V4.9.11 feature (#4969)
* Feat: Images dataset collection (#4941) * New pic (#4858) * 更新数据集相关类型,添加图像文件ID和预览URL支持;优化数据集导入功能,新增图像数据集处理组件;修复部分国际化文本;更新文件上传逻辑以支持新功能。 * 与原先代码的差别 * 新增 V4.9.10 更新说明,支持 PG 设置`systemEnv.hnswMaxScanTuples`参数,优化 LLM stream 调用超时,修复全文检索多知识库排序问题。同时更新数据集索引,移除 datasetId 字段以简化查询。 * 更换成fileId_image逻辑,并增加训练队列匹配的逻辑 * 新增图片集合判断逻辑,优化预览URL生成流程,确保仅在数据集为图片集合时生成预览URL,并添加相关日志输出以便调试。 * Refactor Docker Compose configuration to comment out exposed ports for production environments, update image versions for pgvector, fastgpt, and mcp_server, and enhance Redis service with a health check. Additionally, standardize dataset collection labels in constants and improve internationalization strings across multiple languages. * Enhance TrainingStates component by adding internationalization support for the imageParse training mode and update defaultCounts to include imageParse mode in trainingDetail API. * Enhance dataset import context by adding additional steps for image dataset import process and improve internationalization strings for modal buttons in the useEditTitle hook. * Update DatasetImportContext to conditionally render MyStep component based on data source type, improving the import process for non-image datasets. * Refactor image dataset handling by improving internationalization strings, enhancing error messages, and streamlining the preview URL generation process. * 图片上传到新建的 dataset_collection_images 表,逻辑跟随更改 * 修改了除了controller的其他部分问题 * 把图片数据集的逻辑整合到controller里面 * 补充i18n * 补充i18n * resolve评论:主要是上传逻辑的更改和组件复用 * 图片名称的图标显示 * 修改编译报错的命名问题 * 删除不需要的collectionid部分 * 多余文件的处理和改动一个删除按钮 * 除了loading和统一的imageId,其他都resolve掉的 * 处理图标报错 * 复用了MyPhotoView并采用全部替换的方式将imageFileId变成imageId * 去除不必要文件修改 * 报错和字段修改 * 增加上传成功后删除临时文件的逻辑以及回退一些修改 * 删除path字段,将图片保存到gridfs内,并修改增删等操作的代码 * 修正编译错误 --------- Co-authored-by: archer <545436317@qq.com> * perf: image dataset * feat: insert image * perf: image icon * fix: training state --------- Co-authored-by: Zhuangzai fa <143257420+ctrlz526@users.noreply.github.com> * fix: ts (#4948) * Thirddatasetmd (#4942) * add thirddataset.md * fix thirddataset.md * fix * delete wrong png --------- Co-authored-by: dreamer6680 <146868355@qq.com> * perf: api dataset code * perf: log * add secondary.tsx (#4946) * add secondary.tsx * fix --------- Co-authored-by: dreamer6680 <146868355@qq.com> * perf: multiple menu * perf: i18n * feat: parse queue (#4960) * feat: parse queue * feat: sync parse queue * fix thirddataset.md (#4962) * fix thirddataset-4.png (#4963) * feat: Dataset template import (#4934) * 模版导入部分除了文档还没写 * 修复模版导入的 build 错误 * Document production * compress pictures * Change some constants to variables --------- Co-authored-by: Archer <545436317@qq.com> * perf: template import * doc * llm pargraph * bocha tool * fix: del collection --------- Co-authored-by: Zhuangzai fa <143257420+ctrlz526@users.noreply.github.com> Co-authored-by: dreamer6680 <1468683855@qq.com> Co-authored-by: dreamer6680 <146868355@qq.com>
BIN
docSite/assets/imgs/template/Question-answer.png
Normal file
After Width: | Height: | Size: 45 KiB |
BIN
docSite/assets/imgs/template/Question-answer_data.png
Normal file
After Width: | Height: | Size: 112 KiB |
BIN
docSite/assets/imgs/template/box.png
Normal file
After Width: | Height: | Size: 19 KiB |
BIN
docSite/assets/imgs/template/import.png
Normal file
After Width: | Height: | Size: 72 KiB |
BIN
docSite/assets/imgs/template/import_csv.png
Normal file
After Width: | Height: | Size: 14 KiB |
BIN
docSite/assets/imgs/template/nomal.png
Normal file
After Width: | Height: | Size: 74 KiB |
BIN
docSite/assets/imgs/template/nomal_data.png
Normal file
After Width: | Height: | Size: 113 KiB |
BIN
docSite/assets/imgs/thirddataset-1.png
Normal file
After Width: | Height: | Size: 162 KiB |
BIN
docSite/assets/imgs/thirddataset-10.png
Normal file
After Width: | Height: | Size: 228 KiB |
BIN
docSite/assets/imgs/thirddataset-11.png
Normal file
After Width: | Height: | Size: 64 KiB |
BIN
docSite/assets/imgs/thirddataset-12.png
Normal file
After Width: | Height: | Size: 49 KiB |
BIN
docSite/assets/imgs/thirddataset-13.png
Normal file
After Width: | Height: | Size: 38 KiB |
BIN
docSite/assets/imgs/thirddataset-14.png
Normal file
After Width: | Height: | Size: 73 KiB |
BIN
docSite/assets/imgs/thirddataset-15.png
Normal file
After Width: | Height: | Size: 62 KiB |
BIN
docSite/assets/imgs/thirddataset-16.png
Normal file
After Width: | Height: | Size: 26 KiB |
BIN
docSite/assets/imgs/thirddataset-17.png
Normal file
After Width: | Height: | Size: 29 KiB |
BIN
docSite/assets/imgs/thirddataset-18.png
Normal file
After Width: | Height: | Size: 33 KiB |
BIN
docSite/assets/imgs/thirddataset-19.png
Normal file
After Width: | Height: | Size: 206 KiB |
BIN
docSite/assets/imgs/thirddataset-2.png
Normal file
After Width: | Height: | Size: 207 KiB |
BIN
docSite/assets/imgs/thirddataset-20.png
Normal file
After Width: | Height: | Size: 188 KiB |
BIN
docSite/assets/imgs/thirddataset-21.png
Normal file
After Width: | Height: | Size: 197 KiB |
BIN
docSite/assets/imgs/thirddataset-3.png
Normal file
After Width: | Height: | Size: 159 KiB |
BIN
docSite/assets/imgs/thirddataset-4.png
Normal file
After Width: | Height: | Size: 173 KiB |
BIN
docSite/assets/imgs/thirddataset-5.png
Normal file
After Width: | Height: | Size: 103 KiB |
BIN
docSite/assets/imgs/thirddataset-6.png
Normal file
After Width: | Height: | Size: 144 KiB |
BIN
docSite/assets/imgs/thirddataset-7.png
Normal file
After Width: | Height: | Size: 6.0 KiB |
BIN
docSite/assets/imgs/thirddataset-8.png
Normal file
After Width: | Height: | Size: 110 KiB |
BIN
docSite/assets/imgs/thirddataset-9.png
Normal file
After Width: | Height: | Size: 140 KiB |
@@ -295,12 +295,15 @@ curl --location --request DELETE 'http://localhost:3000/api/core/dataset/delete?
|
||||
| --- | --- | --- |
|
||||
| datasetId | 知识库ID | ✅ |
|
||||
| parentId: | 父级ID,不填则默认为根目录 | |
|
||||
| trainingType | 数据处理方式。chunk: 按文本长度进行分割;qa: 问答对提取 | ✅ |
|
||||
| customPdfParse | PDF增强解析。true: 开启PDF增强解析;不填则默认为false | |
|
||||
| trainingType | 数据处理方式。chunk: 按文本长度进行分割;qa: 问答对提取 | ✅ |
|
||||
| chunkTriggerType | 分块条件逻辑。minSize(默认): 大于 n 时分块;maxSize: 小于文件处理模型最大上下文时分块;forceChunk: 强制分块 | |
|
||||
| chunkTriggerMinSize | chunkTriggerType=minSize 时候填写,原文长度大于该值时候分块(默认 1000) | |
|
||||
| autoIndexes | 是否自动生成索引(仅商业版支持) | |
|
||||
| imageIndex | 是否自动生成图片索引(仅商业版支持) | |
|
||||
| chunkSettingMode | 分块参数模式。auto: 系统默认参数; custom: 手动指定参数 | |
|
||||
| chunkSplitMode | 分块拆分模式。size: 按长度拆分; char: 按字符拆分。chunkSettingMode=auto时不生效。 | |
|
||||
| chunkSplitMode | 分块拆分模式。paragraph:段落优先,再按长度分;size: 按长度拆分; char: 按字符拆分。chunkSettingMode=auto时不生效。 | |
|
||||
| paragraphChunkDeep | 最大段落深度(默认 5) | |
|
||||
| chunkSize | 分块大小,默认 1500。chunkSettingMode=auto时不生效。 | |
|
||||
| indexSize | 索引大小,默认 512,必须小于索引模型最大token。chunkSettingMode=auto时不生效。 | |
|
||||
| chunkSplitter | 自定义最高优先分割符号,除非超出文件处理最大上下文,否则不会进行进一步拆分。chunkSettingMode=auto时不生效。 | |
|
||||
@@ -428,10 +431,7 @@ data 为集合的 ID。
|
||||
"data": {
|
||||
"collectionId": "65abcfab9d1448617cba5f0d",
|
||||
"results": {
|
||||
"insertLen": 5, // 分割成多少段
|
||||
"overToken": [],
|
||||
"repeat": [],
|
||||
"error": []
|
||||
"insertLen": 5 // 分割成多少段
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -497,10 +497,7 @@ data 为集合的 ID。
|
||||
"data": {
|
||||
"collectionId": "65abd0ad9d1448617cba6031",
|
||||
"results": {
|
||||
"insertLen": 1,
|
||||
"overToken": [],
|
||||
"repeat": [],
|
||||
"error": []
|
||||
"insertLen": 1
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -546,7 +543,7 @@ curl --location --request POST 'http://localhost:3000/api/core/dataset/collectio
|
||||
{{< tab tabName="响应示例" >}}
|
||||
{{< markdownify >}}
|
||||
|
||||
data 为集合的 ID。
|
||||
由于解析文档是异步操作,此处不会返回插入的数量。
|
||||
|
||||
```json
|
||||
{
|
||||
@@ -556,10 +553,7 @@ data 为集合的 ID。
|
||||
"data": {
|
||||
"collectionId": "65abc044e4704bac793fbd81",
|
||||
"results": {
|
||||
"insertLen": 1,
|
||||
"overToken": [],
|
||||
"repeat": [],
|
||||
"error": []
|
||||
"insertLen": 0
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -632,10 +626,7 @@ data 为集合的 ID。
|
||||
"data": {
|
||||
"collectionId": "65abc044e4704bac793fbd81",
|
||||
"results": {
|
||||
"insertLen": 1,
|
||||
"overToken": [],
|
||||
"repeat": [],
|
||||
"error": []
|
||||
"insertLen": 1
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -702,10 +693,7 @@ data 为集合的 ID。
|
||||
"data": {
|
||||
"collectionId": "6646fcedfabd823cdc6de746",
|
||||
"results": {
|
||||
"insertLen": 1,
|
||||
"overToken": [],
|
||||
"repeat": [],
|
||||
"error": []
|
||||
"insertLen": 1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -1,5 +1,5 @@
|
||||
---
|
||||
title: 'V4.9.1'
|
||||
title: 'V4.9.1(包含升级脚本)'
|
||||
description: 'FastGPT V4.9.1 更新说明'
|
||||
icon: 'upgrade'
|
||||
draft: false
|
||||
|
@@ -7,11 +7,29 @@ toc: true
|
||||
weight: 789
|
||||
---
|
||||
|
||||
## 执行升级脚本
|
||||
|
||||
该脚本仅需商业版用户执行。
|
||||
|
||||
从任意终端,发起 1 个 HTTP 请求。其中 {{rootkey}} 替换成环境变量里的 `rootkey`;{{host}} 替换成**FastGPT 域名**。
|
||||
|
||||
```bash
|
||||
curl --location --request POST 'https://{{host}}/api/admin/initv4911' \
|
||||
--header 'rootkey: {{rootkey}}' \
|
||||
--header 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
**脚本功能**
|
||||
|
||||
1. 移动第三方知识库 API 配置。
|
||||
|
||||
## 🚀 新增内容
|
||||
|
||||
1. 工作流中增加节点搜索功能。
|
||||
2. 工作流中,子流程版本控制,可选择“保持最新版本”,无需手动更新。
|
||||
1. 商业版支持图片知识库。
|
||||
2. 工作流中增加节点搜索功能。
|
||||
3. 工作流中,子流程版本控制,可选择“保持最新版本”,无需手动更新。
|
||||
4. 增加更多审计操作日志。
|
||||
5. 知识库增加文档解析异步队列,导入文档时,无需等待文档解析完毕才进行导入。
|
||||
|
||||
## ⚙️ 优化
|
||||
|
||||
@@ -22,4 +40,6 @@ weight: 789
|
||||
1. 工作流中,管理员声明的全局系统工具,无法进行版本管理。
|
||||
2. 工具调用节点前,有交互节点时,上下文异常。
|
||||
3. 修复备份导入,小于 1000 字时,无法分块问题。
|
||||
4. 自定义 PDF 解析,无法保存 base64 图片。
|
||||
4. 自定义 PDF 解析,无法保存 base64 图片。
|
||||
5. 非流请求,未进行 CITE 标记替换。
|
||||
6. Python 沙盒存在隐藏风险。
|
@@ -1,5 +1,5 @@
|
||||
---
|
||||
title: 'V4.9.4'
|
||||
title: 'V4.9.4(包含升级脚本)'
|
||||
description: 'FastGPT V4.9.4 更新说明'
|
||||
icon: 'upgrade'
|
||||
draft: false
|
||||
|
118
docSite/content/zh-cn/docs/guide/knowledge_base/template.md
Normal file
@@ -0,0 +1,118 @@
|
||||
---
|
||||
title: '模板导入'
|
||||
description: 'FastGPT 模板导入功能介绍和使用方式'
|
||||
icon: 'language'
|
||||
draft: false
|
||||
toc: true
|
||||
weight: 420
|
||||
---
|
||||
|
||||
|
||||
## 背景
|
||||
|
||||
FastGPT 提供了模板导入功能,让用户可以通过预设的 CSV 模板格式批量导入问答对数据。这种方式特别适合已经有结构化问答数据的用户,可以快速将数据导入到知识库中。
|
||||
|
||||
## 模板结构说明
|
||||
|
||||
模板采用 CSV 格式,包含以下列:
|
||||
|
||||
- q: 问题列,存放用户可能提出的问题
|
||||
- a: 答案列,存放对应问题的标准答案
|
||||
- indexes: 索引列,用于存放与该问题相关的索引
|
||||
|
||||
### 示例数据
|
||||
|
||||
```csv
|
||||
q,a,indexes
|
||||
"你是谁呀?","我呀,是 AI 小助手哟,专门在这儿随时准备着,陪你交流、为你答疑解惑,不管是学习上的知识探讨,生活里的小疑问,还是创意灵感的碰撞,我都能尽力参与,用我的 "知识大脑" 给你提供帮助和陪伴呢,就盼着能成为你互动交流、探索世界的好伙伴呀 。","1. 你是什么?\n2. 你能做什么?\n3. 你可以解答哪些方面的疑问?\n4. 你希望成为什么样的伙伴?\n5. 你如何提供帮助?"
|
||||
"你是什么?","我是 AI 小助手,专门随时准备陪用户交流、为用户答疑解惑,能参与学习上的知识探讨、生活里的小疑问以及创意灵感的碰撞,用 "知识大脑" 提供帮助和陪伴,希望成为用户互动交流、探索世界的好伙伴。","你是什么?"
|
||||
"你能做什么?","能陪用户交流、为用户答疑解惑,参与学习上的知识探讨、生活里的小疑问以及创意灵感的碰撞,用 "知识大脑" 提供帮助和陪伴。","你能做什么?"
|
||||
```
|
||||
|
||||
## 使用说明
|
||||
|
||||
### 1. 打开知识库,点击导入,选择模版导入
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
### 2. 下载模板
|
||||
|
||||
点击下载 CSV 模版,其中存在两个模式的内容
|
||||
|
||||
#### 常规模式的数据模版
|
||||
|
||||

