0, 3),
...fixedQuote.slice(0, 2),
...searchRes.slice(3),
...fixedQuote.slice(2, Math.floor(fixedQuote.length * 0.4))
].filter((item) => {
if (idSet.has(item.id)) {
return false;
}
idSet.add(item.id);
return true;
});
// 计算固定提示词的 token 数量
const userSystemPrompt = app.chat.systemPrompt // user system prompt
? [
{
obj: ChatRoleEnum.System,
value: app.chat.systemPrompt
}
]
: [];
const userLimitPrompt = [
{
obj: ChatRoleEnum.Human,
value: app.chat.limitPrompt
? app.chat.limitPrompt
: `知识库是关于 ${app.name} 的内容,参考知识库回答问题。与 "${app.name}" 无关内容,直接回复: "我不知道"。`
}
];
const fixedSystemTokens = modelToolMap.countTokens({
model: app.chat.chatModel,
messages: [...userSystemPrompt, ...userLimitPrompt]
});
// filter part quote by maxToken
const sliceResult = modelToolMap
.tokenSlice({
model: app.chat.chatModel,
maxToken: modelConstantsData.systemMaxToken - fixedSystemTokens,
messages: filterSearch.map((item, i) => ({
obj: ChatRoleEnum.System,
value: `${i + 1}: [${item.q}\n${item.a}]`
}))
})
.map((item) => item.value)
.join('\n')
.trim();
// slice filterSearch
const rawSearch = filterSearch.slice(0, sliceResult.length);
const quoteText = sliceResult ? `知识库:\n${sliceResult}` : '';
return {
rawSearch,
userSystemPrompt,
userLimitPrompt,
quotePrompt: {
obj: ChatRoleEnum.System,
value: quoteText
}
};
}

View File

@@ -15,6 +15,7 @@ type DateItemType = { a: string; q: string; source?: string };
export type Props = {
kbId: string;
data: DateItemType[];
model: string;
mode: `${TrainingModeEnum}`;
prompt?: string;
};
@@ -25,14 +26,14 @@ export type Response = {
const modeMaxToken = {
[TrainingModeEnum.index]: 6000,
[TrainingModeEnum.qa]: 10000
[TrainingModeEnum.qa]: 12000
};
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
try {
const { kbId, data, mode, prompt } = req.body as Props;
const { kbId, data, mode, prompt, model } = req.body as Props;
if (!kbId || !Array.isArray(data)) {
if (!kbId || !Array.isArray(data) || !model) {
throw new Error('缺少参数');
}
await connectToDatabase();
@@ -46,7 +47,8 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
data,
userId,
mode,
prompt
prompt,
model
})
});
} catch (err) {
@@ -62,7 +64,8 @@ export async function pushDataToKb({
kbId,
data,
mode,
prompt
prompt,
model
}: { userId: string } & Props): Promise<Response> {
await authKb({
userId,
@@ -79,7 +82,7 @@ export async function pushDataToKb({
if (mode === TrainingModeEnum.qa) {
// count token
const token = modelToolMap.countTokens({
model: OpenAiChatEnum.GPT3516k,
model: 'gpt-3.5-turbo-16k',
messages: [{ obj: 'System', value: item.q }]
});
if (token > modeMaxToken[TrainingModeEnum.qa]) {
@@ -144,6 +147,7 @@ export async function pushDataToKb({
insertData.map((item) => ({
q: item.q,
a: item.a,
model,
source: item.source,
userId,
kbId,

View File

@@ -3,7 +3,7 @@ import { jsonRes } from '@/service/response';
import { authUser } from '@/service/utils/auth';
import { PgClient } from '@/service/pg';
import { withNextCors } from '@/service/utils/tools';
import { openaiEmbedding } from '../plugin/openaiEmbedding';
import { getVector } from '../plugin/vector';
import type { KbTestItemType } from '@/types/plugin';
export type Props = {
@@ -27,7 +27,7 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
throw new Error('缺少用户ID');
}
const vector = await openaiEmbedding({
const vector = await getVector({
userId,
input: [text]
});

View File

@@ -3,7 +3,7 @@ import { jsonRes } from '@/service/response';
import { authUser } from '@/service/utils/auth';
import { PgClient } from '@/service/pg';
import { withNextCors } from '@/service/utils/tools';
import { openaiEmbedding } from '../plugin/openaiEmbedding';
import { getVector } from '../plugin/vector';
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
try {
@@ -19,7 +19,7 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
// get vector
const vector = await (async () => {
if (q) {
return openaiEmbedding({
return getVector({
userId,
input: [q]
});

View File

@@ -6,12 +6,12 @@ import { ChatContextFilter } from '@/service/utils/chat/index';
import type { ChatItemType } from '@/types/chat';
import { ChatRoleEnum } from '@/constants/chat';
import { getOpenAIApi, axiosConfig } from '@/service/ai/openai';
import type { ClassifyQuestionAgentItemType } from '@/types/app';
import type { RecognizeIntentionAgentItemType } from '@/types/app';
export type Props = {
history?: ChatItemType[];
userChatInput: string;
agents: ClassifyQuestionAgentItemType[];
agents: RecognizeIntentionAgentItemType[];
description: string;
};
export type Response = { history: ChatItemType[] };

View File

@@ -6,29 +6,30 @@ import { ChatContextFilter } from '@/service/utils/chat/index';
import type { ChatItemType } from '@/types/chat';
import { ChatRoleEnum } from '@/constants/chat';
import { getOpenAIApi, axiosConfig } from '@/service/ai/openai';
import type { ClassifyQuestionAgentItemType } from '@/types/app';
import type { RecognizeIntentionAgentItemType } from '@/types/app';
import { countModelPrice, pushTaskBillListItem } from '@/service/events/pushBill';
export type Props = {
systemPrompt?: string;
history?: ChatItemType[];
userChatInput: string;
agents: ClassifyQuestionAgentItemType[];
agents: RecognizeIntentionAgentItemType[];
billId?: string;
};
export type Response = { history: ChatItemType[] };
const agentModel = 'gpt-3.5-turbo-16k';
const agentModel = 'gpt-3.5-turbo';
const agentFunName = 'agent_user_question';
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
try {
let { systemPrompt, agents, history = [], userChatInput } = req.body as Props;
let { userChatInput } = req.body as Props;
const response = await classifyQuestion({
systemPrompt,
history,
userChatInput,
agents
});
if (!userChatInput) {
throw new Error('userChatInput is empty');
}
const response = await classifyQuestion(req.body);
jsonRes(res, {
data: response
@@ -46,7 +47,8 @@ export async function classifyQuestion({
agents,
systemPrompt,
history = [],
userChatInput
userChatInput,
billId
}: Props) {
const messages: ChatItemType[] = [
...(systemPrompt
@@ -106,8 +108,19 @@ export async function classifyQuestion({
if (!arg.type) {
throw new Error('');
}
const totalTokens = response.data.usage?.total_tokens || 0;
await pushTaskBillListItem({
billId,
moduleName: 'Recognize Intention',
amount: countModelPrice({ model: agentModel, tokens: totalTokens }),
model: agentModel,
tokenLen: totalTokens
});
console.log(
'意图结果',
'CQ',
agents.findIndex((item) => item.key === arg.type)
);