|
||||
|
||||
对应 CSV 格式为
|
||||
|
||||

|
||||
|
||||
常规模式下,q为内容,a为空,indexes可多个
|
||||
|
||||
#### 问答对的数据模版
|
||||
|
||||

|
||||
|
||||
对应CSV格式为
|
||||
|
||||

|
||||
|
||||
问答对模式下,q为问题,a为答案,indexes即为索引部分
|
||||
|
||||
### 3. 填写数据
|
||||
|
||||
按照模板格式填写你的问答数据:
|
||||
- 每一行代表一个内容或者一个问答对
|
||||
- 问题(q)始终不为空
|
||||
- 在一行内,索引部分可往后继续添加
|
||||
|
||||
### 4. 导入限制
|
||||
|
||||
- 仅支持 CSV 格式文件
|
||||
- 单个文件大小限制为 100MB
|
||||
- 必须严格按照模板格式填写,否则可能导入失败
|
||||
- 每次只能导入一个文件
|
||||
|
||||
成功导入后如下:
|
||||
|
||||

|
||||
|
||||
### 4. 注意事项
|
||||
|
||||
- 确保 CSV 文件使用 UTF-8 编码
|
||||
- 如果内容中包含逗号,请用双引号包裹整个内容
|
||||
- indexes 列的内容会被用作相关问题的索引,有助于提高检索准确性
|
||||
- 建议在导入大量数据前先测试少量数据
|
||||
|
||||
## 最佳实践
|
||||
|
||||
1. **数据准备**
|
||||
- 确保内容或者问答对的质量,答案应该清晰、准确
|
||||
- 为每个导入的添加合适的索引关键词
|
||||
- 避免重复的内容或者问答对
|
||||
|
||||
2. **格式检查**
|
||||
- 导入前检查 CSV 文件格式是否正确
|
||||
- 确保没有多余的空行或空格
|
||||
- 验证特殊字符是否正确转义
|
||||
|
||||
3. **分批导入**
|
||||
- 如果数据量较大,建议分批导入
|
||||
- 每批导入后验证数据的正确性
|
||||
|
||||
## 常见问题
|
||||
|
||||
Q: 为什么我的文件导入失败了?
|
||||
A: 请检查以下几点:
|
||||
- 文件格式是否为 CSV
|
||||
- 编码是否为 UTF-8
|
||||
- 是否严格按照模板格式填写
|
||||
- 文件大小是否超过限制
|
||||
|
||||
Q: 如何验证导入是否成功?
|
||||
A: 导入成功后,你可以:
|
||||
- 在知识库中搜索导入的问题
|
||||
- 通过对话测试回答的准确性
|
||||
- 查看知识库的数据统计
|
162
docSite/content/zh-cn/docs/guide/knowledge_base/third_dataset.md
Normal file
@@ -0,0 +1,162 @@
|
||||
---
|
||||
title: '第三方知识库开发'
|
||||
description: '本节详细介绍如何在FastGPT上自己接入第三方知识库'
|
||||
icon: 'language'
|
||||
draft: false
|
||||
toc: true
|
||||
weight: 410
|
||||
---
|
||||
|
||||
目前,互联网上拥有各种各样的文档库,例如飞书,语雀等等。 FastGPT 的不同用户可能使用的文档库不同,目前 FastGPT 内置了飞书、语雀文档库,如果需要接入其他文档库,可以参考本节内容。
|
||||
|
||||
|
||||
## 统一的接口规范
|
||||
|
||||
为了实现对不同文档库的统一接入,FastGPT 对第三方文档库进行了接口的规范,共包含 4 个接口内容,可以[查看 API 文件库接口](/docs/guide/knowledge_base/api_dataset)。
|
||||
|
||||
所有内置的文档库,都是基于标准的 API 文件库进行扩展。可以参考`FastGPT/packages/service/core/dataset/apiDataset/yuqueDataset/api.ts`中的代码,进行其他文档库的扩展。一共需要完成 4 个接口开发:
|
||||
|
||||
1. 获取文件列表
|
||||
2. 获取文件内容/文件链接
|
||||
3. 获取原文预览地址
|
||||
4. 获取文件详情信息
|
||||
|
||||
## 开始一个第三方文件库
|
||||
|
||||
为了方便讲解,这里以添加飞书知识库( FeishuKnowledgeDataset )为例。
|
||||
|
||||
### 1. 添加第三方文档库参数
|
||||
|
||||
首先,要进入 FastGPT 项目路径下的`FastGPT\packages\global\core\dataset\apiDataset.d.ts`文件,添加第三方文档库 Server 类型。知识库类型的字段由自己设计,主要是自己需要那些内容。例如,语雀知识库中,需要提供`userId`、`token`两个字段作为鉴权信息。
|
||||
|
||||
```ts
|
||||
export type YuqueServer = {
|
||||
userId: string;
|
||||
token?: string;
|
||||
basePath?: string;
|
||||
};
|
||||
```
|
||||
|
||||
{{% alert icon="🤖 " context="success" %}}
|
||||
如果文档库有`根目录`选择的功能,需要设置添加一个字段`basePath`[点击查看`根目录`功能](/docs/guide/knowledge_base/third_dataset/#添加配置表单)
|
||||
{{% /alert %}}
|
||||
|
||||

|
||||
|
||||
### 2. 创建 Hook 文件
|
||||
|
||||
每个第三方文档库都会采用 Hook 的方式来实现一套 API 接口的维护,Hook 里包含 4 个函数需要完成。
|
||||
|
||||
- 在`FastGPT\packages\service\core\dataset\apiDataset\`下创建一个文档库的文件夹,然后在文件夹下创建一个`api.ts`文件
|
||||
- 在`api.ts`文件中,需要完成 4 个函数的定义,分别是:
|
||||
- `listFiles`:获取文件列表
|
||||
- `getFileContent`:获取文件内容/文件链接
|
||||
- `getFileDetail`:获取文件详情信息
|
||||
- `getFilePreviewUrl`:获取原文预览地址
|
||||
|
||||
### 3. 添加知识库类型
|
||||
|
||||
在`FastGPT\packages\global\core\dataset\type.d.ts`文件中,导入自己创建的知识库类型。
|
||||
|
||||

|
||||
|
||||
### 4. 添加知识库数据获取
|
||||
|
||||
在`FastGPT\packages\global\core\dataset\apiDataset\utils.ts`文件中,添加如下内容。
|
||||
|
||||

|
||||
|
||||
### 5. 添加知识库调用方法
|
||||
|
||||
在`FastGPT\packages\service\core\dataset\apiDataset\index.ts`文件下,添加如下内容。
|
||||
|
||||

|
||||
|
||||
## 添加前端
|
||||
|
||||
`FastGPT\packages\web\i18n\zh-CN\dataset.json`,`FastGPT\packages\web\i18n\en\dataset.json`和`FastGPT\packages\web\i18n\zh-Hant\dataset.json`中添加自己的 I18n 翻译,以中文翻译为例,大体需要如下几个内容:
|
||||
|
||||

|
||||
|
||||
`FastGPT\packages\service\support\operationLog\util.ts`文件下添加如下内容,以支持获取 I18n 翻译。
|
||||
|
||||

|
||||
|
||||
{{% alert icon="🤖 " context="success" %}}
|
||||
此次 I18n 翻译内容存放在`FastGPT\packages\web\i18n\zh-Hant\account_team.json`,`FastGPT\packages\web\i18n\zh-CN\account_team.json`和`FastGPT\packages\web\i18n\en\account_team.json`,字段格式为`dataset.XXX_dataset`,以飞书知识库为例,字段值为`dataset.feishu_knowledge_dataset`
|
||||
{{% /alert %}}
|
||||
|
||||
`FastGPT\packages\web\components\common\Icon\icons\core\dataset\`添加自己的知识库图标,一共是两个,分为`Outline`和`Color`,分别是有颜色的和无色的,具体看如下图片。
|
||||
|
||||

|
||||
|
||||
|
||||
在`FastGPT\packages\web\components\common\Icon\constants.ts`文件中,添加自己的图标。 `import` 是图标的存放路径。
|
||||
|
||||

|
||||
|
||||
在`FastGPT\packages\global\core\dataset\constants.ts`中,添加自己的知识库类型,分别要在`DatasetTypeEnum`和`ApiDatasetTypeMap`中添加内容。
|
||||
|
||||
| | |
|
||||
| --- | --- |
|
||||
|  |  |
|
||||
|
||||
{{% alert icon="🤖 " context="success" %}}
|
||||
`courseUrl`字段是相应的文档说明,如果有的话,可以添加。
|
||||
文档添加在`FastGPT\docSite\content\zh-cn\docs\guide\knowledge_base\`
|
||||
`label`内容是自己之前通过 i18n 翻译添加的知识库名称的。
|
||||
`icon`和`avatar`是自己之前添加的两个图标
|
||||
{{% /alert %}}
|
||||
|
||||
在`FastGPT\projects\app\src\pages\dataset\list\index.tsx`文件下,添加如下内容。这个文件负责的是知识库列表页的`新建`按钮点击后的菜单,只有在该文件添加知识库后,才能创建知识库。
|
||||
|
||||

|
||||
|
||||
在`FastGPT\projects\app\src\pageComponents\dataset\detail\Info\index.tsx`文件下,添加如下内容。此处配置对应ui界面的如下。
|
||||
|
||||
| | |
|
||||
| --- | --- |
|
||||
|
|
||||
|
||||
## 添加配置表单
|
||||
|
||||
在`FastGPT\projects\app\src\pageComponents\dataset\ApiDatasetForm.tsx`文件下,添加自己如下内容。这个文件负责的是创建知识库页的字段填写。
|
||||
|
||||
| | | |
|
||||
| --- | --- | --- |
|
||||
|  |  |  |
|
||||
|
||||
代码中添加的两个组件是对根目录选择的渲染,对应设计的 api 的 getfiledetail 方法,如果你的知识库不支持,你可以不引用。
|
||||
|
||||
```
|
||||
{renderBaseUrlSelector()} //这是对`Base URL`字段的渲染
|
||||
{renderDirectoryModal()} //点击`选择`后出现的`选择根目录`窗口,见图
|
||||
```
|
||||
|
||||
| | |
|
||||
| --- | --- |
|
||||
|  |  |
|
||||
|
||||
如果知识库需要支持根目录,还需要在`ApiDatasetForm`文件中添加如下内容。
|
||||
|
||||
### 1. 解析知识库类型
|
||||
|
||||
需要从`apiDatasetServer`解析出自己的知识库类型,如图:
|
||||
|
||||

|
||||
|
||||
### 2. 添加选择根目录逻辑和`parentId`赋值逻辑
|
||||
|
||||
需要添加根目录选择逻辑,来确保用户已经填写了调动的 api 方法所必需的字段,比如 Token 之类的。
|
||||
|
||||

|
||||
|
||||
### 3. 添加字段检查和赋值逻辑
|
||||
|
||||
需要在调用方法前再次检测是否以及获取完所有必须字段,在选择根目录后,将根目录值赋值给对应的字段。
|
||||
|
||||

|
||||
|
||||
## 提示
|
||||
|
||||
建议知识库创建完成后,完整测试一遍知识库的功能,以确定有无漏洞,如果你的知识库添加有问题,且无法在文档找到对应的文件解决,一定是杂项没有添加完全,建议重复一次全局搜索`YuqueServer`和`yuqueServer`,检查是否有地方没有加上自己的类型。
|
@@ -6,7 +6,8 @@ export const fileImgs = [
|
||||
{ suffix: '(doc|docs)', src: 'file/fill/doc' },
|
||||
{ suffix: 'txt', src: 'file/fill/txt' },
|
||||
{ suffix: 'md', src: 'file/fill/markdown' },
|
||||
{ suffix: 'html', src: 'file/fill/html' }
|
||||
{ suffix: 'html', src: 'file/fill/html' },
|
||||
{ suffix: '(jpg|jpeg|png|gif|bmp|webp|svg|ico|tiff|tif)', src: 'image' }
|
||||
|
||||
// { suffix: '.', src: '/imgs/files/file.svg' }
|
||||
];
|
||||
|
@@ -2,4 +2,5 @@ export type AuthFrequencyLimitProps = {
|
||||
eventId: string;
|
||||
maxAmount: number;
|
||||
expiredTime: Date;
|
||||
num?: number;
|
||||
};
|
||||
|
@@ -34,7 +34,7 @@ export const valToStr = (val: any) => {
|
||||
};
|
||||
|
||||
// replace {{variable}} to value
|
||||
export function replaceVariable(text: any, obj: Record<string, string | number>) {
|
||||
export function replaceVariable(text: any, obj: Record<string, string | number | undefined>) {
|
||||
if (typeof text !== 'string') return text;
|
||||
|
||||
for (const key in obj) {
|
||||
|
24
packages/global/core/dataset/api.d.ts
vendored
@@ -1,4 +1,9 @@
|
||||
import type { ChunkSettingsType, DatasetDataIndexItemType, DatasetSchemaType } from './type';
|
||||
import type {
|
||||
ChunkSettingsType,
|
||||
DatasetDataIndexItemType,
|
||||
DatasetDataFieldType,
|
||||
DatasetSchemaType
|
||||
} from './type';
|
||||
import type {
|
||||
DatasetCollectionTypeEnum,
|
||||
DatasetCollectionDataProcessModeEnum,
|
||||
@@ -7,12 +12,14 @@ import type {
|
||||
ChunkTriggerConfigTypeEnum,
|
||||
ParagraphChunkAIModeEnum
|
||||
} from './constants';
|
||||
import type { LLMModelItemType } from '../ai/model.d';
|
||||
import type { ParentIdType } from 'common/parentFolder/type';
|
||||
import type { ParentIdType } from '../../common/parentFolder/type';
|
||||
|
||||
/* ================= dataset ===================== */
|
||||
export type DatasetUpdateBody = {
|
||||
id: string;
|
||||
|
||||
apiDatasetServer?: DatasetSchemaType['apiDatasetServer'];
|
||||
|
||||
parentId?: ParentIdType;
|
||||
name?: string;
|
||||
avatar?: string;
|
||||
@@ -24,9 +31,6 @@ export type DatasetUpdateBody = {
|
||||
websiteConfig?: DatasetSchemaType['websiteConfig'];
|
||||
externalReadUrl?: DatasetSchemaType['externalReadUrl'];
|
||||
defaultPermission?: DatasetSchemaType['defaultPermission'];
|
||||
apiServer?: DatasetSchemaType['apiServer'];
|
||||
yuqueServer?: DatasetSchemaType['yuqueServer'];
|
||||
feishuServer?: DatasetSchemaType['feishuServer'];
|
||||
chunkSettings?: DatasetSchemaType['chunkSettings'];
|
||||
|
||||
// sync schedule
|
||||
@@ -100,6 +104,9 @@ export type ExternalFileCreateDatasetCollectionParams = ApiCreateDatasetCollecti
|
||||
externalFileUrl: string;
|
||||
filename?: string;
|
||||
};
|
||||
export type ImageCreateDatasetCollectionParams = ApiCreateDatasetCollectionParams & {
|
||||
collectionName: string;
|
||||
};
|
||||
|
||||
/* ================= tag ===================== */
|
||||
export type CreateDatasetCollectionTagParams = {
|
||||
@@ -125,8 +132,9 @@ export type PgSearchRawType = {
|
||||
score: number;
|
||||
};
|
||||
export type PushDatasetDataChunkProps = {
|
||||
q: string; // embedding content
|
||||
a?: string; // bonus content
|
||||
q?: string;
|
||||
a?: string;
|
||||
imageId?: string;
|
||||
chunkIndex?: number;
|
||||
indexes?: Omit<DatasetDataIndexItemType, 'dataId'>[];
|
||||
};
|
||||
|
@@ -1,5 +1,5 @@
|
||||
import { RequireOnlyOne } from '../../common/type/utils';
|
||||
import type { ParentIdType } from '../../common/parentFolder/type.d';
|
||||
import { RequireOnlyOne } from '../../../common/type/utils';
|
||||
import type { ParentIdType } from '../../../common/parentFolder/type';
|
||||
|
||||
export type APIFileItem = {
|
||||
id: string;
|
||||
@@ -28,6 +28,12 @@ export type YuqueServer = {
|
||||
basePath?: string;
|
||||
};
|
||||
|
||||
export type ApiDatasetServerType = {
|
||||
apiServer?: APIFileServer;
|
||||
feishuServer?: FeishuServer;
|
||||
yuqueServer?: YuqueServer;
|
||||
};
|
||||
|
||||
// Api dataset api
|
||||
|
||||
export type APIFileListResponse = APIFileItem[];
|
31
packages/global/core/dataset/apiDataset/utils.ts
Normal file
@@ -0,0 +1,31 @@
|
||||
import type { ApiDatasetServerType } from './type';
|
||||
|
||||
export const filterApiDatasetServerPublicData = (apiDatasetServer?: ApiDatasetServerType) => {
|
||||
if (!apiDatasetServer) return undefined;
|
||||
|
||||
const { apiServer, yuqueServer, feishuServer } = apiDatasetServer;
|
||||
|
||||
return {
|
||||
apiServer: apiServer
|
||||
? {
|
||||
baseUrl: apiServer.baseUrl,
|
||||
authorization: '',
|
||||
basePath: apiServer.basePath
|
||||
}
|
||||
: undefined,
|
||||
yuqueServer: yuqueServer
|
||||
? {
|
||||
userId: yuqueServer.userId,
|
||||
token: '',
|
||||
basePath: yuqueServer.basePath
|
||||
}
|
||||
: undefined,
|
||||
feishuServer: feishuServer
|
||||
? {
|
||||
appId: feishuServer.appId,
|
||||
appSecret: '',
|
||||
folderToken: feishuServer.folderToken
|
||||
}
|
||||
: undefined
|
||||
};
|
||||
};
|
@@ -6,45 +6,80 @@ export enum DatasetTypeEnum {
|
||||
dataset = 'dataset',
|
||||
websiteDataset = 'websiteDataset', // depp link
|
||||
externalFile = 'externalFile',
|
||||
|
||||
apiDataset = 'apiDataset',
|
||||
feishu = 'feishu',
|
||||
yuque = 'yuque'
|
||||
}
|
||||
export const DatasetTypeMap = {
|
||||
|
||||
// @ts-ignore
|
||||
export const ApiDatasetTypeMap: Record<
|
||||
`${DatasetTypeEnum}`,
|
||||
{
|
||||
icon: string;
|
||||
avatar: string;
|
||||
label: any;
|
||||
collectionLabel: string;
|
||||
courseUrl?: string;
|
||||
}
|
||||
> = {
|
||||
[DatasetTypeEnum.apiDataset]: {
|
||||
icon: 'core/dataset/externalDatasetOutline',
|
||||
avatar: 'core/dataset/externalDatasetColor',
|
||||
label: i18nT('dataset:api_file'),
|
||||
collectionLabel: i18nT('common:File'),
|
||||
courseUrl: '/docs/guide/knowledge_base/api_dataset/'
|
||||
},
|
||||
[DatasetTypeEnum.feishu]: {
|
||||
icon: 'core/dataset/feishuDatasetOutline',
|
||||
avatar: 'core/dataset/feishuDatasetColor',
|
||||
label: i18nT('dataset:feishu_dataset'),
|
||||
collectionLabel: i18nT('common:File'),
|
||||
courseUrl: '/docs/guide/knowledge_base/lark_dataset/'
|
||||
},
|
||||
[DatasetTypeEnum.yuque]: {
|
||||
icon: 'core/dataset/yuqueDatasetOutline',
|
||||
avatar: 'core/dataset/yuqueDatasetColor',
|
||||
label: i18nT('dataset:yuque_dataset'),
|
||||
collectionLabel: i18nT('common:File'),
|
||||
courseUrl: '/docs/guide/knowledge_base/yuque_dataset/'
|
||||
}
|
||||
};
|
||||
export const DatasetTypeMap: Record<
|
||||
`${DatasetTypeEnum}`,
|
||||
{
|
||||
icon: string;
|
||||
avatar: string;
|
||||
label: any;
|
||||
collectionLabel: string;
|
||||
courseUrl?: string;
|
||||
}
|
||||
> = {
|
||||
...ApiDatasetTypeMap,
|
||||
[DatasetTypeEnum.folder]: {
|
||||
icon: 'common/folderFill',
|
||||
avatar: 'common/folderFill',
|
||||
label: i18nT('dataset:folder_dataset'),
|
||||
collectionLabel: i18nT('common:Folder')
|
||||
},
|
||||
[DatasetTypeEnum.dataset]: {
|
||||
icon: 'core/dataset/commonDatasetOutline',
|
||||
avatar: 'core/dataset/commonDatasetColor',
|
||||
label: i18nT('dataset:common_dataset'),
|
||||
collectionLabel: i18nT('common:File')
|
||||
},
|
||||
[DatasetTypeEnum.websiteDataset]: {
|
||||
icon: 'core/dataset/websiteDatasetOutline',
|
||||
avatar: 'core/dataset/websiteDatasetColor',
|
||||
label: i18nT('dataset:website_dataset'),
|
||||
collectionLabel: i18nT('common:Website')
|
||||
collectionLabel: i18nT('common:Website'),
|
||||
courseUrl: '/docs/guide/knowledge_base/websync/'
|
||||
},
|
||||
[DatasetTypeEnum.externalFile]: {
|
||||
icon: 'core/dataset/externalDatasetOutline',
|
||||
avatar: 'core/dataset/externalDatasetColor',
|
||||
label: i18nT('dataset:external_file'),
|
||||
collectionLabel: i18nT('common:File')
|
||||
},
|
||||
[DatasetTypeEnum.apiDataset]: {
|
||||
icon: 'core/dataset/externalDatasetOutline',
|
||||
label: i18nT('dataset:api_file'),
|
||||
collectionLabel: i18nT('common:File')
|
||||
},
|
||||
[DatasetTypeEnum.feishu]: {
|
||||
icon: 'core/dataset/feishuDatasetOutline',
|
||||
label: i18nT('dataset:feishu_dataset'),
|
||||
collectionLabel: i18nT('common:File')
|
||||
},
|
||||
[DatasetTypeEnum.yuque]: {
|
||||
icon: 'core/dataset/yuqueDatasetOutline',
|
||||
label: i18nT('dataset:yuque_dataset'),
|
||||
collectionLabel: i18nT('common:File')
|
||||
}
|
||||
};
|
||||
|
||||
@@ -77,7 +112,8 @@ export enum DatasetCollectionTypeEnum {
|
||||
file = 'file',
|
||||
link = 'link', // one link
|
||||
externalFile = 'externalFile',
|
||||
apiFile = 'apiFile'
|
||||
apiFile = 'apiFile',
|
||||
images = 'images'
|
||||
}
|
||||
export const DatasetCollectionTypeMap = {
|
||||
[DatasetCollectionTypeEnum.folder]: {
|
||||
@@ -93,10 +129,13 @@ export const DatasetCollectionTypeMap = {
|
||||
name: i18nT('common:core.dataset.link')
|
||||
},
|
||||
[DatasetCollectionTypeEnum.virtual]: {
|
||||
name: i18nT('common:core.dataset.Manual collection')
|
||||
name: i18nT('dataset:empty_collection')
|
||||
},
|
||||
[DatasetCollectionTypeEnum.apiFile]: {
|
||||
name: i18nT('common:core.dataset.apiFile')
|
||||
},
|
||||
[DatasetCollectionTypeEnum.images]: {
|
||||
name: i18nT('dataset:core.dataset.Image collection')
|
||||
}
|
||||
};
|
||||
|
||||
@@ -120,7 +159,10 @@ export const DatasetCollectionSyncResultMap = {
|
||||
export enum DatasetCollectionDataProcessModeEnum {
|
||||
chunk = 'chunk',
|
||||
qa = 'qa',
|
||||
imageParse = 'imageParse',
|
||||
|
||||
backup = 'backup',
|
||||
template = 'template',
|
||||
|
||||
auto = 'auto' // abandon
|
||||
}
|
||||
@@ -133,13 +175,22 @@ export const DatasetCollectionDataProcessModeMap = {
|
||||
label: i18nT('common:core.dataset.training.QA mode'),
|
||||
tooltip: i18nT('common:core.dataset.import.QA Import Tip')
|
||||
},
|
||||
[DatasetCollectionDataProcessModeEnum.backup]: {
|
||||
label: i18nT('dataset:backup_mode'),
|
||||
tooltip: i18nT('dataset:backup_mode')
|
||||
[DatasetCollectionDataProcessModeEnum.imageParse]: {
|
||||
label: i18nT('dataset:training.Image mode'),
|
||||
tooltip: i18nT('common:core.dataset.import.Chunk Split Tip')
|
||||
},
|
||||
[DatasetCollectionDataProcessModeEnum.auto]: {
|
||||
label: i18nT('common:core.dataset.training.Auto mode'),
|
||||
tooltip: i18nT('common:core.dataset.training.Auto mode Tip')
|
||||
},
|
||||
|
||||
[DatasetCollectionDataProcessModeEnum.backup]: {
|
||||
label: i18nT('dataset:backup_mode'),
|
||||
tooltip: i18nT('dataset:backup_mode')
|
||||
},
|
||||
[DatasetCollectionDataProcessModeEnum.template]: {
|
||||
label: i18nT('dataset:template_mode'),
|
||||
tooltip: i18nT('dataset:template_mode')
|
||||
}
|
||||
};
|
||||
|
||||
@@ -172,14 +223,17 @@ export enum ImportDataSourceEnum {
|
||||
fileCustom = 'fileCustom',
|
||||
externalFile = 'externalFile',
|
||||
apiDataset = 'apiDataset',
|
||||
reTraining = 'reTraining'
|
||||
reTraining = 'reTraining',
|
||||
imageDataset = 'imageDataset'
|
||||
}
|
||||
|
||||
export enum TrainingModeEnum {
|
||||
parse = 'parse',
|
||||
chunk = 'chunk',
|
||||
qa = 'qa',
|
||||
auto = 'auto',
|
||||
image = 'image'
|
||||