View File

@@ -1,9 +1,9 @@
// Next.js API route support: https://nextjs.org/docs/api-routes/introduction
import type { NextApiRequest, NextApiResponse } from 'next';
import { jsonRes } from '@/service/response';
import { jsonRes, sseErrRes } from '@/service/response';
import { sseResponse } from '@/service/utils/tools';
import { ChatModelMap, OpenAiChatEnum } from '@/constants/model';
import { adaptChatItem_openAI } from '@/utils/plugin/openai';
import { OpenAiChatEnum } from '@/constants/model';
import { adaptChatItem_openAI, countOpenAIToken } from '@/utils/plugin/openai';
import { modelToolMap } from '@/utils/plugin';
import { ChatContextFilter } from '@/service/utils/chat/index';
import type { ChatItemType } from '@/types/chat';
@@ -11,6 +11,8 @@ import { ChatRoleEnum, sseResponseEventEnum } from '@/constants/chat';
import { parseStreamChunk, textAdaptGptResponse } from '@/utils/adapt';
import { getOpenAIApi, axiosConfig } from '@/service/ai/openai';
import { SpecificInputEnum } from '@/constants/app';
import { getChatModel } from '@/service/utils/data';
import { countModelPrice, pushTaskBillListItem } from '@/service/events/pushBill';
export type Props = {
model: `${OpenAiChatEnum}`;
@@ -22,39 +24,28 @@ export type Props = {
quotePrompt?: string;
systemPrompt?: string;
limitPrompt?: string;
billId?: string;
};
export type Response = { [SpecificInputEnum.answerText]: string };
export type Response = { [SpecificInputEnum.answerText]: string; totalTokens: number };
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
let { model, temperature = 0, stream } = req.body as Props;
try {
let {
model,
stream = false,
temperature = 0,
maxToken = 4000,
history = [],
quotePrompt,
userChatInput,
systemPrompt,
limitPrompt
} = req.body as Props;
// temperature adapt
const modelConstantsData = ChatModelMap[model];
const modelConstantsData = getChatModel(model);
if (!modelConstantsData) {
throw new Error('The chat model is undefined');
}
// FastGpt temperature range: 1~10
temperature = +(modelConstantsData.maxTemperature * (temperature / 10)).toFixed(2);
const response = await chatCompletion({
...req.body,
res,
model,
temperature,
maxToken,
stream,
history,
userChatInput,
systemPrompt,
limitPrompt,
quotePrompt
temperature
});
if (stream) {
@@ -70,25 +61,32 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
});
}
} catch (err) {
jsonRes(res, {
code: 500,
error: err
});
if (stream) {
res.status(500);
sseErrRes(res, err);
res.end();
} else {
jsonRes(res, {
code: 500,
error: err
});
}
}
}
/* request openai chat */
export async function chatCompletion({
res,
model = OpenAiChatEnum.GPT35,
temperature,
model,
temperature = 0,
maxToken = 4000,
stream,
stream = false,
history = [],
quotePrompt,
quotePrompt = '',
userChatInput,
systemPrompt,
limitPrompt
systemPrompt = '',
limitPrompt = '',
billId
}: Props & { res: NextApiResponse }): Promise<Response> {
const messages: ChatItemType[] = [
...(quotePrompt
@@ -121,7 +119,7 @@ export async function chatCompletion({
value: userChatInput
}
];
const modelTokenLimit = ChatModelMap[model]?.contextMaxToken || 4000;
const modelTokenLimit = getChatModel(model)?.contextMaxToken || 4000;
const filterMessages = ChatContextFilter({
model,
@@ -157,37 +155,47 @@ export async function chatCompletion({
}
);
const { answer } = await (async () => {
const { answer, totalTokens } = await (async () => {
if (stream) {
// sse response
const { answer } = await streamResponse({ res, response });
// count tokens
// const finishMessages = filterMessages.concat({
// obj: ChatRoleEnum.AI,
// value: answer
// });
const finishMessages = filterMessages.concat({
obj: ChatRoleEnum.AI,
value: answer
});
// const totalTokens = modelToolMap[model].countTokens({
// messages: finishMessages
// });
const totalTokens = countOpenAIToken({
messages: finishMessages,
model: 'gpt-3.5-turbo-16k'
});
return {
answer
// totalTokens
answer,
totalTokens
};
} else {
const answer = stream ? '' : response.data.choices?.[0].message?.content || '';
// const totalTokens = stream ? 0 : response.data.usage?.total_tokens || 0;
const totalTokens = stream ? 0 : response.data.usage?.total_tokens || 0;
return {
answer
// totalTokens
answer,
totalTokens
};
}
})();
await pushTaskBillListItem({
billId,
moduleName: 'AI Chat',
amount: countModelPrice({ model, tokens: totalTokens }),
model,
tokenLen: totalTokens
});
return {
answerText: answer
answerText: answer,
totalTokens
};
}

View File

@@ -4,8 +4,9 @@ import { PgClient } from '@/service/pg';
import { withNextCors } from '@/service/utils/tools';
import type { ChatItemType } from '@/types/chat';
import { ChatRoleEnum } from '@/constants/chat';
import { openaiEmbedding_system } from '../../plugin/openaiEmbedding';
import { modelToolMap } from '@/utils/plugin';
import { getVector } from '../../plugin/vector';
import { countModelPrice, pushTaskBillListItem } from '@/service/events/pushBill';
export type QuoteItemType = {
id: string;
@@ -21,6 +22,7 @@ type Props = {
maxToken: number;
userChatInput: string;
stream?: boolean;
billId?: string;
};
type Response = {
rawSearch: QuoteItemType[];
@@ -30,25 +32,15 @@ type Response = {
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
try {
const {
kb_ids = [],
history = [],
similarity,
limit,
maxToken,
userChatInput
} = req.body as Props;
const { kb_ids = [], userChatInput } = req.body as Props;
if (!similarity || !Array.isArray(kb_ids)) {
if (!userChatInput || !Array.isArray(kb_ids)) {
throw new Error('params is error');
}
const result = await kbSearch({
...req.body,
kb_ids,
history,
similarity,
limit,
maxToken,
userChatInput
});
@@ -70,7 +62,8 @@ export async function kbSearch({
similarity = 0.8,
limit = 5,
maxToken = 2500,
userChatInput
userChatInput,
billId
}: Props): Promise<Response> {
if (kb_ids.length === 0)
return {
@@ -78,22 +71,34 @@ export async function kbSearch({
rawSearch: [],
quotePrompt: undefined
};
// get vector
const promptVector = await openaiEmbedding_system({
const vectorModel = global.vectorModels[0].model;
const { vectors, tokenLen } = await getVector({
model: vectorModel,
input: [userChatInput]
});
// search kb
const res: any = await PgClient.query(
`BEGIN;
const [res]: any = await Promise.all([
PgClient.query(
`BEGIN;
SET LOCAL ivfflat.probes = ${global.systemEnv.pgIvfflatProbe || 10};
select id,q,a,source from modelData where kb_id IN (${kb_ids
.map((item) => `'${item}'`)
.join(',')}) AND vector <#> '[${promptVector[0]}]' < -${similarity} order by vector <#> '[${
promptVector[0]
}]' limit ${limit};
.join(',')}) AND vector <#> '[${vectors[0]}]' < -${similarity} order by vector <#> '[${
vectors[0]
}]' limit ${limit};
COMMIT;`
);
),
pushTaskBillListItem({
billId,
moduleName: 'Vector Generate',
amount: countModelPrice({ model: vectorModel, tokens: tokenLen }),
model: vectorModel,
tokenLen
})
]);
const searchRes: QuoteItemType[] = res?.[2]?.rows || [];

View File

@@ -1,115 +0,0 @@
import type { NextApiRequest, NextApiResponse } from 'next';
import { jsonRes } from '@/service/response';
import { authUser, getApiKey, getSystemOpenAiKey } from '@/service/utils/auth';
import { withNextCors } from '@/service/utils/tools';
import { getOpenAIApi } from '@/service/utils/chat/openai';
import { embeddingModel } from '@/constants/model';
import { axiosConfig } from '@/service/utils/tools';
import { pushGenerateVectorBill } from '@/service/events/pushBill';
import { OpenAiChatEnum } from '@/constants/model';
type Props = {
input: string[];
};
type Response = number[][];
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
try {
const { userId } = await authUser({ req });
let { input } = req.query as Props;
if (!Array.isArray(input)) {
throw new Error('缺少参数');
}
jsonRes<Response>(res, {
data: await openaiEmbedding({ userId, input, mustPay: true })
});
} catch (err) {
console.log(err);
jsonRes(res, {
code: 500,
error: err
});
}
});
export async function openaiEmbedding({
userId,
input,
mustPay = false
}: { userId: string; mustPay?: boolean } & Props) {
const { userOpenAiKey, systemAuthKey } = await getApiKey({
model: 'gpt-3.5-turbo',
userId,
mustPay
});
const apiKey = userOpenAiKey || systemAuthKey;
// 获取 chatAPI
const chatAPI = getOpenAIApi(apiKey);
// 把输入的内容转成向量
const result = await chatAPI
.createEmbedding(
{
model: embeddingModel,
input
},
{
timeout: 60000,
...axiosConfig(apiKey)
}
)
.then((res) => {
if (!res.data?.usage?.total_tokens) {
// @ts-ignore
return Promise.reject(res.data?.error?.message || 'Embedding Error');
}
return {
tokenLen: res.data.usage.total_tokens || 0,
vectors: res.data.data.map((item) => item.embedding)
};
});
pushGenerateVectorBill({
isPay: !userOpenAiKey,
userId,
text: input.join(''),
tokenLen: result.tokenLen
});
return result.vectors;
}
export async function openaiEmbedding_system({ input }: Props) {
const apiKey = getSystemOpenAiKey();
// 获取 chatAPI
const chatAPI = getOpenAIApi(apiKey);
// 把输入的内容转成向量
const result = await chatAPI
.createEmbedding(
{
model: embeddingModel,
input
},
{
timeout: 20000,
...axiosConfig(apiKey)
}
)
.then((res) => {
if (!res.data?.usage?.total_tokens) {
// @ts-ignore
return Promise.reject(res.data?.error?.message || 'Embedding Error');
}
return {
tokenLen: res.data.usage.total_tokens || 0,
vectors: res.data.data.map((item) => item.embedding)
};
});
return result.vectors;
}