image = 'image',
|
||||
imageParse = 'imageParse'
|
||||
}
|
||||
|
||||
/* ------------ search -------------- */
|
||||
|
4
packages/global/core/dataset/controller.d.ts
vendored
@@ -8,17 +8,19 @@ export type CreateDatasetDataProps = {
|
||||
chunkIndex?: number;
|
||||
q: string;
|
||||
a?: string;
|
||||
imageId?: string;
|
||||
indexes?: Omit<DatasetDataIndexItemType, 'dataId'>[];
|
||||
};
|
||||
|
||||
export type UpdateDatasetDataProps = {
|
||||
dataId: string;
|
||||
|
||||
q?: string;
|
||||
q: string;
|
||||
a?: string;
|
||||
indexes?: (Omit<DatasetDataIndexItemType, 'dataId'> & {
|
||||
dataId?: string; // pg data id
|
||||
})[];
|
||||
imageId?: string;
|
||||
};
|
||||
|
||||
export type PatchIndexesProps =
|
||||
|
13
packages/global/core/dataset/image/type.d.ts
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
export type DatasetImageSchema = {
|
||||
_id: string;
|
||||
teamId: string;
|
||||
datasetId: string;
|
||||
collectionId?: string;
|
||||
name: string;
|
||||
contentType: string;
|
||||
size: number;
|
||||
metadata?: Record<string, any>;
|
||||
expiredTime?: Date;
|
||||
createdAt: Date;
|
||||
updatedAt: Date;
|
||||
};
|
@@ -1,3 +1,4 @@
|
||||
import { getEmbeddingModel } from '../../../../service/core/ai/model';
|
||||
import { type EmbeddingModelItemType, type LLMModelItemType } from '../../../core/ai/model.d';
|
||||
import {
|
||||
ChunkSettingModeEnum,
|
||||
@@ -26,11 +27,17 @@ export const getLLMMaxChunkSize = (model?: LLMModelItemType) => {
|
||||
};
|
||||
|
||||
// Index size
|
||||
export const getMaxIndexSize = (model?: EmbeddingModelItemType) => {
|
||||
return model?.maxToken || 512;
|
||||
export const getMaxIndexSize = (model?: EmbeddingModelItemType | string) => {
|
||||
if (!model) return 512;
|
||||
const modelData = typeof model === 'string' ? getEmbeddingModel(model) : model;
|
||||
|
||||
return modelData?.maxToken || 512;
|
||||
};
|
||||
export const getAutoIndexSize = (model?: EmbeddingModelItemType) => {
|
||||
return model?.defaultToken || 512;
|
||||
export const getAutoIndexSize = (model?: EmbeddingModelItemType | string) => {
|
||||
if (!model) return 512;
|
||||
|
||||
const modelData = typeof model === 'string' ? getEmbeddingModel(model) : model;
|
||||
return modelData?.defaultToken || 512;
|
||||
};
|
||||
|
||||
const indexSizeSelectList = [
|
||||
|
56
packages/global/core/dataset/type.d.ts
vendored
@@ -13,9 +13,15 @@ import type {
|
||||
ChunkTriggerConfigTypeEnum
|
||||
} from './constants';
|
||||
import type { DatasetPermission } from '../../support/permission/dataset/controller';
|
||||
import type { APIFileServer, FeishuServer, YuqueServer } from './apiDataset';
|
||||
import type {
|
||||
ApiDatasetServerType,
|
||||
APIFileServer,
|
||||
FeishuServer,
|
||||
YuqueServer
|
||||
} from './apiDataset/type';
|
||||
import type { SourceMemberType } from 'support/user/type';
|
||||
import type { DatasetDataIndexTypeEnum } from './data/constants';
|
||||
import type { ParentIdType } from 'common/parentFolder/type';
|
||||
|
||||
export type ChunkSettingsType = {
|
||||
trainingType?: DatasetCollectionDataProcessModeEnum;
|
||||
@@ -49,7 +55,7 @@ export type ChunkSettingsType = {
|
||||
|
||||
export type DatasetSchemaType = {
|
||||
_id: string;
|
||||
parentId?: string;
|
||||
parentId: ParentIdType;
|
||||
userId: string;
|
||||
teamId: string;
|
||||
tmbId: string;
|
||||
@@ -72,14 +78,16 @@ export type DatasetSchemaType = {
|
||||
chunkSettings?: ChunkSettingsType;
|
||||
|
||||
inheritPermission: boolean;
|
||||
apiServer?: APIFileServer;
|
||||
feishuServer?: FeishuServer;
|
||||
yuqueServer?: YuqueServer;
|
||||
|
||||
apiDatasetServer?: ApiDatasetServerType;
|
||||
|
||||
// abandon
|
||||
autoSync?: boolean;
|
||||
externalReadUrl?: string;
|
||||
defaultPermission?: number;
|
||||
apiServer?: APIFileServer;
|
||||
feishuServer?: FeishuServer;
|
||||
yuqueServer?: YuqueServer;
|
||||
};
|
||||
|
||||
export type DatasetCollectionSchemaType = ChunkSettingsType & {
|
||||
@@ -132,7 +140,13 @@ export type DatasetDataIndexItemType = {
|
||||
dataId: string; // pg data id
|
||||
text: string;
|
||||
};
|
||||
export type DatasetDataSchemaType = {
|
||||
|
||||
export type DatasetDataFieldType = {
|
||||
q: string; // large chunks or question
|
||||
a?: string; // answer or custom content
|
||||
imageId?: string;
|
||||
};
|
||||
export type DatasetDataSchemaType = DatasetDataFieldType & {
|
||||
_id: string;
|
||||
userId: string;
|
||||
teamId: string;
|
||||
@@ -141,13 +155,9 @@ export type DatasetDataSchemaType = {
|
||||
collectionId: string;
|
||||
chunkIndex: number;
|
||||
updateTime: Date;
|
||||
q: string; // large chunks or question
|
||||
a: string; // answer or custom content
|
||||
history?: {
|
||||
q: string;
|
||||
a: string;
|
||||
history?: (DatasetDataFieldType & {
|
||||
updateTime: Date;
|
||||
}[];
|
||||
})[];
|
||||
forbid?: boolean;
|
||||
fullTextToken: string;
|
||||
indexes: DatasetDataIndexItemType[];
|
||||
@@ -174,11 +184,12 @@ export type DatasetTrainingSchemaType = {
|
||||
expireAt: Date;
|
||||
lockTime: Date;
|
||||
mode: TrainingModeEnum;
|
||||
model: string;
|
||||
prompt: string;
|
||||
model?: string;
|
||||
prompt?: string;
|
||||
dataId?: string;
|
||||
q: string;
|
||||
a: string;
|
||||
imageId?: string;
|
||||
chunkIndex: number;
|
||||
indexSize?: number;
|
||||
weight: number;
|
||||
@@ -244,20 +255,18 @@ export type DatasetCollectionItemType = CollectionWithDatasetType & {
|
||||
};
|
||||
|
||||
/* ================= data ===================== */
|
||||
export type DatasetDataItemType = {
|
||||
export type DatasetDataItemType = DatasetDataFieldType & {
|
||||
id: string;
|
||||
teamId: string;
|
||||
datasetId: string;
|
||||
imagePreivewUrl?: string;
|
||||
updateTime: Date;
|
||||
collectionId: string;
|
||||
sourceName: string;
|
||||
sourceId?: string;
|
||||
q: string;
|
||||
a: string;
|
||||
chunkIndex: number;
|
||||
indexes: DatasetDataIndexItemType[];
|
||||
isOwner: boolean;
|
||||
// permission: DatasetPermission;
|
||||
};
|
||||
|
||||
/* --------------- file ---------------------- */
|
||||
@@ -284,3 +293,14 @@ export type SearchDataResponseItemType = Omit<
|
||||
score: { type: `${SearchScoreTypeEnum}`; value: number; index: number }[];
|
||||
// score: number;
|
||||
};
|
||||
|
||||
export type DatasetCiteItemType = {
|
||||
_id: string;
|
||||
q: string;
|
||||
a?: string;
|
||||
imagePreivewUrl?: string;
|
||||
history?: DatasetDataSchemaType['history'];
|
||||
updateTime: DatasetDataSchemaType['updateTime'];
|
||||
index: DatasetDataSchemaType['chunkIndex'];
|
||||
updated?: boolean;
|
||||
};
|
||||
|
@@ -2,10 +2,15 @@ import { TrainingModeEnum, DatasetCollectionTypeEnum } from './constants';
|
||||
import { getFileIcon } from '../../common/file/icon';
|
||||
import { strIsLink } from '../../common/string/tools';
|
||||
|
||||
export function getCollectionIcon(
|
||||
type: DatasetCollectionTypeEnum = DatasetCollectionTypeEnum.file,
|
||||
name = ''
|
||||
) {
|
||||
export function getCollectionIcon({
|
||||
type = DatasetCollectionTypeEnum.file,
|
||||
name = '',
|
||||
sourceId
|
||||
}: {
|
||||
type?: DatasetCollectionTypeEnum;
|
||||
name?: string;
|
||||
sourceId?: string;
|
||||
}) {
|
||||
if (type === DatasetCollectionTypeEnum.folder) {
|
||||
return 'common/folderFill';
|
||||
}
|
||||
@@ -15,7 +20,10 @@ export function getCollectionIcon(
|
||||
if (type === DatasetCollectionTypeEnum.virtual) {
|
||||
return 'file/fill/manual';
|
||||
}
|
||||
return getFileIcon(name);
|
||||
if (type === DatasetCollectionTypeEnum.images) {
|
||||
return 'core/dataset/imageFill';
|
||||
}
|
||||
return getSourceNameIcon({ sourceName: name, sourceId });
|
||||
}
|
||||
export function getSourceNameIcon({
|
||||
sourceName,
|
||||
|
7
packages/service/common/api/type.d.ts
vendored
@@ -1,5 +1,8 @@
|
||||
import type { ApiDatasetDetailResponse } from '@fastgpt/global/core/dataset/apiDataset';
|
||||
import { FeishuServer, YuqueServer } from '@fastgpt/global/core/dataset/apiDataset';
|
||||
import type {
|
||||
ApiDatasetDetailResponse,
|
||||
FeishuServer,
|
||||
YuqueServer
|
||||
} from '@fastgpt/global/core/dataset/apiDataset/type';
|
||||
import type {
|
||||
DeepRagSearchProps,
|
||||
SearchDatasetDataResponse
|
||||
|
@@ -142,23 +142,26 @@ export const updateRawTextBufferExpiredTime = async ({
|
||||
};
|
||||
|
||||
export const clearExpiredRawTextBufferCron = async () => {
|
||||
const gridBucket = getGridBucket();
|
||||
|
||||
const clearExpiredRawTextBuffer = async () => {
|
||||
addLog.debug('Clear expired raw text buffer start');
|
||||
const gridBucket = getGridBucket();
|
||||
|
||||
return retryFn(async () => {
|
||||
const data = await MongoRawTextBufferSchema.find(
|
||||
{
|
||||
'metadata.expiredTime': { $lt: new Date() }
|
||||
},
|
||||
'_id'
|
||||
).lean();
|
||||
const data = await MongoRawTextBufferSchema.find(
|
||||
{
|
||||
'metadata.expiredTime': { $lt: new Date() }
|
||||
},
|
||||
'_id'
|
||||
).lean();
|
||||
|
||||
for (const item of data) {
|
||||
for (const item of data) {
|
||||
try {
|
||||
await gridBucket.delete(item._id);
|
||||
} catch (error) {
|
||||
addLog.error('Delete expired raw text buffer error', error);
|
||||
}
|
||||
addLog.debug('Clear expired raw text buffer end');
|
||||
});
|
||||
}
|
||||
addLog.debug('Clear expired raw text buffer end');
|
||||
};
|
||||
|
||||
setCron('*/10 * * * *', async () => {
|
||||
|
@@ -7,12 +7,13 @@ import { MongoChatFileSchema, MongoDatasetFileSchema } from './schema';
|
||||
import { detectFileEncoding, detectFileEncodingByPath } from '@fastgpt/global/common/file/tools';
|
||||
import { CommonErrEnum } from '@fastgpt/global/common/error/code/common';
|
||||
import { readRawContentByFileBuffer } from '../read/utils';
|
||||
import { gridFsStream2Buffer, stream2Encoding } from './utils';
|
||||
import { computeGridFsChunSize, gridFsStream2Buffer, stream2Encoding } from './utils';
|
||||
import { addLog } from '../../system/log';
|
||||
import { parseFileExtensionFromUrl } from '@fastgpt/global/common/string/tools';
|
||||
import { Readable } from 'stream';
|
||||
import { addRawTextBuffer, getRawTextBuffer } from '../../buffer/rawText/controller';
|
||||
import { addMinutes } from 'date-fns';
|
||||
import { retryFn } from '@fastgpt/global/common/system/utils';
|
||||
|
||||
export function getGFSCollection(bucket: `${BucketNameEnum}`) {
|
||||
MongoDatasetFileSchema;
|
||||
@@ -64,23 +65,7 @@ export async function uploadFile({
|
||||
// create a gridfs bucket
|
||||
const bucket = getGridBucket(bucketName);
|
||||
|
||||
const fileSize = stats.size;
|
||||
// 单块大小:尽可能大,但不超过 14MB,不小于512KB
|
||||
const chunkSizeBytes = (() => {
|
||||
// 计算理想块大小:文件大小 ÷ 目标块数(10)。 并且每个块需要小于 14MB
|
||||
const idealChunkSize = Math.min(Math.ceil(fileSize / 10), 14 * 1024 * 1024);
|
||||
|
||||
// 确保块大小至少为512KB
|
||||
const minChunkSize = 512 * 1024; // 512KB
|
||||
|
||||
// 取理想块大小和最小块大小中的较大值
|
||||
let chunkSize = Math.max(idealChunkSize, minChunkSize);
|
||||
|
||||
// 将块大小向上取整到最接近的64KB的倍数,使其更整齐
|
||||
chunkSize = Math.ceil(chunkSize / (64 * 1024)) * (64 * 1024);
|
||||
|
||||
return chunkSize;
|
||||
})();
|
||||
const chunkSizeBytes = computeGridFsChunSize(stats.size);
|
||||
|
||||
const stream = bucket.openUploadStream(filename, {
|
||||
metadata,
|
||||
@@ -173,24 +158,18 @@ export async function getFileById({
|
||||
|
||||
export async function delFileByFileIdList({
|
||||
bucketName,
|
||||
fileIdList,
|
||||
retry = 3
|
||||
fileIdList
|
||||
}: {
|
||||
bucketName: `${BucketNameEnum}`;
|
||||
fileIdList: string[];
|
||||
retry?: number;
|
||||
}): Promise<any> {
|
||||
try {
|
||||
return retryFn(async () => {
|
||||
const bucket = getGridBucket(bucketName);
|
||||
|
||||
for await (const fileId of fileIdList) {
|
||||
await bucket.delete(new Types.ObjectId(fileId));
|
||||
}
|
||||
} catch (error) {
|
||||
if (retry > 0) {
|
||||
return delFileByFileIdList({ bucketName, fileIdList, retry: retry - 1 });
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
export async function getDownloadStream({
|
||||
|
@@ -105,3 +105,20 @@ export const stream2Encoding = async (stream: NodeJS.ReadableStream) => {
|
||||
stream: copyStream
|
||||
};
|
||||
};
|
||||
|
||||
// 单块大小:尽可能大,但不超过 14MB,不小于512KB
|
||||
export const computeGridFsChunSize = (fileSize: number) => {
|
||||
// 计算理想块大小:文件大小 ÷ 目标块数(10)。 并且每个块需要小于 14MB
|
||||
const idealChunkSize = Math.min(Math.ceil(fileSize / 10), 14 * 1024 * 1024);
|
||||
|
||||
// 确保块大小至少为512KB
|
||||
const minChunkSize = 512 * 1024; // 512KB
|
||||
|
||||
// 取理想块大小和最小块大小中的较大值
|
||||
let chunkSize = Math.max(idealChunkSize, minChunkSize);
|
||||
|
||||
// 将块大小向上取整到最接近的64KB的倍数,使其更整齐
|
||||
chunkSize = Math.ceil(chunkSize / (64 * 1024)) * (64 * 1024);
|
||||
|
||||
return chunkSize;
|
||||
};
|
||||
|
@@ -22,7 +22,7 @@ export const getUploadModel = ({ maxSize = 500 }: { maxSize?: number }) => {
|
||||
maxSize *= 1024 * 1024;
|
||||
|
||||
class UploadModel {
|
||||
uploader = multer({
|
||||
uploaderSingle = multer({
|
||||
limits: {
|
||||
fieldSize: maxSize
|
||||
},
|
||||
@@ -41,8 +41,7 @@ export const getUploadModel = ({ maxSize = 500 }: { maxSize?: number }) => {
|
||||
}
|
||||
})
|
||||
}).single('file');
|
||||
|
||||
async doUpload<T = any>(
|
||||
async getUploadFile<T = any>(
|
||||
req: NextApiRequest,
|
||||
res: NextApiResponse,
|
||||
originBucketName?: `${BucketNameEnum}`
|
||||
@@ -54,7 +53,7 @@ export const getUploadModel = ({ maxSize = 500 }: { maxSize?: number }) => {
|
||||
bucketName?: `${BucketNameEnum}`;
|
||||
}>((resolve, reject) => {
|
||||
// @ts-ignore
|
||||
this.uploader(req, res, (error) => {
|
||||
this.uploaderSingle(req, res, (error) => {
|
||||
if (error) {
|
||||
return reject(error);
|
||||
}
|
||||
@@ -94,6 +93,58 @@ export const getUploadModel = ({ maxSize = 500 }: { maxSize?: number }) => {
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
uploaderMultiple = multer({
|
||||
limits: {
|
||||
fieldSize: maxSize
|
||||
},
|
||||
preservePath: true,
|
||||
storage: multer.diskStorage({
|
||||
// destination: (_req, _file, cb) => {
|
||||
// cb(null, tmpFileDirPath);
|
||||
// },
|
||||
filename: (req, file, cb) => {
|
||||
if (!file?.originalname) {
|
||||
cb(new Error('File not found'), '');
|
||||
} else {
|
||||
const { ext } = path.parse(decodeURIComponent(file.originalname));
|
||||
cb(null, `${getNanoid()}${ext}`);
|
||||
}
|
||||
}
|
||||
})
|
||||
}).array('file', global.feConfigs?.uploadFileMaxSize);
|
||||
async getUploadFiles<T = any>(req: NextApiRequest, res: NextApiResponse) {
|
||||
return new Promise<{
|
||||
files: FileType[];
|
||||
data: T;
|
||||
}>((resolve, reject) => {
|
||||
// @ts-ignore
|
||||
this.uploaderMultiple(req, res, (error) => {
|
||||
if (error) {
|
||||
console.log(error);
|
||||
return reject(error);
|
||||
}
|
||||
|
||||
// @ts-ignore
|
||||
const files = req.files as FileType[];
|
||||
|
||||
resolve({
|
||||
files: files.map((file) => ({
|
||||
...file,
|
||||
originalname: decodeURIComponent(file.originalname)
|
||||
})),
|
||||
data: (() => {
|
||||
if (!req.body?.data) return {};
|
||||
try {
|
||||
return JSON.parse(req.body.data);
|
||||
} catch (error) {
|
||||
return {};
|
||||
}
|
||||
})()
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return new UploadModel();
|
||||
|
@@ -4,7 +4,8 @@ import { MongoFrequencyLimit } from './schema';
|
||||
export const authFrequencyLimit = async ({
|
||||
eventId,
|
||||
maxAmount,
|
||||
expiredTime
|
||||
expiredTime,
|
||||
num = 1
|
||||
}: AuthFrequencyLimitProps) => {
|
||||
try {
|
||||
// 对应 eventId 的 account+1, 不存在的话,则创建一个
|
||||
@@ -14,7 +15,7 @@ export const authFrequencyLimit = async ({
|
||||
expiredTime: { $gte: new Date() }
|
||||
},
|
||||
{
|
||||
$inc: { amount: 1 },
|
||||
$inc: { amount: num },
|
||||
// If not exist, set the expiredTime
|
||||
$setOnInsert: { expiredTime }
|
||||
},
|
||||
|
@@ -6,7 +6,9 @@ export enum TimerIdEnum {
|
||||
updateStandardPlan = 'updateStandardPlan',
|
||||
scheduleTriggerApp = 'scheduleTriggerApp',
|
||||
notification = 'notification',
|
||||
clearExpiredRawTextBuffer = 'clearExpiredRawTextBuffer'
|
||||
|
||||
clearExpiredRawTextBuffer = 'clearExpiredRawTextBuffer',
|
||||
clearExpiredDatasetImage = 'clearExpiredDatasetImage'
|
||||
}
|
||||
|
||||
export enum LockNotificationEnum {
|
||||
|
@@ -548,12 +548,27 @@
|
||||
"showTopP": false,
|
||||
"showStopSign": false
|
||||
},
|
||||
{
|
||||
"model": "text-embedding-v4",
|
||||
"name": "text-embedding-v4",
|
||||
"defaultToken": 512,
|
||||
"maxToken": 8000,
|
||||
"type": "embedding",
|
||||
"defaultConfig": {
|
||||
"dimensions": 1536
|
||||
}
|
||||
},
|
||||
{
|
||||
"model": "text-embedding-v3",
|
||||
"name": "text-embedding-v3",
|
||||
"defaultToken": 512,
|
||||
"maxToken": 8000,
|
||||
"type": "embedding"
|
||||
},
|
||||
{
|
||||
"model": "gte-rerank-v2",
|
||||
"name": "gte-rerank-v2",
|
||||
"type": "rerank"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
@@ -20,6 +20,10 @@ export const getVlmModel = (model?: string) => {
|
||||
?.find((item) => item.model === model || item.name === model);
|
||||
};
|
||||
|
||||
export const getVlmModelList = () => {
|
||||
return Array.from(global.llmModelMap.values())?.filter((item) => item.vision) || [];
|
||||
};
|
||||
|
||||
export const getDefaultEmbeddingModel = () => global?.systemDefaultModel.embedding!;
|
||||
export const getEmbeddingModel = (model?: string) => {
|
||||
if (!model) return getDefaultEmbeddingModel();
|
||||
|
@@ -227,8 +227,10 @@ export const parseReasoningContent = (text: string): [string, string] => {
|
||||
|
||||
export const removeDatasetCiteText = (text: string, retainDatasetCite: boolean) => {
|
||||
return retainDatasetCite
|
||||
? text.replace(/\[id\]\(CITE\)/g, '')
|
||||
: text.replace(/\[([a-f0-9]{24})\](?:\([^\)]*\)?)?/g, '').replace(/\[id\]\(CITE\)/g, '');
|
||||
? text.replace(/[\[【]id[\]】]\(CITE\)/g, '')
|
||||
: text
|
||||
.replace(/[\[【]([a-f0-9]{24})[\]】](?:\([^\)]*\)?)?/g, '')
|
||||
.replace(/[\[【]id[\]】]\(CITE\)/g, '');
|
||||
};
|
||||
|
||||
// Parse llm stream part
|
||||
@@ -426,8 +428,8 @@ export const parseLLMStreamResponse = () => {
|
||||
}
|
||||
|
||||
// 新内容包含 [,初始化缓冲数据
|
||||
if (text.includes('[')) {
|
||||
const index = text.indexOf('[');
|
||||
if (text.includes('[') || text.includes('【')) {
|
||||
const index = text.indexOf('[') !== -1 ? text.indexOf('[') : text.indexOf('【');
|
||||
const beforeContent = citeBuffer + text.slice(0, index);
|
||||
citeBuffer = text.slice(index);
|
||||
|
||||
|
@@ -3,14 +3,15 @@ import type {
|
||||
ApiFileReadContentResponse,
|
||||
APIFileReadResponse,
|
||||
ApiDatasetDetailResponse,
|
||||
APIFileServer,
|
||||
APIFileItem
|
||||
} from '@fastgpt/global/core/dataset/apiDataset';
|
||||
APIFileServer
|
||||
} from '@fastgpt/global/core/dataset/apiDataset/type';
|
||||
import axios, { type Method } from 'axios';
|
||||
import { addLog } from '../../../common/system/log';
|
||||
import { readFileRawTextByUrl } from '../read';
|
||||
import { addLog } from '../../../../common/system/log';
|
||||
import { readFileRawTextByUrl } from '../../read';
|
||||
import { type ParentIdType } from '@fastgpt/global/common/parentFolder/type';
|
||||
import { type RequireOnlyOne } from '@fastgpt/global/common/type/utils';
|
||||
import { addRawTextBuffer, getRawTextBuffer } from '../../../../common/buffer/rawText/controller';
|
||||
import { addMinutes } from 'date-fns';
|
||||
|
||||
type ResponseDataType = {
|
||||
success: boolean;
|
||||
@@ -141,6 +142,15 @@ export const useApiDatasetRequest = ({ apiServer }: { apiServer: APIFileServer }
|
||||
};
|
||||
}
|
||||
if (previewUrl) {
|
||||
// Get from buffer
|
||||
const buffer = await getRawTextBuffer(previewUrl);
|
||||
if (buffer) {
|
||||
return {
|
||||
title,
|
||||
rawText: buffer.text
|
||||
};
|
||||
}
|
||||
|
||||
const rawText = await readFileRawTextByUrl({
|
||||
teamId,
|
||||
tmbId,
|
||||
@@ -149,6 +159,14 @@ export const useApiDatasetRequest = ({ apiServer }: { apiServer: APIFileServer }
|
||||
customPdfParse,
|
||||
getFormatText: true
|
||||
});
|
||||
|
||||
await addRawTextBuffer({
|
||||
sourceId: previewUrl,
|
||||
sourceName: title || '',
|
||||
text: rawText,
|
||||
expiredTime: addMinutes(new Date(), 30)
|
||||
});
|
||||
|
||||
return {
|
||||
title,
|
||||
rawText
|
@@ -3,10 +3,10 @@ import type {
|
||||
ApiFileReadContentResponse,
|
||||
ApiDatasetDetailResponse,
|
||||
FeishuServer
|
||||
} from '@fastgpt/global/core/dataset/apiDataset';
|
||||
} from '@fastgpt/global/core/dataset/apiDataset/type';
|
||||
import { type ParentIdType } from '@fastgpt/global/common/parentFolder/type';
|
||||
import axios, { type Method } from 'axios';
|
||||
import { addLog } from '../../../common/system/log';
|
||||
import { addLog } from '../../../../common/system/log';
|
||||
|
||||
type ResponseDataType = {
|
||||
success: boolean;
|
@@ -1,18 +1,10 @@
|
||||
import type {
|
||||
APIFileServer,
|
||||
YuqueServer,
|
||||
FeishuServer
|
||||
} from '@fastgpt/global/core/dataset/apiDataset';
|
||||
import { useApiDatasetRequest } from './api';
|
||||
import { useYuqueDatasetRequest } from '../yuqueDataset/api';
|
||||
import { useFeishuDatasetRequest } from '../feishuDataset/api';
|
||||
import { useApiDatasetRequest } from './custom/api';
|
||||
import { useYuqueDatasetRequest } from './yuqueDataset/api';
|
||||
import { useFeishuDatasetRequest } from './feishuDataset/api';
|
||||
import type { ApiDatasetServerType } from '@fastgpt/global/core/dataset/apiDataset/type';
|
||||
|
||||
export const getApiDatasetRequest = async (data: {
|
||||
apiServer?: APIFileServer;
|
||||
yuqueServer?: YuqueServer;
|
||||
feishuServer?: FeishuServer;
|
||||
}) => {
|
||||
const { apiServer, yuqueServer, feishuServer } = data;
|
||||
export const getApiDatasetRequest = async (apiDatasetServer?: ApiDatasetServerType) => {
|
||||
const { apiServer, yuqueServer, feishuServer } = apiDatasetServer || {};
|
||||
|
||||
if (apiServer) {
|
||||
return useApiDatasetRequest({ apiServer });
|
||||
|
@@ -3,9 +3,9 @@ import type {
|
||||
ApiFileReadContentResponse,
|
||||
YuqueServer,
|
||||
ApiDatasetDetailResponse
|
||||
} from '@fastgpt/global/core/dataset/apiDataset';
|
||||
} from '@fastgpt/global/core/dataset/apiDataset/type';
|
||||
import axios, { type Method } from 'axios';
|
||||
import { addLog } from '../../../common/system/log';
|
||||
import { addLog } from '../../../../common/system/log';