View File

@@ -0,0 +1,79 @@
import type { NextApiRequest, NextApiResponse } from 'next';
import { jsonRes } from '@/service/response';
import { authBalanceByUid, authUser } from '@/service/utils/auth';
import { withNextCors } from '@/service/utils/tools';
import { getOpenAIApi, axiosConfig } from '@/service/ai/openai';
import { pushGenerateVectorBill } from '@/service/events/pushBill';
type Props = {
model: string;
input: string[];
};
type Response = {
tokenLen: number;
vectors: number[][];
};
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
try {
const { userId } = await authUser({ req });
let { input, model } = req.query as Props;
if (!Array.isArray(input)) {
throw new Error('缺少参数');
}
jsonRes<Response>(res, {
data: await getVector({ userId, input, model })
});
} catch (err) {
console.log(err);
jsonRes(res, {
code: 500,
error: err
});
}
});
export async function getVector({
model = 'text-embedding-ada-002',
userId,
input
}: { userId?: string } & Props) {
userId && (await authBalanceByUid(userId));
// 获取 chatAPI
const chatAPI = getOpenAIApi();
// 把输入的内容转成向量
const result = await chatAPI
.createEmbedding(
{
model,
input
},
{
timeout: 60000,
...axiosConfig()
}
)
.then((res) => {
if (!res.data?.usage?.total_tokens) {
// @ts-ignore
return Promise.reject(res.data?.error?.message || 'Embedding Error');
}
return {
tokenLen: res.data.usage.total_tokens || 0,
vectors: res.data.data.map((item) => item.embedding)
};
});
userId &&
pushGenerateVectorBill({
userId,
tokenLen: result.tokenLen,
model
});
return result;
}

View File

@@ -15,8 +15,8 @@ import { Types } from 'mongoose';
import { moduleFetch } from '@/service/api/request';
import { AppModuleItemType, RunningModuleItemType } from '@/types/app';
import { FlowInputItemTypeEnum } from '@/constants/flow';
import { pushChatBill } from '@/service/events/pushBill';
import { BillTypeEnum } from '@/constants/user';
import { finishTaskBill, createTaskBill } from '@/service/events/pushBill';
import { BillSourceEnum } from '@/constants/user';
export type MessageItemType = ChatCompletionRequestMessage & { _id?: string };
type FastGptWebChatProps = {
@@ -108,6 +108,13 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
res.setHeader('newHistoryId', String(newHistoryId));
}
const billId = await createTaskBill({
userId,
appName: app.name,
appId,
source: BillSourceEnum.fastgpt
});
/* start process */
const { responseData, answerText } = await dispatchModules({
res,
@@ -117,7 +124,8 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
history: prompts,
userChatInput: prompt.value
},
stream
stream,
billId: ''
});
// save chat
@@ -171,14 +179,9 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
});
}
pushChatBill({
isPay: true,
chatModel: 'gpt-3.5-turbo',
userId,
appId,
textLen: 1,
tokens: 100,
type: BillTypeEnum.chat
// bill
finishTaskBill({
billId
});
} catch (err: any) {
if (stream) {
@@ -199,18 +202,21 @@ export async function dispatchModules({
modules,
params = {},
variables = {},
stream = false
stream = false,
billId
}: {
res: NextApiResponse;
modules: AppModuleItemType[];
params?: Record<string, any>;
variables?: Record<string, any>;
billId: string;
stream?: boolean;
}) {
const runningModules = loadModules(modules, variables);
let storeData: Record<string, any> = {};
let responseData: Record<string, any> = {};
let answerText = '';
let storeData: Record<string, any> = {}; // after module used
let responseData: Record<string, any> = {}; // response request and save to database
let answerText = ''; // AI answer
function pushStore({
isResponse = false,
@@ -327,6 +333,7 @@ export async function dispatchModules({
});
const data = {
stream,
billId,
...params
};

View File

@@ -1,19 +1,114 @@
// Next.js API route support: https://nextjs.org/docs/api-routes/introduction
import type { NextApiRequest, NextApiResponse } from 'next';
import { jsonRes } from '@/service/response';
import {
type QAModelItemType,
type ChatModelItemType,
type VectorModelItemType
} from '@/types/model';
import { readFileSync } from 'fs';
export type InitDateResponse = {
beianText: string;
googleVerKey: string;
baiduTongji: boolean;
baiduTongji: string;
chatModels: ChatModelItemType[];
qaModels: QAModelItemType[];
vectorModels: VectorModelItemType[];
};
const defaultmodels = {
'Gpt35-4k': {
model: 'gpt-3.5-turbo',
name: 'Gpt35-4k',
contextMaxToken: 4000,
systemMaxToken: 2400,
maxTemperature: 1.2,
price: 1.5
},
'Gpt35-16k': {
model: 'gpt-3.5-turbo',
name: 'Gpt35-16k',
contextMaxToken: 16000,
systemMaxToken: 8000,
maxTemperature: 1.2,
price: 3
},
Gpt4: {
model: 'gpt-4',
name: 'Gpt4',
contextMaxToken: 8000,
systemMaxToken: 4000,
maxTemperature: 1.2,
price: 45
}
};
const defaultQaModels = {
'Gpt35-16k': {
model: 'gpt-3.5-turbo',
name: 'Gpt35-16k',
maxToken: 16000,
price: 3
}
};
const defaultVectorModels = {
'text-embedding-ada-002': {
model: 'text-embedding-ada-002',
name: 'Embedding-2',
price: 0.2
}
};
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
const envs = {
beianText: process.env.SAFE_BEIAN_TEXT || '',
googleVerKey: process.env.CLIENT_GOOGLE_VER_TOKEN || '',
baiduTongji: process.env.BAIDU_TONGJI || ''
};
jsonRes<InitDateResponse>(res, {
data: {
beianText: process.env.SAFE_BEIAN_TEXT || '',
googleVerKey: process.env.CLIENT_GOOGLE_VER_TOKEN || '',
baiduTongji: process.env.BAIDU_TONGJI === '1'
...envs,
...initSystemModels()
}
});
}
export function initSystemModels() {
const { chatModels, qaModels, vectorModels } = (() => {
try {
const chatModels = Object.values(JSON.parse(readFileSync('data/ChatModels.json', 'utf-8')));
const qaModels = Object.values(JSON.parse(readFileSync('data/QAModels.json', 'utf-8')));
const vectorModels = Object.values(
JSON.parse(readFileSync('data/VectorModels.json', 'utf-8'))
);
return {
chatModels,
qaModels,
vectorModels
};
} catch (error) {
console.log(error);
return {
chatModels: Object.values(defaultmodels),
qaModels: Object.values(defaultQaModels),
vectorModels: Object.values(defaultVectorModels)
};
}
})() as {
chatModels: ChatModelItemType[];
qaModels: QAModelItemType[];
vectorModels: VectorModelItemType[];
};
global.chatModels = chatModels;
global.qaModels = qaModels;
global.vectorModels = vectorModels;
return {
chatModels,
qaModels,
vectorModels
};
}

View File

@@ -1,31 +1,22 @@
import type { NextApiRequest, NextApiResponse } from 'next';
import { jsonRes } from '@/service/response';
import { System } from '@/service/models/system';
import { authUser } from '@/service/utils/auth';
export type InitDateResponse = {
beianText: string;
googleVerKey: string;
};
import { readFileSync } from 'fs';
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
await authUser({ req, authRoot: true });
updateSystemEnv();
jsonRes<InitDateResponse>(res);
jsonRes(res);
}
export async function updateSystemEnv() {
try {
const mongoData = await System.findOne();
const res = JSON.parse(readFileSync('data/SystemParams.json', 'utf-8'));
if (mongoData) {
const obj = mongoData.toObject();
global.systemEnv = {
...global.systemEnv,
...obj
};
}
console.log('update env', global.systemEnv);
global.systemEnv = {
...global.systemEnv,
...res
};
} catch (error) {
console.log('update system env error');
}

View File

@@ -15,6 +15,8 @@ import { SystemInputEnum } from '@/constants/app';
import { streamFetch } from '@/api/fetch';
import MyTooltip from '@/components/MyTooltip';
import ChatBox, { type ComponentRef, type StartChatFnProps } from '@/components/ChatBox';
import { useToast } from '@/hooks/useToast';
import { getErrText } from '@/utils/tools';
export type ChatTestComponentRef = {
resetChatTest: () => void;
@@ -34,6 +36,7 @@ const ChatTest = (
) => {
const BoxRef = useRef(null);
const ChatBoxRef = useRef<ComponentRef>(null);
const { toast } = useToast();
const isOpen = useMemo(() => modules && modules.length > 0, [modules]);
const variableModules = useMemo(
@@ -60,21 +63,30 @@ const ChatTest = (
const history = messages.slice(-historyMaxLen - 2, -2);
// 流请求,获取数据
const { responseText } = await streamFetch({
const { responseText, errMsg } = await streamFetch({
url: '/api/chat/chatTest',
data: {
history,
prompt: messages[messages.length - 2].content,
modules,
variables
variables,
appId: app._id,
appName: `调试-${app.name}`
},
onMessage: generatingMessage,
abortSignal: controller
});
if (errMsg) {
return Promise.reject({
message: errMsg,
responseText
});
}
return { responseText };
},
[modules]
[app._id, app.name, modules]
);
useOutsideClick({