|
||||
import { type ParentIdType } from '@fastgpt/global/common/parentFolder/type';
|
||||
|
||||
type ResponseDataType = {
|
@@ -5,9 +5,9 @@ import {
|
||||
} from '@fastgpt/global/core/dataset/constants';
|
||||
import type { CreateDatasetCollectionParams } from '@fastgpt/global/core/dataset/api.d';
|
||||
import { MongoDatasetCollection } from './schema';
|
||||
import {
|
||||
type DatasetCollectionSchemaType,
|
||||
type DatasetSchemaType
|
||||
import type {
|
||||
DatasetCollectionSchemaType,
|
||||
DatasetSchemaType
|
||||
} from '@fastgpt/global/core/dataset/type';
|
||||
import { MongoDatasetTraining } from '../training/schema';
|
||||
import { MongoDatasetData } from '../data/schema';
|
||||
@@ -15,7 +15,7 @@ import { delImgByRelatedId } from '../../../common/file/image/controller';
|
||||
import { deleteDatasetDataVector } from '../../../common/vectorDB/controller';
|
||||
import { delFileByFileIdList } from '../../../common/file/gridfs/controller';
|
||||
import { BucketNameEnum } from '@fastgpt/global/common/file/constants';
|
||||
import { type ClientSession } from '../../../common/mongo';
|
||||
import type { ClientSession } from '../../../common/mongo';
|
||||
import { createOrGetCollectionTags } from './utils';
|
||||
import { rawText2Chunks } from '../read';
|
||||
import { checkDatasetLimit } from '../../../support/permission/teamLimit';
|
||||
@@ -24,7 +24,7 @@ import { mongoSessionRun } from '../../../common/mongo/sessionRun';
|
||||
import { createTrainingUsage } from '../../../support/wallet/usage/controller';
|
||||
import { UsageSourceEnum } from '@fastgpt/global/support/wallet/usage/constants';
|
||||
import { getLLMModel, getEmbeddingModel, getVlmModel } from '../../ai/model';
|
||||
import { pushDataListToTrainingQueue } from '../training/controller';
|
||||
import { pushDataListToTrainingQueue, pushDatasetToParseQueue } from '../training/controller';
|
||||
import { MongoImage } from '../../../common/file/image/schema';
|
||||
import { hashStr } from '@fastgpt/global/common/string/tools';
|
||||
import { addDays } from 'date-fns';
|
||||
@@ -35,23 +35,28 @@ import {
|
||||
computeChunkSize,
|
||||
computeChunkSplitter,
|
||||
computeParagraphChunkDeep,
|
||||
getAutoIndexSize,
|
||||
getLLMMaxChunkSize
|
||||
} from '@fastgpt/global/core/dataset/training/utils';
|
||||
import { DatasetDataIndexTypeEnum } from '@fastgpt/global/core/dataset/data/constants';
|
||||
import { clearCollectionImages, removeDatasetImageExpiredTime } from '../image/utils';
|
||||
|
||||
export const createCollectionAndInsertData = async ({
|
||||
dataset,
|
||||
rawText,
|
||||
relatedId,
|
||||
imageIds,
|
||||
createCollectionParams,
|
||||
backupParse = false,
|
||||
billId,
|
||||
session
|
||||
}: {
|
||||
dataset: DatasetSchemaType;
|
||||
rawText: string;
|
||||
rawText?: string;
|
||||
relatedId?: string;
|
||||
imageIds?: string[];
|
||||
createCollectionParams: CreateOneCollectionParams;
|
||||
|
||||
backupParse?: boolean;
|
||||
|
||||
billId?: string;
|
||||
@@ -69,13 +74,13 @@ export const createCollectionAndInsertData = async ({
|
||||
// Set default params
|
||||
const trainingType =
|
||||
createCollectionParams.trainingType || DatasetCollectionDataProcessModeEnum.chunk;
|
||||
const chunkSize = computeChunkSize({
|
||||
...createCollectionParams,
|
||||
trainingType,
|
||||
llmModel: getLLMModel(dataset.agentModel)
|
||||
});
|
||||
const chunkSplitter = computeChunkSplitter(createCollectionParams);
|
||||
const paragraphChunkDeep = computeParagraphChunkDeep(createCollectionParams);
|
||||
const trainingMode = getTrainingModeByCollection({
|
||||
trainingType: trainingType,
|
||||
autoIndexes: createCollectionParams.autoIndexes,
|
||||
imageIndex: createCollectionParams.imageIndex
|
||||
});
|
||||
|
||||
if (
|
||||
trainingType === DatasetCollectionDataProcessModeEnum.qa ||
|
||||
@@ -90,44 +95,85 @@ export const createCollectionAndInsertData = async ({
|
||||
delete createCollectionParams.qaPrompt;
|
||||
}
|
||||
|
||||
// 1. split chunks
|
||||
const chunks = rawText2Chunks({
|
||||
rawText,
|
||||
chunkTriggerType: createCollectionParams.chunkTriggerType,
|
||||
chunkTriggerMinSize: createCollectionParams.chunkTriggerMinSize,
|
||||
// 1. split chunks or create image chunks
|
||||
const {
|
||||
chunks,
|
||||
chunkSize,
|
||||
paragraphChunkDeep,
|
||||
paragraphChunkMinSize: createCollectionParams.paragraphChunkMinSize,
|
||||
maxSize: getLLMMaxChunkSize(getLLMModel(dataset.agentModel)),
|
||||
overlapRatio: trainingType === DatasetCollectionDataProcessModeEnum.chunk ? 0.2 : 0,
|
||||
customReg: chunkSplitter ? [chunkSplitter] : [],
|
||||
backupParse
|
||||
});
|
||||
indexSize
|
||||
}: {
|
||||
chunks: Array<{
|
||||
q?: string;
|
||||
a?: string; // answer or custom content
|
||||
imageId?: string;
|
||||
indexes?: string[];
|
||||
}>;
|
||||
chunkSize?: number;
|
||||
indexSize?: number;
|
||||
} = (() => {
|
||||
if (rawText) {
|
||||
const chunkSize = computeChunkSize({
|
||||
...createCollectionParams,
|
||||
trainingType,
|
||||
llmModel: getLLMModel(dataset.agentModel)
|
||||
});
|
||||
// Process text chunks
|
||||
const chunks = rawText2Chunks({
|
||||
rawText,
|
||||
chunkTriggerType: createCollectionParams.chunkTriggerType,
|
||||
chunkTriggerMinSize: createCollectionParams.chunkTriggerMinSize,
|
||||
chunkSize,
|
||||
paragraphChunkDeep,
|
||||
paragraphChunkMinSize: createCollectionParams.paragraphChunkMinSize,
|
||||
maxSize: getLLMMaxChunkSize(getLLMModel(dataset.agentModel)),
|
||||
overlapRatio: trainingType === DatasetCollectionDataProcessModeEnum.chunk ? 0.2 : 0,
|
||||
customReg: chunkSplitter ? [chunkSplitter] : [],
|
||||
backupParse
|
||||
});
|
||||
return {
|
||||
chunks,
|
||||
chunkSize,
|
||||
indexSize: createCollectionParams.indexSize ?? getAutoIndexSize(dataset.vectorModel)
|
||||
};
|
||||
}
|
||||
|
||||
if (imageIds) {
|
||||
// Process image chunks
|
||||
const chunks = imageIds.map((imageId: string) => ({
|
||||
imageId,
|
||||
indexes: []
|
||||
}));
|
||||
return { chunks };
|
||||
}
|
||||
|
||||
return {
|
||||
chunks: [],
|
||||
chunkSize: computeChunkSize({
|
||||
...createCollectionParams,
|
||||
trainingType,
|
||||
llmModel: getLLMModel(dataset.agentModel)
|
||||
}),
|
||||
indexSize: createCollectionParams.indexSize ?? getAutoIndexSize(dataset.vectorModel)
|
||||
};
|
||||
})();
|
||||
|
||||
// 2. auth limit
|
||||
await checkDatasetLimit({
|
||||
teamId,
|
||||
insertLen: predictDataLimitLength(
|
||||
getTrainingModeByCollection({
|
||||
trainingType: trainingType,
|
||||
autoIndexes: createCollectionParams.autoIndexes,
|
||||
imageIndex: createCollectionParams.imageIndex
|
||||
}),
|
||||
chunks
|
||||
)
|
||||
insertLen: predictDataLimitLength(trainingMode, chunks)
|
||||
});
|
||||
|
||||
const fn = async (session: ClientSession) => {
|
||||
// 3. create collection
|
||||
// 3. Create collection
|
||||
const { _id: collectionId } = await createOneCollection({
|
||||
...createCollectionParams,
|
||||
trainingType,
|
||||
paragraphChunkDeep,
|
||||
chunkSize,
|
||||
chunkSplitter,
|
||||
indexSize,
|
||||
|
||||
hashRawText: hashStr(rawText),
|
||||
rawTextLength: rawText.length,
|
||||
hashRawText: rawText ? hashStr(rawText) : undefined,
|
||||
rawTextLength: rawText?.length,
|
||||
nextSyncTime: (() => {
|
||||
// ignore auto collections sync for website datasets
|
||||
if (!dataset.autoSync && dataset.type === DatasetTypeEnum.websiteDataset) return undefined;
|
||||
@@ -160,34 +206,51 @@ export const createCollectionAndInsertData = async ({
|
||||
})();
|
||||
|
||||
// 5. insert to training queue
|
||||
const insertResults = await pushDataListToTrainingQueue({
|
||||
teamId,
|
||||
tmbId,
|
||||
datasetId: dataset._id,
|
||||
const insertResults = await (async () => {
|
||||
if (rawText || imageIds) {
|
||||
return pushDataListToTrainingQueue({
|
||||
teamId,
|
||||
tmbId,
|
||||
datasetId: dataset._id,
|
||||
collectionId,
|
||||
agentModel: dataset.agentModel,
|
||||
vectorModel: dataset.vectorModel,
|
||||
vlmModel: dataset.vlmModel,
|
||||
indexSize,
|
||||
mode: trainingMode,
|
||||
prompt: createCollectionParams.qaPrompt,
|
||||
billId: traingBillId,
|
||||
data: chunks.map((item, index) => ({
|
||||
...item,
|
||||
indexes: item.indexes?.map((text) => ({
|
||||
type: DatasetDataIndexTypeEnum.custom,
|
||||
text
|
||||
})),
|
||||
chunkIndex: index
|
||||
})),
|
||||
session
|
||||
});
|
||||
} else {
|
||||
await pushDatasetToParseQueue({
|
||||
teamId,
|
||||
tmbId,
|
||||
datasetId: dataset._id,
|
||||
collectionId,
|
||||
billId: traingBillId,
|
||||
session
|
||||
});
|
||||
return {
|
||||
insertLen: 0
|
||||
};
|
||||
}
|
||||
})();
|
||||
|
||||
// 6. Remove images ttl index
|
||||
await removeDatasetImageExpiredTime({
|
||||
ids: imageIds,
|
||||
collectionId,
|
||||
agentModel: dataset.agentModel,
|
||||
vectorModel: dataset.vectorModel,
|
||||
vlmModel: dataset.vlmModel,
|
||||
indexSize: createCollectionParams.indexSize,
|
||||
mode: getTrainingModeByCollection({
|
||||
trainingType: trainingType,
|
||||
autoIndexes: createCollectionParams.autoIndexes,
|
||||
imageIndex: createCollectionParams.imageIndex
|
||||
}),
|
||||
prompt: createCollectionParams.qaPrompt,
|
||||
billId: traingBillId,
|
||||
data: chunks.map((item, index) => ({
|
||||
...item,
|
||||
indexes: item.indexes?.map((text) => ({
|
||||
type: DatasetDataIndexTypeEnum.custom,
|
||||
text
|
||||
})),
|
||||
chunkIndex: index
|
||||
})),
|
||||
session
|
||||
});
|
||||
|
||||
// 6. remove related image ttl
|
||||
if (relatedId) {
|
||||
await MongoImage.updateMany(
|
||||
{
|
||||
@@ -207,7 +270,7 @@ export const createCollectionAndInsertData = async ({
|
||||
}
|
||||
|
||||
return {
|
||||
collectionId,
|
||||
collectionId: String(collectionId),
|
||||
insertResults
|
||||
};
|
||||
};
|
||||
@@ -244,9 +307,9 @@ export async function createOneCollection({ session, ...props }: CreateOneCollec
|
||||
[
|
||||
{
|
||||
...props,
|
||||
teamId,
|
||||
_id: undefined,
|
||||
|
||||
parentId: parentId || null,
|
||||
datasetId,
|
||||
|
||||
tags: collectionTags,
|
||||
|
||||
@@ -288,17 +351,20 @@ export const delCollectionRelatedSource = async ({
|
||||
.map((item) => item?.metadata?.relatedImgId || '')
|
||||
.filter(Boolean);
|
||||
|
||||
// Delete files
|
||||
await delFileByFileIdList({
|
||||
bucketName: BucketNameEnum.dataset,
|
||||
fileIdList
|
||||
});
|
||||
// Delete images
|
||||
await delImgByRelatedId({
|
||||
teamId,
|
||||
relateIds: relatedImageIds,
|
||||
session
|
||||
});
|
||||
// Delete files and images in parallel
|
||||
await Promise.all([
|
||||
// Delete files
|
||||
delFileByFileIdList({
|
||||
bucketName: BucketNameEnum.dataset,
|
||||
fileIdList
|
||||
}),
|
||||
// Delete images
|
||||
delImgByRelatedId({
|
||||
teamId,
|
||||
relateIds: relatedImageIds,
|
||||
session
|
||||
})
|
||||
]);
|
||||
};
|
||||
/**
|
||||
* delete collection and it related data
|
||||
@@ -343,6 +409,9 @@ export async function delCollection({
|
||||
datasetId: { $in: datasetIds },
|
||||
collectionId: { $in: collectionIds }
|
||||
}),
|
||||
// Delete dataset_images
|
||||
clearCollectionImages(collectionIds),
|
||||
// Delete images if needed
|
||||
...(delImg
|
||||
? [
|
||||