View File

@@ -6,14 +6,14 @@ import { FlowModuleItemType } from '@/types/flow';
import Divider from './modules/Divider';
import Container from './modules/Container';
import RenderInput from './render/RenderInput';
import type { ClassifyQuestionAgentItemType } from '@/types/app';
import type { RecognizeIntentionAgentItemType } from '@/types/app';
import { Handle, Position } from 'reactflow';
import { customAlphabet } from 'nanoid';
const nanoid = customAlphabet('abcdefghijklmnopqrstuvwxyz1234567890', 4);
import MyIcon from '@/components/Icon';
import { FlowOutputItemTypeEnum } from '@/constants/flow';
const NodeCQNode = ({
const NodeRINode = ({
data: { moduleId, inputs, outputs, onChangeNode, ...props }
}: NodeProps<FlowModuleItemType>) => {
return (
@@ -30,7 +30,7 @@ const NodeCQNode = ({
value: agents = []
}: {
key: string;
value?: ClassifyQuestionAgentItemType[];
value?: RecognizeIntentionAgentItemType[];
}) => (
<Box>
{agents.map((item, i) => (
@@ -133,4 +133,4 @@ const NodeCQNode = ({
</NodeCard>
);
};
export default React.memo(NodeCQNode);
export default React.memo(NodeRINode);

View File

@@ -49,7 +49,7 @@ const NodeAnswer = dynamic(() => import('./components/NodeAnswer'), {
const NodeQuestionInput = dynamic(() => import('./components/NodeQuestionInput'), {
ssr: false
});
const NodeCQNode = dynamic(() => import('./components/NodeCQNode'), {
const NodeRINode = dynamic(() => import('./components/NodeRINode'), {
ssr: false
});
const NodeUserGuide = dynamic(() => import('./components/NodeUserGuide'), {
@@ -70,7 +70,7 @@ const nodeTypes = {
[FlowModuleTypeEnum.kbSearchNode]: NodeKbSearch,
[FlowModuleTypeEnum.tfSwitchNode]: NodeTFSwitch,
[FlowModuleTypeEnum.answerNode]: NodeAnswer,
[FlowModuleTypeEnum.classifyQuestionNode]: NodeCQNode
[FlowModuleTypeEnum.recognizeIntention]: NodeRINode
};
const edgeTypes = {
buttonedge: ButtonEdge

View File

@@ -9,7 +9,6 @@ import {
Box,
useTheme
} from '@chakra-ui/react';
import { QuoteItemType } from '@/pages/api/openapi/kb/appKbSearch';
import MyIcon from '@/components/Icon';
import InputDataModal from '@/pages/kb/components/InputDataModal';
import { getKbDataItemById } from '@/api/plugins/kb';

View File

@@ -4,6 +4,7 @@ import Markdown from '@/components/Markdown';
import { useMarkdown } from '@/hooks/useMarkdown';
import { useRouter } from 'next/router';
import { useGlobalStore } from '@/store/global';
import { beianText } from '@/store/static';
import styles from './index.module.scss';
import axios from 'axios';
@@ -13,10 +14,7 @@ const Home = () => {
const router = useRouter();
const { inviterId } = router.query as { inviterId: string };
const { data } = useMarkdown({ url: '/intro.md' });
const {
isPc,
initData: { beianText }
} = useGlobalStore();
const { isPc } = useGlobalStore();
const [star, setStar] = useState(1500);
useEffect(() => {

View File

@@ -17,6 +17,7 @@ import { useToast } from '@/hooks/useToast';
import { TrainingModeEnum } from '@/constants/plugin';
import { getErrText } from '@/utils/tools';
import MyIcon from '@/components/Icon';
import { vectorModelList } from '@/store/static';
export type FormData = { dataId?: string; a: string; q: string };
@@ -65,6 +66,7 @@ const InputDataModal = ({
};
const { insertLen } = await postKbDataFromList({
kbId,
model: vectorModelList[0].model,
mode: TrainingModeEnum.index,
data: [data]
});

View File

@@ -1,4 +1,4 @@
import React, { useState, useCallback, useRef } from 'react';
import React, { useState, useCallback } from 'react';
import {
Box,
Flex,
@@ -22,9 +22,9 @@ import Radio from '@/components/Radio';
import { splitText_token } from '@/utils/file';
import { TrainingModeEnum } from '@/constants/plugin';
import { getErrText } from '@/utils/tools';
import { ChatModelMap, OpenAiChatEnum, embeddingPrice } from '@/constants/model';
import { formatPrice } from '@/utils/user';
import MySlider from '@/components/Slider';
import { qaModelList, vectorModelList } from '@/store/static';
const fileExtension = '.txt,.doc,.docx,.pdf,.md';
@@ -39,12 +39,14 @@ const SelectFileModal = ({
}) => {
const [modeMap, setModeMap] = useState({
[TrainingModeEnum.qa]: {
maxLen: 8000,
price: ChatModelMap[OpenAiChatEnum.GPT3516k].price
model: qaModelList[0].model,
maxLen: (qaModelList[0]?.maxToken || 16000) * 0.5,
price: qaModelList[0]?.price || 3
},
[TrainingModeEnum.index]: {
model: vectorModelList[0].model,
maxLen: 600,
price: embeddingPrice
price: vectorModelList[0]?.price || 0.2
}
});
const [btnLoading, setBtnLoading] = useState(false);
@@ -111,6 +113,7 @@ const SelectFileModal = ({
},
[toast]
);
console.log({ model: modeMap[mode].model });
const { mutate, isLoading: uploading } = useMutation({
mutationFn: async () => {
@@ -122,6 +125,7 @@ const SelectFileModal = ({
for (let i = 0; i < splitRes.chunks.length; i += step) {
const { insertLen } = await postKbDataFromList({
kbId,
model: modeMap[mode].model,
data: splitRes.chunks
.slice(i, i + step)
.map((item) => ({ q: item.value, a: '', source: item.filename })),
@@ -275,8 +279,8 @@ const SelectFileModal = ({
setModeMap((state) => ({
...state,
[TrainingModeEnum.index]: {
maxLen: val,
price: embeddingPrice
...modeMap[TrainingModeEnum.index],
maxLen: val
}
}));
}}

View File

@@ -1,6 +1,6 @@
import React, { useState } from 'react';
import { Table, Thead, Tbody, Tr, Th, Td, TableContainer, Flex, Box } from '@chakra-ui/react';
import { BillTypeMap } from '@/constants/user';
import { BillSourceMap } from '@/constants/user';
import { getUserBills } from '@/api/user';
import type { UserBillType } from '@/types/user';
import { usePagination } from '@/hooks/usePagination';
@@ -39,10 +39,8 @@ const BillTable = () => {
<Thead>
<Tr>
<Th></Th>
<Th></Th>
<Th></Th>
<Th></Th>
<Th>Tokens </Th>
<Th></Th>
<Th></Th>
<Th></Th>
</Tr>
</Thead>
@@ -50,11 +48,9 @@ const BillTable = () => {
{bills.map((item) => (
<Tr key={item.id}>
<Td>{dayjs(item.time).format('YYYY/MM/DD HH:mm:ss')}</Td>
<Td>{BillTypeMap[item.type] || '-'}</Td>
<Td>{item.modelName}</Td>
<Td>{item.textLen}</Td>
<Td>{item.tokenLen}</Td>
<Td>{item.price}</Td>
<Td>{BillSourceMap[item.source]}</Td>
<Td>{item.appName || '-'}</Td>
<Td>{item.total}</Td>
</Tr>
))}
</Tbody>

View File

@@ -0,0 +1,114 @@
import axios, { Method, InternalAxiosRequestConfig, AxiosResponse } from 'axios';
interface ConfigType {
headers?: { [key: string]: string };
hold?: boolean;
timeout?: number;
}
interface ResponseDataType {
code: number;
message: string;
data: any;
}
/**
* 请求开始
*/
function requestStart(config: InternalAxiosRequestConfig): InternalAxiosRequestConfig {
if (config.headers) {
// config.headers.Authorization = getToken();
}
return config;
}
/**
* 请求成功,检查请求头
*/
function responseSuccess(response: AxiosResponse<ResponseDataType>) {
return response;
}
/**
* 响应数据检查
*/
function checkRes(data: ResponseDataType) {
if (data === undefined) {
console.log('error->', data, 'data is empty');
return Promise.reject('服务器异常');
} else if (data.code < 200 || data.code >= 400) {
return Promise.reject(data);
}
return data.data;
}
/**
* 响应错误
*/
function responseError(err: any) {
console.log('error->', '请求错误', err);
if (!err) {
return Promise.reject({ message: '未知错误' });
}
if (typeof err === 'string') {
return Promise.reject({ message: err });
}
return Promise.reject(err);
}
/* 创建请求实例 */
const instance = axios.create({
timeout: 60000, // 超时时间
headers: {
'content-type': 'application/json'
}
});
/* 请求拦截 */
instance.interceptors.request.use(requestStart, (err) => Promise.reject(err));
/* 响应拦截 */
instance.interceptors.response.use(responseSuccess, (err) => Promise.reject(err));
function request(url: string, data: any, config: ConfigType, method: Method): any {
/* 去空 */
for (const key in data) {
if (data[key] === null || data[key] === undefined) {
delete data[key];
}
}
return instance
.request({
baseURL: `http://localhost:${process.env.PORT || 3000}/api`,
url,
method,
data: ['POST', 'PUT'].includes(method) ? data : null,
params: !['POST', 'PUT'].includes(method) ? data : null,
...config // 用户自定义配置,可以覆盖前面的配置
})
.then((res) => checkRes(res.data))
.catch((err) => responseError(err));
}
/**
* api请求方式
* @param {String} url
* @param {Any} params
* @param {Object} config
* @returns
*/
export function GET<T>(url: string, params = {}, config: ConfigType = {}): Promise<T> {
return request(url, params, config, 'GET');
}
export function POST<T>(url: string, data = {}, config: ConfigType = {}): Promise<T> {
return request(url, data, config, 'POST');
}
export function PUT<T>(url: string, data = {}, config: ConfigType = {}): Promise<T> {
return request(url, data, config, 'PUT');
}
export function DELETE<T>(url: string, data = {}, config: ConfigType = {}): Promise<T> {
return request(url, data, config, 'DELETE');
}

View File

@@ -93,6 +93,8 @@ export const moduleFetch = ({ url, data, res }: Props) =>
event: sseResponseEventEnum.answer,
data: JSON.stringify(data)
});
} else if (item.event === sseResponseEventEnum.error) {
return reject(getErrText(data, '流响应错误'));
}
});
read();

View File

@@ -1,15 +1,16 @@
import { TrainingData } from '@/service/mongo';
import { getApiKey } from '../utils/auth';
import { OpenAiChatEnum } from '@/constants/model';
import { pushSplitDataBill } from '@/service/events/pushBill';
import { openaiAccountError } from '../errorCode';
import { modelServiceToolMap } from '../utils/chat';
import { ChatRoleEnum } from '@/constants/chat';
import { BillTypeEnum } from '@/constants/user';
import { BillSourceEnum } from '@/constants/user';
import { pushDataToKb } from '@/pages/api/openapi/kb/pushData';
import { TrainingModeEnum } from '@/constants/plugin';
import { ERROR_ENUM } from '../errorCode';
import { sendInform } from '@/pages/api/user/inform/send';
import { authBalanceByUid } from '../utils/auth';
import { axiosConfig, getOpenAIApi } from '../ai/openai';
import { ChatCompletionRequestMessage } from 'openai';
const reduceQueue = () => {
global.qaQueueLen = global.qaQueueLen > 0 ? global.qaQueueLen - 1 : 0;
@@ -37,7 +38,8 @@ export async function generateQA(): Promise<any> {
kbId: 1,
prompt: 1,
q: 1,
source: 1
source: 1,
model: 1
});
// task preemption
@@ -51,54 +53,59 @@ export async function generateQA(): Promise<any> {
userId = String(data.userId);
const kbId = String(data.kbId);
// 余额校验并获取 openapi Key
const { systemAuthKey } = await getApiKey({
model: OpenAiChatEnum.GPT35,
userId,
mustPay: true
});
await authBalanceByUid(userId);
const startTime = Date.now();
const chatAPI = getOpenAIApi();
// 请求 chatgpt 获取回答
const response = await Promise.all(
[data.q].map((text) =>
modelServiceToolMap
.chatCompletion({
model: OpenAiChatEnum.GPT3516k,
apiKey: systemAuthKey,
temperature: 0.8,
messages: [
{
obj: ChatRoleEnum.System,
value: `你是出题人.
[data.q].map((text) => {
const messages: ChatCompletionRequestMessage[] = [
{
role: 'system',
content: `你是出题人.
${data.prompt || '用户会发送一段长文本'}.
从中选出 25 个问题和答案. 答案详细完整. 按格式回答: Q1:
A1:
Q2:
A2:
...`
},
{
obj: 'Human',
value: text
}
],
stream: false
})
.then(({ totalTokens, responseText, responseMessages }) => {
const result = formatSplitText(responseText); // 格式化后的QA对
},
{
role: 'user',
content: text
}
];
return chatAPI
.createChatCompletion(
{
model: data.model,
temperature: 0.8,
messages,
stream: false
},
{
timeout: 480000,
...axiosConfig()
}
)
.then((res) => {
const answer = res.data.choices?.[0].message?.content;
const totalTokens = res.data.usage?.total_tokens || 0;
const result = formatSplitText(answer || ''); // 格式化后的QA对
console.log(`split result length: `, result.length);
// 计费
pushSplitDataBill({
isPay: result.length > 0,
userId: data.userId,
type: BillTypeEnum.QA,
textLen: responseMessages.map((item) => item.value).join('').length,
totalTokens
totalTokens,
model: data.model,
appName: 'QA 拆分'
});
return {
rawContent: responseText,
rawContent: answer,
result
};
})
@@ -106,8 +113,8 @@ A2:
console.log('QA拆分错误');
console.log(err.response?.status, err.response?.statusText, err.response?.data);
return Promise.reject(err);
})
)
});
})
);
const responseList = response.map((item) => item.result).flat();
@@ -120,6 +127,7 @@ A2:
source: data.source
})),
userId,
model: global.vectorModels[0].model,
mode: TrainingModeEnum.index
});

View File

@@ -1,6 +1,6 @@
import { openaiAccountError } from '../errorCode';
import { insertKbItem } from '@/service/pg';
import { openaiEmbedding } from '@/pages/api/openapi/plugin/openaiEmbedding';
import { getVector } from '@/pages/api/openapi/plugin/vector';
import { TrainingData } from '../models/trainingData';
import { ERROR_ENUM } from '../errorCode';
import { TrainingModeEnum } from '@/constants/plugin';
@@ -33,7 +33,8 @@ export async function generateVector(): Promise<any> {
kbId: 1,
q: 1,
a: 1,
source: 1
source: 1,
model: 1
});
// task preemption
@@ -55,10 +56,10 @@ export async function generateVector(): Promise<any> {
];
// 生成词向量
const vectors = await openaiEmbedding({
const vectors = await getVector({
model: data.model,
input: dataItems.map((item) => item.q),
userId,
mustPay: true
userId
});
// 生成结果插入到 pg

View File

@@ -1,66 +1,85 @@
import { connectToDatabase, Bill, User, ShareChat } from '../mongo';
import {
ChatModelMap,
OpenAiChatEnum,
ChatModelType,
embeddingModel,
embeddingPrice
} from '@/constants/model';
import { BillTypeEnum } from '@/constants/user';
import { BillSourceEnum } from '@/constants/user';
import { getModel } from '../utils/data';
import type { BillListItemType } from '@/types/mongoSchema';
export const pushChatBill = async ({
isPay,
chatModel,
userId,
export const createTaskBill = async ({
appName,
appId,
textLen,
tokens,
type
userId,
source
}: {
isPay: boolean;
chatModel: ChatModelType;
userId: string;
appName: string;
appId: string;
textLen: number;
tokens: number;
type: BillTypeEnum.chat | BillTypeEnum.openapiChat;
userId: string;
source: `${BillSourceEnum}`;
}) => {
console.log(`chat generate success. text len: ${textLen}. token len: ${tokens}. pay:${isPay}`);
if (!isPay) return;
const res = await Bill.create({
userId,
appName,
appId,
total: 0,
source,
list: []
});
return String(res._id);
};
let billId = '';
export const pushTaskBillListItem = async ({
billId,
moduleName,
amount,
model,
tokenLen
}: { billId?: string } & BillListItemType) => {
if (!billId) return;
try {
await Bill.findByIdAndUpdate(billId, {
$push: {
list: {
moduleName,
amount,
model,
tokenLen
}
}
});
} catch (error) {}
};
export const finishTaskBill = async ({ billId }: { billId: string }) => {
try {
// update bill
const res = await Bill.findByIdAndUpdate(billId, [
{
$set: {
total: {
$sum: '$list.amount'
},
time: new Date()
}
}
]);
if (!res) return;
const total = res.list.reduce((sum, item) => sum + item.amount, 0) || 0;
console.log('finish bill:', total);
// 账号扣费
await User.findByIdAndUpdate(res.userId, {
$inc: { balance: -total }
});
} catch (error) {
console.log('Finish bill failed:', error);
billId && Bill.findByIdAndDelete(billId);
}
};
export const delTaskBill = async (billId?: string) => {
if (!billId) return;
try {
await connectToDatabase();
// 计算价格
const unitPrice = ChatModelMap[chatModel]?.price || 3;
const price = unitPrice * tokens;
try {
// 插入 Bill 记录
const res = await Bill.create({
userId,
type,
modelName: chatModel,
appId,
textLen,
tokenLen: tokens,
price
});
billId = res._id;
// 账号扣费
await User.findByIdAndUpdate(userId, {
$inc: { balance: -price }
});
} catch (error) {
console.log('创建账单失败:', error);
billId && Bill.findByIdAndDelete(billId);
}
} catch (error) {
console.log(error);
}
await Bill.findByIdAndRemove(billId);
} catch (error) {}
};
export const updateShareChatBill = async ({
@@ -81,22 +100,17 @@ export const updateShareChatBill = async ({
};
export const pushSplitDataBill = async ({
isPay,
userId,
totalTokens,
textLen,
type
model,
appName
}: {
isPay: boolean;
model: string;
userId: string;
totalTokens: number;
textLen: number;
type: BillTypeEnum.QA;
appName: string;
}) => {
console.log(
`splitData generate success. text len: ${textLen}. token len: ${totalTokens}. pay:${isPay}`
);
if (!isPay) return;
console.log(`splitData generate success. token len: ${totalTokens}.`);
let billId;
@@ -104,24 +118,22 @@ export const pushSplitDataBill = async ({
await connectToDatabase();
// 获取模型单价格, 都是用 gpt35 拆分
const unitPrice = ChatModelMap[OpenAiChatEnum.GPT3516k].price || 3;
const unitPrice = global.chatModels.find((item) => item.model === model)?.price || 3;
// 计算价格
const price = unitPrice * totalTokens;
const total = unitPrice * totalTokens;
// 插入 Bill 记录
const res = await Bill.create({
userId,
type,
modelName: OpenAiChatEnum.GPT3516k,
textLen,
appName,
tokenLen: totalTokens,
price
total
});
billId = res._id;
// 账号扣费
await User.findByIdAndUpdate(userId, {
$inc: { balance: -price }
$inc: { balance: -total }
});
} catch (error) {
console.log('创建账单失败:', error);
@@ -130,21 +142,14 @@ export const pushSplitDataBill = async ({
};
export const pushGenerateVectorBill = async ({
isPay,
userId,
text,
tokenLen
tokenLen,
model
}: {
isPay: boolean;
userId: string;
text: string;
tokenLen: number;
model: string;
}) => {
// console.log(
// `vector generate success. text len: ${text.length}. token len: ${tokenLen}. pay:${isPay}`
// );
if (!isPay) return;
let billId;
try {
@@ -152,23 +157,22 @@ export const pushGenerateVectorBill = async ({
try {
// 计算价格. 至少为1
let price = embeddingPrice * tokenLen;
price = price > 1 ? price : 1;
const unitPrice = global.vectorModels.find((item) => item.model === model)?.price || 0.2;
let total = unitPrice * tokenLen;
total = total > 1 ? total : 1;
// 插入 Bill 记录
const res = await Bill.create({
userId,
type: BillTypeEnum.vector,
modelName: embeddingModel,
textLen: text.length,
tokenLen,
price
model,
appName: '索引生成',
total
});
billId = res._id;
// 账号扣费
await User.findByIdAndUpdate(userId, {
$inc: { balance: -price }
$inc: { balance: -total }
});
} catch (error) {
console.log('创建账单失败:', error);
@@ -178,3 +182,9 @@ export const pushGenerateVectorBill = async ({
console.log(error);
}
};
export const countModelPrice = ({ model, tokens }: { model: string; tokens: number }) => {
const modelData = getModel(model);
if (!modelData) return 0;
return modelData.price * tokens;
};