delImgByRelatedId({
|
||||
@@ -353,6 +422,7 @@ export async function delCollection({
|
||||
})
|
||||
]
|
||||
: []),
|
||||
// Delete files if needed
|
||||
...(delFile
|
||||
? [
|
||||
delFileByFileIdList({
|
||||
|
@@ -1,11 +1,9 @@
|
||||
import { MongoDatasetCollection } from './schema';
|
||||
import { type ClientSession } from '../../../common/mongo';
|
||||
import type { ClientSession } from '../../../common/mongo';
|
||||
import { MongoDatasetCollectionTags } from '../tag/schema';
|
||||
import { readFromSecondary } from '../../../common/mongo/utils';
|
||||
import {
|
||||
type CollectionWithDatasetType,
|
||||
type DatasetCollectionSchemaType
|
||||
} from '@fastgpt/global/core/dataset/type';
|
||||
import type { CollectionWithDatasetType } from '@fastgpt/global/core/dataset/type';
|
||||
import { DatasetCollectionSchemaType } from '@fastgpt/global/core/dataset/type';
|
||||
import {
|
||||
DatasetCollectionDataProcessModeEnum,
|
||||
DatasetCollectionSyncResultEnum,
|
||||
@@ -159,9 +157,7 @@ export const syncCollection = async (collection: CollectionWithDatasetType) => {
|
||||
return {
|
||||
type: DatasetSourceReadTypeEnum.apiFile,
|
||||
sourceId,
|
||||
apiServer: dataset.apiServer,
|
||||
feishuServer: dataset.feishuServer,
|
||||
yuqueServer: dataset.yuqueServer
|
||||
apiDatasetServer: dataset.apiDatasetServer
|
||||
};
|
||||
})();
|
||||
|
||||
@@ -196,31 +192,8 @@ export const syncCollection = async (collection: CollectionWithDatasetType) => {
|
||||
dataset,
|
||||
rawText: rawText,
|
||||
createCollectionParams: {
|
||||
teamId: collection.teamId,
|
||||
tmbId: collection.tmbId,
|
||||
...collection,
|
||||
name: title || collection.name,
|
||||
datasetId: collection.datasetId,
|
||||
parentId: collection.parentId,
|
||||
type: collection.type,
|
||||
|
||||
trainingType: collection.trainingType,
|
||||
chunkSize: collection.chunkSize,
|
||||
chunkSplitter: collection.chunkSplitter,
|
||||
qaPrompt: collection.qaPrompt,
|
||||
|
||||
fileId: collection.fileId,
|
||||
rawLink: collection.rawLink,
|
||||
externalFileId: collection.externalFileId,
|
||||
externalFileUrl: collection.externalFileUrl,
|
||||
apiFileId: collection.apiFileId,
|
||||
|
||||
hashRawText,
|
||||
rawTextLength: rawText.length,
|
||||
|
||||
metadata: collection.metadata,
|
||||
|
||||
tags: collection.tags,
|
||||
createTime: collection.createTime,
|
||||
updateTime: new Date()
|
||||
}
|
||||
});
|
||||
@@ -233,18 +206,37 @@ export const syncCollection = async (collection: CollectionWithDatasetType) => {
|
||||
QA: 独立进程
|
||||
Chunk: Image Index -> Auto index -> chunk index
|
||||
*/
|
||||
export const getTrainingModeByCollection = (collection: {
|
||||
trainingType: DatasetCollectionSchemaType['trainingType'];
|
||||
autoIndexes?: DatasetCollectionSchemaType['autoIndexes'];
|
||||
imageIndex?: DatasetCollectionSchemaType['imageIndex'];
|
||||
export const getTrainingModeByCollection = ({
|
||||
trainingType,
|
||||
autoIndexes,
|
||||
imageIndex
|
||||
}: {
|
||||
trainingType: DatasetCollectionDataProcessModeEnum;
|
||||
autoIndexes?: boolean;
|
||||
imageIndex?: boolean;
|
||||
}) => {
|
||||
if (collection.trainingType === DatasetCollectionDataProcessModeEnum.qa) {
|
||||
if (
|
||||
trainingType === DatasetCollectionDataProcessModeEnum.imageParse &&
|
||||
global.feConfigs?.isPlus
|
||||
) {
|
||||
return TrainingModeEnum.imageParse;
|
||||
}
|
||||
|
||||
if (trainingType === DatasetCollectionDataProcessModeEnum.qa) {
|
||||
return TrainingModeEnum.qa;
|
||||
}
|
||||
if (collection.imageIndex && global.feConfigs?.isPlus) {
|
||||
if (
|
||||
trainingType === DatasetCollectionDataProcessModeEnum.chunk &&
|
||||
imageIndex &&
|
||||
global.feConfigs?.isPlus
|
||||
) {
|
||||
return TrainingModeEnum.image;
|
||||
}
|
||||
if (collection.autoIndexes && global.feConfigs?.isPlus) {
|
||||
if (
|
||||
trainingType === DatasetCollectionDataProcessModeEnum.chunk &&
|
||||
autoIndexes &&
|
||||
global.feConfigs?.isPlus
|
||||
) {
|
||||
return TrainingModeEnum.auto;
|
||||
}
|
||||
return TrainingModeEnum.chunk;
|
||||
|
@@ -9,6 +9,7 @@ import { deleteDatasetDataVector } from '../../common/vectorDB/controller';
|
||||
import { MongoDatasetDataText } from './data/dataTextSchema';
|
||||
import { DatasetErrEnum } from '@fastgpt/global/common/error/code/dataset';
|
||||
import { retryFn } from '@fastgpt/global/common/system/utils';
|
||||
import { clearDatasetImages } from './image/utils';
|
||||
|
||||
/* ============= dataset ========== */
|
||||
/* find all datasetId by top datasetId */
|
||||
@@ -102,8 +103,10 @@ export async function delDatasetRelevantData({
|
||||
}),
|
||||
//delete dataset_datas
|
||||
MongoDatasetData.deleteMany({ teamId, datasetId: { $in: datasetIds } }),
|
||||
// Delete Image and file
|
||||
// Delete collection image and file
|
||||
delCollectionRelatedSource({ collections }),
|
||||
// Delete dataset Image
|
||||
clearDatasetImages(datasetIds),
|
||||
// Delete vector data
|
||||
deleteDatasetDataVector({ teamId, datasetIds })
|
||||
]);
|
||||
|
56
packages/service/core/dataset/data/controller.ts
Normal file
@@ -0,0 +1,56 @@
|
||||
import { getDatasetImagePreviewUrl } from '../image/utils';
|
||||
import type { DatasetCiteItemType, DatasetDataSchemaType } from '@fastgpt/global/core/dataset/type';
|
||||
|
||||
export const formatDatasetDataValue = ({
|
||||
q,
|
||||
a,
|
||||
imageId,
|
||||
teamId,
|
||||
datasetId
|
||||
}: {
|
||||
q: string;
|
||||
a?: string;
|
||||
imageId?: string;
|
||||
teamId: string;
|
||||
datasetId: string;
|
||||
}): {
|
||||
q: string;
|
||||
a?: string;
|
||||
imagePreivewUrl?: string;
|
||||
} => {
|
||||
if (!imageId) {
|
||||
return {
|
||||
q,
|
||||
a
|
||||
};
|
||||
}
|
||||
|
||||
const previewUrl = getDatasetImagePreviewUrl({
|
||||
imageId,
|
||||
teamId,
|
||||
datasetId,
|
||||
expiredMinutes: 60 * 24 * 7 // 7 days
|
||||
});
|
||||
|
||||
return {
|
||||
q: ``,
|
||||
a,
|
||||
imagePreivewUrl: previewUrl
|
||||
};
|
||||
};
|
||||
|
||||
export const getFormatDatasetCiteList = (list: DatasetDataSchemaType[]) => {
|
||||
return list.map<DatasetCiteItemType>((item) => ({
|
||||
_id: item._id,
|
||||
...formatDatasetDataValue({
|
||||
teamId: item.teamId,
|
||||
datasetId: item.datasetId,
|
||||
q: item.q,
|
||||
a: item.a,
|
||||
imageId: item.imageId
|
||||
}),
|
||||
history: item.history,
|
||||
updateTime: item.updateTime,
|
||||
index: item.chunkIndex
|
||||
}));
|
||||
};
|
@@ -37,8 +37,7 @@ const DatasetDataSchema = new Schema({
|
||||
required: true
|
||||
},
|
||||
a: {
|
||||
type: String,
|
||||
default: ''
|
||||
type: String
|
||||
},
|
||||
history: {
|
||||
type: [
|
||||
@@ -74,6 +73,9 @@ const DatasetDataSchema = new Schema({
|
||||
default: []
|
||||
},
|
||||
|
||||
imageId: {
|
||||
type: String
|
||||
},
|
||||
updateTime: {
|
||||
type: Date,
|
||||
default: () => new Date()
|
||||
|
166
packages/service/core/dataset/image/controller.ts
Normal file
@@ -0,0 +1,166 @@
|
||||
import { addMinutes } from 'date-fns';
|
||||
import { bucketName, MongoDatasetImageSchema } from './schema';
|
||||
import { connectionMongo, Types } from '../../../common/mongo';
|
||||
import fs from 'fs';
|
||||
import type { FileType } from '../../../common/file/multer';
|
||||
import fsp from 'fs/promises';
|
||||
import { computeGridFsChunSize } from '../../../common/file/gridfs/utils';
|
||||
import { setCron } from '../../../common/system/cron';
|
||||
import { checkTimerLock } from '../../../common/system/timerLock/utils';
|
||||
import { TimerIdEnum } from '../../../common/system/timerLock/constants';
|
||||
import { addLog } from '../../../common/system/log';
|
||||
|
||||
const getGridBucket = () => {
|
||||
return new connectionMongo.mongo.GridFSBucket(connectionMongo.connection.db!, {
|
||||
bucketName: bucketName
|
||||
});
|
||||
};
|
||||
|
||||
export const createDatasetImage = async ({
|
||||
teamId,
|
||||
datasetId,
|
||||
file,
|
||||
expiredTime = addMinutes(new Date(), 30)
|
||||
}: {
|
||||
teamId: string;
|
||||
datasetId: string;
|
||||
file: FileType;
|
||||
expiredTime?: Date;
|
||||
}): Promise<{ imageId: string; previewUrl: string }> => {
|
||||
const path = file.path;
|
||||
const gridBucket = getGridBucket();
|
||||
const metadata = {
|
||||
teamId: String(teamId),
|
||||
datasetId: String(datasetId),
|
||||
expiredTime
|
||||
};
|
||||
|
||||
const stats = await fsp.stat(path);
|
||||
if (!stats.isFile()) return Promise.reject(`${path} is not a file`);
|
||||
|
||||
const readStream = fs.createReadStream(path, {
|
||||
highWaterMark: 256 * 1024
|
||||
});
|
||||
const chunkSizeBytes = computeGridFsChunSize(stats.size);
|
||||
|
||||
const stream = gridBucket.openUploadStream(file.originalname, {
|
||||
metadata,
|
||||
contentType: file.mimetype,
|
||||
chunkSizeBytes
|
||||
});
|
||||
|
||||
// save to gridfs
|
||||
await new Promise((resolve, reject) => {
|
||||
readStream
|
||||
.pipe(stream as any)
|
||||
.on('finish', resolve)
|
||||
.on('error', reject);
|
||||
});
|
||||
|
||||
return {
|
||||
imageId: String(stream.id),
|
||||
previewUrl: ''
|
||||
};
|
||||
};
|
||||
|
||||
export const getDatasetImageReadData = async (imageId: string) => {
|
||||
// Get file metadata to get contentType
|
||||
const fileInfo = await MongoDatasetImageSchema.findOne({
|
||||
_id: new Types.ObjectId(imageId)
|
||||
}).lean();
|
||||
if (!fileInfo) {
|
||||
return Promise.reject('Image not found');
|
||||
}
|
||||
|
||||
const gridBucket = getGridBucket();
|
||||
return {
|
||||
stream: gridBucket.openDownloadStream(new Types.ObjectId(imageId)),
|
||||
fileInfo
|
||||
};
|
||||
};
|
||||
export const getDatasetImageBase64 = async (imageId: string) => {
|
||||
// Get file metadata to get contentType
|
||||
const fileInfo = await MongoDatasetImageSchema.findOne({
|
||||
_id: new Types.ObjectId(imageId)
|
||||
}).lean();
|
||||
if (!fileInfo) {
|
||||
return Promise.reject('Image not found');
|
||||
}
|
||||
|
||||
// Get image stream from GridFS
|
||||
const { stream } = await getDatasetImageReadData(imageId);
|
||||
|
||||
// Convert stream to buffer
|
||||
const chunks: Buffer[] = [];
|
||||
|
||||
return new Promise<string>((resolve, reject) => {
|
||||
stream.on('data', (chunk: Buffer) => {
|
||||
chunks.push(chunk);
|
||||
});
|
||||
|
||||
stream.on('end', () => {
|
||||
// Combine all chunks into a single buffer
|
||||
const buffer = Buffer.concat(chunks);
|
||||
// Convert buffer to base64 string
|
||||
const base64 = buffer.toString('base64');
|
||||
const dataUrl = `data:${fileInfo.contentType || 'image/jpeg'};base64,${base64}`;
|
||||
resolve(dataUrl);
|
||||
});
|
||||
|
||||
stream.on('error', reject);
|
||||
});
|
||||
};
|
||||
|
||||
export const deleteDatasetImage = async (imageId: string) => {
|
||||
const gridBucket = getGridBucket();
|
||||
|
||||
try {
|
||||
await gridBucket.delete(new Types.ObjectId(imageId));
|
||||
} catch (error: any) {
|
||||
const msg = error?.message;
|
||||
if (msg.includes('File not found')) {
|
||||
addLog.warn('Delete dataset image error', error);
|
||||
return;
|
||||
} else {
|
||||
return Promise.reject(error);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
export const clearExpiredDatasetImageCron = async () => {
|
||||