View File

@@ -1,6 +1,5 @@
import { Schema, model, models, Model } from 'mongoose';
import { AppSchema as AppType } from '@/types/mongoSchema';
import { ChatModelMap, OpenAiChatEnum } from '@/constants/model';
const AppSchema = new Schema({
userId: {
@@ -24,50 +23,6 @@ const AppSchema = new Schema({
type: Date,
default: () => new Date()
},
chat: {
relatedKbs: {
type: [Schema.Types.ObjectId],
ref: 'kb',
default: []
},
searchSimilarity: {
type: Number,
default: 0.8
},
searchLimit: {
type: Number,
default: 5
},
searchEmptyText: {
type: String,
default: ''
},
systemPrompt: {
type: String,
default: ''
},
limitPrompt: {
type: String,
default: ''
},
maxToken: {
type: Number,
default: 4000,
min: 100
},
temperature: {
type: Number,
min: 0,
max: 10,
default: 0
},
chatModel: {
// 聊天时使用的模型
type: String,
enum: Object.keys(ChatModelMap),
default: OpenAiChatEnum.GPT3516k
}
},
share: {
topNum: {
type: Number,

View File

@@ -1,7 +1,6 @@
import { Schema, model, models, Model } from 'mongoose';
import { ChatModelMap, embeddingModel } from '@/constants/model';
import { BillSchema as BillType } from '@/types/mongoSchema';
import { BillTypeMap } from '@/constants/user';
import { BillSourceEnum, BillSourceMap } from '@/constants/user';
const BillSchema = new Schema({
userId: {
@@ -9,36 +8,48 @@ const BillSchema = new Schema({
ref: 'user',
required: true
},
type: {
appName: {
type: String,
enum: Object.keys(BillTypeMap),
required: true
},
modelName: {
type: String,
enum: [...Object.keys(ChatModelMap), embeddingModel]
default: ''
},
appId: {
type: Schema.Types.ObjectId,
ref: 'app'
ref: 'app',
required: false
},
time: {
type: Date,
default: () => new Date()
},
textLen: {
// 提示词+响应的总字数
total: {
type: Number,
required: true
},
tokenLen: {
// 折算成 token 的数量
type: Number,
required: true
source: {
type: String,
enum: Object.keys(BillSourceMap),
default: BillSourceEnum.fastgpt
},
price: {
type: Number,
required: true
list: {
type: [
{
moduleName: {
type: String,
required: true
},
amount: {
type: Number,
required: true
},
model: {
type: String
},
tokenLen: {
type: Number
}
}
],
default: []
}
});

View File

@@ -1,22 +0,0 @@
import { Schema, model, models } from 'mongoose';
const SystemSchema = new Schema({
vectorMaxProcess: {
type: Number,
default: 10
},
qaMaxProcess: {
type: Number,
default: 10
},
pgIvfflatProbe: {
type: Number,
default: 10
},
sensitiveCheck: {
type: Boolean,
default: false
}
});
export const System = models['system'] || model('system', SystemSchema);

View File

@@ -28,13 +28,16 @@ const TrainingDataSchema = new Schema({
enum: Object.keys(TrainingTypeMap),
required: true
},
model: {
type: String,
required: true
},
prompt: {
// 拆分时的提示词
// qa split prompt
type: String,
default: ''
},
q: {
// 如果是
type: String,
default: ''
},

View File

@@ -2,6 +2,7 @@ import mongoose from 'mongoose';
import tunnel from 'tunnel';
import { startQueue } from './utils/tools';
import { updateSystemEnv } from '@/pages/api/system/updateEnv';
import { initSystemModels } from '@/pages/api/system/getInitData';
/**
* 连接 MongoDB 数据库
@@ -10,6 +11,7 @@ export async function connectToDatabase(): Promise<void> {
if (global.mongodb) {
return;
}
global.mongodb = 'connecting';
// init global data
global.qaQueueLen = 0;
@@ -31,8 +33,9 @@ export async function connectToDatabase(): Promise<void> {
}
});
}
initSystemModels();
updateSystemEnv();
global.mongodb = 'connecting';
try {
mongoose.set('strictQuery', true);
global.mongodb = await mongoose.connect(process.env.MONGODB_URI as string, {
@@ -49,7 +52,6 @@ export async function connectToDatabase(): Promise<void> {
}
// init function
updateSystemEnv();
startQueue();
}
@@ -66,5 +68,4 @@ export * from './models/collection';
export * from './models/shareChat';
export * from './models/kb';
export * from './models/inform';
export * from './models/system';
export * from './models/image';

View File

@@ -92,7 +92,7 @@ export const sseErrRes = (res: NextApiResponse, error: any) => {
} else if (openaiError[error?.response?.statusText]) {
msg = openaiError[error.response.statusText];
}
console.log('sse error', error);
console.log('sse error => ', error);
sseResponse({
res,

View File

@@ -1,15 +1,11 @@
import type { NextApiRequest } from 'next';
import jwt from 'jsonwebtoken';
import Cookie from 'cookie';
import { Chat, App, OpenApi, User, ShareChat, KB } from '../mongo';
import { App, OpenApi, User, ShareChat, KB } from '../mongo';
import type { AppSchema } from '@/types/mongoSchema';
import type { ChatItemType } from '@/types/chat';
import mongoose from 'mongoose';
import { defaultApp } from '@/constants/model';
import { formatPrice } from '@/utils/user';
import { ERROR_ENUM } from '../errorCode';
import { ChatModelType, OpenAiChatEnum } from '@/constants/model';
import { hashPassword } from '@/service/utils/tools';
export type AuthType = 'token' | 'root' | 'apikey';
@@ -35,6 +31,19 @@ export const parseCookie = (cookie?: string): Promise<string> => {
});
};
/* auth balance */
export const authBalanceByUid = async (uid: string) => {
const user = await User.findById(uid);
if (!user) {
return Promise.reject(ERROR_ENUM.unAuthorization);
}
if (!user.openaiKey && formatPrice(user.balance) <= 0) {
return Promise.reject(ERROR_ENUM.insufficientQuota);
}
return user;
};
/* uniform auth user */
export const authUser = async ({
req,
@@ -144,14 +153,7 @@ export const authUser = async ({
// balance check
if (authBalance) {
const user = await User.findById(uid);
if (!user) {
return Promise.reject(ERROR_ENUM.unAuthorization);
}
if (!user.openaiKey && formatPrice(user.balance) <= 0) {
return Promise.reject(ERROR_ENUM.insufficientQuota);
}
await authBalanceByUid(uid);
}
return {
@@ -166,43 +168,6 @@ export const getSystemOpenAiKey = () => {
return process.env.ONEAPI_KEY || process.env.OPENAIKEY || '';
};
/* 获取 api 请求的 key */
export const getApiKey = async ({
model,
userId,
mustPay = false
}: {
model: ChatModelType;
userId: string;
mustPay?: boolean;
}) => {
const user = await User.findById(userId, 'openaiKey balance');
if (!user) {
return Promise.reject(ERROR_ENUM.unAuthorization);
}
const userOpenAiKey = user.openaiKey || '';
const systemAuthKey = getSystemOpenAiKey();
// 有自己的key
if (!mustPay && userOpenAiKey) {
return {
userOpenAiKey,
systemAuthKey: ''
};
}
// 平台账号余额校验
if (formatPrice(user.balance) <= 0) {
return Promise.reject(ERROR_ENUM.insufficientQuota);
}
return {
userOpenAiKey: '',
systemAuthKey
};
};
// 模型使用权校验
export const authApp = async ({
appId,
@@ -232,14 +197,6 @@ export const authApp = async ({
if (userId !== String(app.userId)) return Promise.reject(ERROR_ENUM.unAuthModel);
}
// do not share detail info
if (!reserveDetail && !app.share.isShareDetail && userId !== String(app.userId)) {
app.chat = {
...defaultApp.chat,
chatModel: app.chat.chatModel
};
}
return {
app,
showModelDetail: userId === String(app.userId)

View File

@@ -1,13 +1,8 @@
import { ChatItemType } from '@/types/chat';
import { modelToolMap } from '@/utils/plugin';
import type { ChatModelType } from '@/constants/model';
import { ChatRoleEnum, sseResponseEventEnum } from '@/constants/chat';
import { sseResponse } from '../tools';
import { ChatRoleEnum } from '@/constants/chat';
import { OpenAiChatEnum } from '@/constants/model';
import { chatResponse, openAiStreamResponse } from './openai';
import type { NextApiResponse } from 'next';
import { textAdaptGptResponse } from '@/utils/adapt';
import { parseStreamChunk } from '@/utils/adapt';
export type ChatCompletionType = {
apiKey: string;
@@ -36,11 +31,6 @@ export type StreamResponseReturnType = {
finishMessages: ChatItemType[];
};
export const modelServiceToolMap = {
chatCompletion: chatResponse,
streamResponse: openAiStreamResponse
};
/* delete invalid symbol */
const simplifyStr = (str = '') =>
str
@@ -54,7 +44,7 @@ export const ChatContextFilter = ({
prompts,
maxTokens
}: {
model: ChatModelType;
model: string;
prompts: ChatItemType[];
maxTokens: number;
}) => {
@@ -111,126 +101,3 @@ export const ChatContextFilter = ({
return [...systemPrompts, ...chats];
};
/* stream response */
export const resStreamResponse = async ({
model,
res,
chatResponse,
prompts
}: StreamResponseType & {
model: ChatModelType;
}) => {
// 创建响应流
res.setHeader('Content-Type', 'text/event-stream;charset=utf-8');
res.setHeader('Access-Control-Allow-Origin', '*');
res.setHeader('X-Accel-Buffering', 'no');
res.setHeader('Cache-Control', 'no-cache, no-transform');
const { responseContent, totalTokens, finishMessages } = await modelServiceToolMap.streamResponse(
{
chatResponse,
prompts,
res,
model
}
);
return { responseContent, totalTokens, finishMessages };
};
/* stream response */
export const V2_StreamResponse = async ({
model,
res,
chatResponse,
prompts
}: StreamResponseType & {
model: ChatModelType;
}) => {
let responseContent = '';
let error: any = null;
let truncateData = '';
const clientRes = async (data: string) => {
//部分代理会导致流式传输时的数据被截断不为json格式这里做一个兼容
const { content = '' } = (() => {
try {
if (truncateData) {
try {
//判断是否为json如果是的话直接跳过后续拼装操作注意极端情况下可能出现截断成3截以上情况也可以兼容
JSON.parse(data);
} catch (e) {
data = truncateData + data;
}
truncateData = '';
}
const json = JSON.parse(data);
const content: string = json?.choices?.[0].delta.content || '';
error = json.error;
responseContent += content;
return { content };
} catch (error) {
truncateData = data;
return {};
}
})();
if (res.closed || error) return;
if (data === '[DONE]') {
sseResponse({
res,
event: sseResponseEventEnum.answer,
data: textAdaptGptResponse({
text: null,
finish_reason: 'stop'
})
});
sseResponse({
res,
event: sseResponseEventEnum.answer,
data: '[DONE]'
});
} else {
sseResponse({
res,
event: sseResponseEventEnum.answer,
data: textAdaptGptResponse({
text: content
})
});
}
};
try {
for await (const chunk of chatResponse.data as any) {
if (res.closed) break;
const parse = parseStreamChunk(chunk);
parse.forEach((item) => clientRes(item.data));
}
} catch (error) {
console.log('pipe error', error);
}
if (error) {
console.log(error);
return Promise.reject(error);
}
// count tokens
const finishMessages = prompts.concat({
obj: ChatRoleEnum.AI,
value: responseContent
});
const totalTokens = modelToolMap.countTokens({
model,
messages: finishMessages
});
return {
responseContent,
totalTokens,
finishMessages
};
};

View File

@@ -1,133 +0,0 @@
import { Configuration, OpenAIApi } from 'openai';
import { axiosConfig } from '../tools';
import { ChatModelMap, OpenAiChatEnum } from '@/constants/model';
import { adaptChatItem_openAI } from '@/utils/plugin/openai';
import { modelToolMap } from '@/utils/plugin';
import { ChatCompletionType, ChatContextFilter, StreamResponseType } from './index';
import { ChatRoleEnum } from '@/constants/chat';
import { parseStreamChunk } from '@/utils/adapt';
export const getOpenAIApi = (apiKey: string) => {
const openaiBaseUrl = process.env.OPENAI_BASE_URL || 'https://api.openai.com/v1';
return new OpenAIApi(
new Configuration({
basePath: apiKey === process.env.ONEAPI_KEY ? process.env.ONEAPI_URL : openaiBaseUrl
})
);
};
/* 模型对话 */
export const chatResponse = async ({
model,
apiKey,
temperature,
maxToken = 4000,
messages,
stream
}: ChatCompletionType & { model: `${OpenAiChatEnum}` }) => {
const modelTokenLimit = ChatModelMap[model]?.contextMaxToken || 4000;
const filterMessages = ChatContextFilter({
model,
prompts: messages,
maxTokens: Math.ceil(modelTokenLimit - 300) // filter token. not response maxToken
});
const adaptMessages = adaptChatItem_openAI({ messages: filterMessages, reserveId: false });
const chatAPI = getOpenAIApi(apiKey);
const promptsToken = modelToolMap.countTokens({
model,
messages: filterMessages
});
maxToken = maxToken + promptsToken > modelTokenLimit ? modelTokenLimit - promptsToken : maxToken;
const response = await chatAPI.createChatCompletion(
{
model,
temperature: Number(temperature || 0),
max_tokens: maxToken,
messages: adaptMessages,
frequency_penalty: 0.5, // 越大,重复内容越少
presence_penalty: -0.5, // 越大,越容易出现新内容
stream
// stop: ['.!?。']
},
{
timeout: stream ? 60000 : 480000,
responseType: stream ? 'stream' : 'json',
...axiosConfig(apiKey)
}
);
const responseText = stream ? '' : response.data.choices?.[0].message?.content || '';
const totalTokens = stream ? 0 : response.data.usage?.total_tokens || 0;
return {
streamResponse: response,
responseMessages: filterMessages.concat({ obj: 'AI', value: responseText }),
responseText,
totalTokens
};
};
/* openai stream response */
export const openAiStreamResponse = async ({
res,
model,
chatResponse,
prompts
}: StreamResponseType & {
model: `${OpenAiChatEnum}`;
}) => {
try {
let responseContent = '';
const clientRes = async (data: string) => {
const { content = '' } = (() => {
try {
const json = JSON.parse(data);
const content: string = json?.choices?.[0].delta.content || '';
responseContent += content;
return { content };
} catch (error) {
return {};
}
})();
if (data === '[DONE]') return;
!res.closed && content && res.write(content);
};
try {
for await (const chunk of chatResponse.data as any) {
if (res.closed) break;
const parse = parseStreamChunk(chunk);
parse.forEach((item) => clientRes(item.data));
}
} catch (error) {
console.log('pipe error', error);
}
// count tokens
const finishMessages = prompts.concat({
obj: ChatRoleEnum.AI,
value: responseContent
});
const totalTokens = modelToolMap.countTokens({
model,
messages: finishMessages
});
return {
responseContent,
totalTokens,
finishMessages
};
} catch (error) {
return Promise.reject(error);
}
};

View File

@@ -0,0 +1,14 @@
export const getChatModel = (model: string) => {
return global.chatModels.find((item) => item.model === model);
};
export const getVectorModel = (model: string) => {
return global.vectorModels.find((item) => item.model === model);
};
export const getQAModel = (model: string) => {
return global.qaModels.find((item) => item.model === model);
};
export const getModel = (model: string) => {
return [...global.chatModels, ...global.vectorModels, ...global.qaModels].find(
(item) => item.model === model
);
};

View File

@@ -4,7 +4,6 @@ import crypto from 'crypto';
import jwt from 'jsonwebtoken';
import { generateQA } from '../events/generateQA';
import { generateVector } from '../events/generateVector';
import { sseResponseEventEnum } from '@/constants/chat';
/* 密码加密 */
export const hashPassword = (psw: string) => {
@@ -33,20 +32,6 @@ export const clearCookie = (res: NextApiResponse) => {
res.setHeader('Set-Cookie', 'token=; Path=/; Max-Age=0');
};
/* openai axios config */
export const axiosConfig = (apikey: string) => {
const openaiBaseUrl = process.env.OPENAI_BASE_URL || 'https://api.openai.com/v1';
return {
baseURL: apikey === process.env.ONEAPI_KEY ? process.env.ONEAPI_URL : openaiBaseUrl, // 此处仅对非 npm 模块有效
httpsAgent: global.httpsAgent,
headers: {
Authorization: `Bearer ${apikey}`,
auth: process.env.OPENAI_BASE_URL_AUTH || ''
}
};
};
export function withNextCors(handler: NextApiHandler): NextApiHandler {
return async function nextApiHandlerWrappedWithNextCors(
req: NextApiRequest,

View File

@@ -1,12 +1,8 @@
import { create } from 'zustand';
import { devtools } from 'zustand/middleware';
import { immer } from 'zustand/middleware/immer';
import type { InitDateResponse } from '@/pages/api/system/getInitData';
import { getInitData } from '@/api/system';
type State = {
initData: InitDateResponse;
loadInitData: () => Promise<void>;
loading: boolean;
setLoading: (val: boolean) => null;
screenWidth: number;
@@ -17,19 +13,6 @@ type State = {
export const useGlobalStore = create<State>()(
devtools(
immer((set, get) => ({
initData: {
beianText: '',
googleVerKey: '',
baiduTongji: false
},
async loadInitData() {
try {
const res = await getInitData();
set((state) => {
state.initData = res;
});
} catch (error) {}
},
loading: false,
setLoading: (val: boolean) => {
set((state) => {

View File

@@ -0,0 +1,36 @@
import {
type QAModelItemType,
type ChatModelItemType,
type VectorModelItemType
} from '@/types/model';
import type { InitDateResponse } from '@/pages/api/system/getInitData';
import { getInitData } from '@/api/system';
import { delay } from '@/utils/tools';
export let beianText = '';
export let googleVerKey = '';
export let baiduTongji = '';
export let chatModelList: ChatModelItemType[] = [];
export let qaModelList: QAModelItemType[] = [];
export let vectorModelList: VectorModelItemType[] = [];
let retryTimes = 3;
export const clientInitData = async (): Promise<InitDateResponse> => {
try {
const res = await getInitData();
chatModelList = res.chatModels;
qaModelList = res.qaModels;
vectorModelList = res.vectorModels;
beianText = res.beianText;
googleVerKey = res.googleVerKey;
baiduTongji = res.baiduTongji;
return res;
} catch (error) {
retryTimes--;
await delay(500);
return clientInitData();
}
};

View File

@@ -42,7 +42,7 @@ export type ShareChatEditType = {
/* agent */
/* question classify */
export type ClassifyQuestionAgentItemType = {
export type RecognizeIntentionAgentItemType = {
value: string;
key: string;
};

View File

@@ -8,9 +8,6 @@ export type ChatItemType = {
_id?: string;
obj: `${ChatRoleEnum}`;
value: string;
quoteLen?: number;
quote?: QuoteItemType[];
systemPrompt?: string;
[key: string]: any;
};

View File

@@ -2,6 +2,7 @@ import type { Mongoose } from 'mongoose';
import type { Agent } from 'http';
import type { Pool } from 'pg';
import type { Tiktoken } from '@dqbd/tiktoken';
import { ChatModelItemType, QAModelItemType, VectorModelItemType } from './model';
export type PagingData<T> = {
pageNum: number;
@@ -16,9 +17,6 @@ declare global {
var mongodb: Mongoose | string | null;
var pgClient: Pool | null;
var httpsAgent: Agent;
var particlesJS: any;
var grecaptcha: any;
var QRCode: any;
var qaQueueLen: number;
var vectorQueueLen: number;
var OpenAiEncMap: Tiktoken;
@@ -30,8 +28,14 @@ declare global {
pgIvfflatProbe: number;
sensitiveCheck: boolean;
};
var chatModels: ChatModelItemType[];
var qaModels: QAModelItemType[];
var vectorModels: VectorModelItemType[];
interface Window {
['pdfjs-dist/build/pdf']: any;
particlesJS: any;
grecaptcha: any;
QRCode: any;
}
}

19
client/src/types/model.d.ts vendored Normal file
View File

@@ -0,0 +1,19 @@
export type ChatModelItemType = {
model: string;
name: string;
contextMaxToken: number;
systemMaxToken: number;
maxTemperature: number;
price: number;
};
export type QAModelItemType = {
model: string;
name: string;
maxToken: number;
price: number;
};
export type VectorModelItemType = {
model: string;
name: string;
price: number;
};

View File

@@ -1,7 +1,7 @@
import type { ChatItemType } from './chat';
import { ModelNameEnum, ChatModelType, EmbeddingModelType } from '@/constants/model';
import type { DataType } from './data';
import { BillTypeEnum, InformTypeEnum } from '@/constants/user';
import { BillSourceEnum, InformTypeEnum } from '@/constants/user';
import { TrainingModeEnum } from '@/constants/plugin';
import type { AppModuleItemType } from './app';
@@ -38,17 +38,6 @@ export interface AppSchema {
avatar: string;
intro: string;
updateTime: number;
chat: {
relatedKbs: string[];
searchSimilarity: number;
searchLimit: number;
searchEmptyText: string;
systemPrompt: string;
limitPrompt: string;
temperature: number;
maxToken: number;
chatModel: ChatModelType; // 聊天时用的模型,训练后就是训练的模型
};
share: {
isShare: boolean;
isShareDetail: boolean;
@@ -68,6 +57,7 @@ export interface TrainingDataSchema {
kbId: string;
expireAt: Date;
lockTime: Date;
model: string;
mode: `${TrainingModeEnum}`;
prompt: string;
q: string;
@@ -87,16 +77,21 @@ export interface ChatSchema {
content: ChatItemType[];
}
export type BillListItemType = {
moduleName: string;
amount: number;
model?: string;
tokenLen?: number;
};
export interface BillSchema {
_id: string;
userId: string;
type: `${BillTypeEnum}`;
modelName?: ChatModelType | EmbeddingModelType;
appName: string;
appId?: string;
source: `${BillSourceEnum}`;
time: Date;
textLen: number;
tokenLen: number;
price: number;
total: number;
list: BillListItemType[];
}
export interface PaySchema {

View File

@@ -1,3 +1,4 @@
import { BillSourceEnum } from '@/constants/user';
import type { BillSchema } from './mongoSchema';
export interface UserType {
_id: string;
@@ -19,9 +20,7 @@ export interface UserUpdateParams {
export interface UserBillType {
id: string;
time: Date;
modelName: string;
type: BillSchema['type'];
textLen: number;
tokenLen: number;
price: number;
appName: string;
source: BillSchema['source'];
total: number;
}

View File

@@ -5,7 +5,6 @@ import { ChatItemType } from '@/types/chat';
import { ChatCompletionRequestMessageRoleEnum } from 'openai';
import { ChatRoleEnum } from '@/constants/chat';
import type { MessageItemType } from '@/pages/api/openapi/v1/chat/completions';
import { ChatModelMap, OpenAiChatEnum } from '@/constants/model';
import type { AppModuleItemType } from '@/types/app';
import type { FlowModuleItemType } from '@/types/flow';
import type { Edge, Node } from 'reactflow';
@@ -16,12 +15,10 @@ const nanoid = customAlphabet('abcdefghijklmnopqrstuvwxyz1234567890', 6);
export const adaptBill = (bill: BillSchema): UserBillType => {
return {
id: bill._id,
type: bill.type,
modelName: ChatModelMap[bill.modelName as `${OpenAiChatEnum}`]?.name || bill.modelName,
source: bill.source,
time: bill.time,
textLen: bill.textLen,
tokenLen: bill.tokenLen,
price: formatPrice(bill.price)
total: formatPrice(bill.total),
appName: bill.appName
};
};

View File

@@ -50,10 +50,10 @@ export const adaptChatItem_openAI = ({
export function countOpenAIToken({
messages,
model
model = 'gpt-3.5-turbo'
}: {
messages: ChatItemType[];
model: `${OpenAiChatEnum}`;
model?: string;
}) {
const diffVal = model.startsWith('gpt-3.5-turbo') ? 3 : 2;
@@ -74,7 +74,7 @@ export const openAiSliceTextByToken = ({
text,
length
}: {
model: `${OpenAiChatEnum}`;
model: string;
text: string;
length: number;
}) => {