const gridBucket = getGridBucket();
|
||||
const clearExpiredDatasetImages = async () => {
|
||||
addLog.debug('Clear expired dataset image start');
|
||||
|
||||
const data = await MongoDatasetImageSchema.find(
|
||||
{
|
||||
'metadata.expiredTime': { $lt: new Date() }
|
||||
},
|
||||
'_id'
|
||||
).lean();
|
||||
|
||||
for (const item of data) {
|
||||
try {
|
||||
await gridBucket.delete(item._id);
|
||||
} catch (error) {
|
||||
addLog.error('Delete expired dataset image error', error);
|
||||
}
|
||||
}
|
||||
addLog.debug('Clear expired dataset image end');
|
||||
};
|
||||
|
||||
setCron('*/10 * * * *', async () => {
|
||||
if (
|
||||
await checkTimerLock({
|
||||
timerId: TimerIdEnum.clearExpiredDatasetImage,
|
||||
lockMinuted: 9
|
||||
})
|
||||
) {
|
||||
try {
|
||||
await clearExpiredDatasetImages();
|
||||
} catch (error) {
|
||||
addLog.error('clearExpiredDatasetImageCron error', error);
|
||||
}
|
||||
}
|
||||
});
|
||||
};
|
36
packages/service/core/dataset/image/schema.ts
Normal file
@@ -0,0 +1,36 @@
|
||||
import type { Types } from '../../../common/mongo';
|
||||
import { getMongoModel, Schema } from '../../../common/mongo';
|
||||
|
||||
export const bucketName = 'dataset_image';
|
||||
|
||||
const MongoDatasetImage = new Schema({
|
||||
length: { type: Number, required: true },
|
||||
chunkSize: { type: Number, required: true },
|
||||
uploadDate: { type: Date, required: true },
|
||||
filename: { type: String, required: true },
|
||||
contentType: { type: String, required: true },
|
||||
metadata: {
|
||||
teamId: { type: String, required: true },
|
||||
datasetId: { type: String, required: true },
|
||||
collectionId: { type: String },
|
||||
expiredTime: { type: Date, required: true }
|
||||
}
|
||||
});
|
||||
MongoDatasetImage.index({ 'metadata.datasetId': 'hashed' });
|
||||
MongoDatasetImage.index({ 'metadata.collectionId': 'hashed' });
|
||||
MongoDatasetImage.index({ 'metadata.expiredTime': -1 });
|
||||
|
||||
export const MongoDatasetImageSchema = getMongoModel<{
|
||||
_id: Types.ObjectId;
|
||||
length: number;
|
||||
chunkSize: number;
|
||||
uploadDate: Date;
|
||||
filename: string;
|
||||
contentType: string;
|
||||
metadata: {
|
||||
teamId: string;
|
||||
datasetId: string;
|
||||
collectionId: string;
|
||||
expiredTime: Date;
|
||||
};
|
||||
}>(`${bucketName}.files`, MongoDatasetImage);
|
103
packages/service/core/dataset/image/utils.ts
Normal file
@@ -0,0 +1,103 @@
|
||||
import { ERROR_ENUM } from '@fastgpt/global/common/error/errorCode';
|
||||
import { Types, type ClientSession } from '../../../common/mongo';
|
||||
import { deleteDatasetImage } from './controller';
|
||||
import { MongoDatasetImageSchema } from './schema';
|
||||
import { addMinutes } from 'date-fns';
|
||||
import jwt from 'jsonwebtoken';
|
||||
|
||||
export const removeDatasetImageExpiredTime = async ({
|
||||
ids = [],
|
||||
collectionId,
|
||||
session
|
||||
}: {
|
||||
ids?: string[];
|
||||
collectionId: string;
|
||||
session?: ClientSession;
|
||||
}) => {
|
||||
if (ids.length === 0) return;
|
||||
return MongoDatasetImageSchema.updateMany(
|
||||
{
|
||||
_id: {
|
||||
$in: ids
|
||||
.filter((id) => Types.ObjectId.isValid(id))
|
||||
.map((id) => (typeof id === 'string' ? new Types.ObjectId(id) : id))
|
||||
}
|
||||
},
|
||||
{
|
||||
$unset: { 'metadata.expiredTime': '' },
|
||||
$set: {
|
||||
'metadata.collectionId': String(collectionId)
|
||||
}
|
||||
},
|
||||
{ session }
|
||||
);
|
||||
};
|
||||
|
||||
export const getDatasetImagePreviewUrl = ({
|
||||
imageId,
|
||||
teamId,
|
||||
datasetId,
|
||||
expiredMinutes
|
||||
}: {
|
||||
imageId: string;
|
||||
teamId: string;
|
||||
datasetId: string;
|
||||
expiredMinutes: number;
|
||||
}) => {
|
||||
const expiredTime = Math.floor(addMinutes(new Date(), expiredMinutes).getTime() / 1000);
|
||||
|
||||
const key = (process.env.FILE_TOKEN_KEY as string) ?? 'filetoken';
|
||||
const token = jwt.sign(
|
||||
{
|
||||
teamId: String(teamId),
|
||||
datasetId: String(datasetId),
|
||||
exp: expiredTime
|
||||
},
|
||||
key
|
||||
);
|
||||
|
||||
return `/api/core/dataset/image/${imageId}?token=${token}`;
|
||||
};
|
||||
export const authDatasetImagePreviewUrl = (token?: string) =>
|
||||
new Promise<{
|
||||
teamId: string;
|
||||
datasetId: string;
|
||||
}>((resolve, reject) => {
|
||||
if (!token) {
|
||||
return reject(ERROR_ENUM.unAuthFile);
|
||||
}
|
||||
const key = (process.env.FILE_TOKEN_KEY as string) ?? 'filetoken';
|
||||
|
||||
jwt.verify(token, key, (err, decoded: any) => {
|
||||
if (err || !decoded?.teamId || !decoded?.datasetId) {
|
||||
reject(ERROR_ENUM.unAuthFile);
|
||||
return;
|
||||
}
|
||||
resolve({
|
||||
teamId: decoded.teamId,
|
||||
datasetId: decoded.datasetId
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
export const clearDatasetImages = async (datasetIds: string[]) => {
|
||||
if (datasetIds.length === 0) return;
|
||||
const images = await MongoDatasetImageSchema.find(
|
||||
{
|
||||
'metadata.datasetId': { $in: datasetIds.map((item) => String(item)) }
|
||||
},
|
||||
'_id'
|
||||
).lean();
|
||||
await Promise.all(images.map((image) => deleteDatasetImage(String(image._id))));
|
||||
};
|
||||
|
||||
export const clearCollectionImages = async (collectionIds: string[]) => {
|
||||
if (collectionIds.length === 0) return;
|
||||
const images = await MongoDatasetImageSchema.find(
|
||||
{
|
||||
'metadata.collectionId': { $in: collectionIds.map((item) => String(item)) }
|
||||
},
|
||||
'_id'
|
||||
).lean();
|
||||
await Promise.all(images.map((image) => deleteDatasetImage(String(image._id))));
|
||||
};
|
@@ -9,13 +9,9 @@ import { type TextSplitProps, splitText2Chunks } from '@fastgpt/global/common/st
|
||||
import axios from 'axios';
|
||||
import { readRawContentByFileBuffer } from '../../common/file/read/utils';
|
||||
import { parseFileExtensionFromUrl } from '@fastgpt/global/common/string/tools';
|
||||
import {
|
||||
type APIFileServer,
|
||||
type FeishuServer,
|
||||
type YuqueServer
|
||||
} from '@fastgpt/global/core/dataset/apiDataset';
|
||||
import { getApiDatasetRequest } from './apiDataset';
|
||||
import Papa from 'papaparse';
|
||||
import type { ApiDatasetServerType } from '@fastgpt/global/core/dataset/apiDataset/type';
|
||||
|
||||
export const readFileRawTextByUrl = async ({
|
||||
teamId,
|
||||
@@ -69,9 +65,7 @@ export const readDatasetSourceRawText = async ({
|
||||
sourceId,
|
||||
selector,
|
||||
externalFileId,
|
||||
apiServer,
|
||||
feishuServer,
|
||||
yuqueServer,
|
||||
apiDatasetServer,
|
||||
customPdfParse,
|
||||
getFormatText
|
||||
}: {
|
||||
@@ -84,9 +78,7 @@ export const readDatasetSourceRawText = async ({
|
||||
|
||||
selector?: string; // link selector
|
||||
externalFileId?: string; // external file dataset
|
||||
apiServer?: APIFileServer; // api dataset
|
||||
feishuServer?: FeishuServer; // feishu dataset
|
||||
yuqueServer?: YuqueServer; // yuque dataset
|
||||
apiDatasetServer?: ApiDatasetServerType; // api dataset
|
||||
}): Promise<{
|
||||
title?: string;
|
||||
rawText: string;
|
||||
@@ -110,9 +102,14 @@ export const readDatasetSourceRawText = async ({
|
||||
selector
|
||||
});
|
||||
|
||||
const { title = sourceId, content = '' } = result[0];
|
||||
if (!content || content === 'Cannot fetch internal url') {
|
||||
return Promise.reject(content || 'Can not fetch content from link');
|
||||
}
|
||||
|
||||
return {
|
||||
title: result[0]?.title,
|
||||
rawText: result[0]?.content || ''
|
||||
title,
|
||||
rawText: content
|
||||
};
|
||||
} else if (type === DatasetSourceReadTypeEnum.externalFile) {
|
||||
if (!externalFileId) return Promise.reject('FileId not found');
|
||||
@@ -128,9 +125,7 @@ export const readDatasetSourceRawText = async ({
|
||||
};
|
||||
} else if (type === DatasetSourceReadTypeEnum.apiFile) {
|
||||
const { title, rawText } = await readApiServerFileContent({
|
||||
apiServer,
|
||||
feishuServer,
|
||||
yuqueServer,
|
||||
apiDatasetServer,
|
||||
apiFileId: sourceId,
|
||||
teamId,
|
||||
tmbId
|
||||
@@ -147,17 +142,13 @@ export const readDatasetSourceRawText = async ({
|
||||
};
|
||||
|
||||
export const readApiServerFileContent = async ({
|
||||
apiServer,
|
||||
feishuServer,
|
||||
yuqueServer,
|
||||
apiDatasetServer,
|
||||
apiFileId,
|
||||
teamId,
|
||||
tmbId,
|
||||
customPdfParse
|
||||
}: {
|
||||
apiServer?: APIFileServer;
|
||||
feishuServer?: FeishuServer;
|
||||
yuqueServer?: YuqueServer;
|
||||
apiDatasetServer?: ApiDatasetServerType;
|
||||
apiFileId: string;
|
||||
teamId: string;
|
||||
tmbId: string;
|
||||
@@ -166,13 +157,7 @@ export const readApiServerFileContent = async ({
|
||||
title?: string;
|
||||
rawText: string;
|
||||
}> => {
|
||||
return (
|
||||
await getApiDatasetRequest({
|
||||
apiServer,
|
||||
yuqueServer,
|
||||
feishuServer
|
||||
})
|
||||
).getFileContent({
|
||||
return (await getApiDatasetRequest(apiDatasetServer)).getFileContent({
|
||||
teamId,
|
||||
tmbId,
|
||||
apiFileId,
|
||||
@@ -186,9 +171,11 @@ export const rawText2Chunks = ({
|
||||
chunkTriggerMinSize = 1000,
|
||||
backupParse,
|
||||
chunkSize = 512,
|
||||
imageIdList,
|
||||
...splitProps
|
||||
}: {
|
||||
rawText: string;
|
||||
imageIdList?: string[];
|
||||
|
||||
chunkTriggerType?: ChunkTriggerConfigTypeEnum;
|
||||
chunkTriggerMinSize?: number; // maxSize from agent model, not store
|
||||
@@ -199,17 +186,18 @@ export const rawText2Chunks = ({
|
||||
q: string;
|
||||
a: string;
|
||||
indexes?: string[];
|
||||
imageIdList?: string[];
|
||||
}[] => {
|
||||
const parseDatasetBackup2Chunks = (rawText: string) => {
|
||||
const csvArr = Papa.parse(rawText).data as string[][];
|
||||
console.log(rawText, csvArr);
|
||||
|
||||
const chunks = csvArr
|
||||
.slice(1)
|
||||
.map((item) => ({
|
||||
q: item[0] || '',
|
||||
a: item[1] || '',
|
||||
indexes: item.slice(2)
|
||||
indexes: item.slice(2),
|
||||
imageIdList
|
||||
}))
|
||||
.filter((item) => item.q || item.a);
|
||||
|
||||
@@ -231,7 +219,8 @@ export const rawText2Chunks = ({
|
||||
return [
|
||||
{
|
||||
q: rawText,
|
||||
a: ''
|
||||
a: '',
|
||||
imageIdList
|
||||
}
|
||||
];
|
||||
}
|
||||
@@ -240,7 +229,7 @@ export const rawText2Chunks = ({
|
||||
if (chunkTriggerType !== ChunkTriggerConfigTypeEnum.forceChunk) {
|
||||
const textLength = rawText.trim().length;
|
||||
if (textLength < chunkTriggerMinSize) {
|
||||
return [{ q: rawText, a: '' }];
|
||||
return [{ q: rawText, a: '', imageIdList }];
|
||||
}
|
||||
}
|
||||
|
||||
@@ -253,6 +242,7 @@ export const rawText2Chunks = ({
|
||||
return chunks.map((item) => ({
|
||||
q: item,
|
||||
a: '',
|
||||
indexes: []
|
||||
indexes: [],
|
||||
imageIdList
|
||||
}));
|
||||
};
|
||||
|
@@ -127,14 +127,16 @@ const DatasetSchema = new Schema({
|
||||
type: Boolean,
|
||||
default: true
|
||||
},
|
||||
apiServer: Object,
|
||||
feishuServer: Object,
|
||||
yuqueServer: Object,
|
||||
|
||||
apiDatasetServer: Object,
|
||||
|
||||
// abandoned
|
||||
autoSync: Boolean,
|
||||
externalReadUrl: String,
|
||||
defaultPermission: Number
|
||||
defaultPermission: Number,
|
||||
apiServer: Object,
|
||||
feishuServer: Object,
|
||||
yuqueServer: Object
|
||||
});
|
||||
|
||||
try {
|
||||
|
@@ -28,6 +28,7 @@ import type { NodeInputKeyEnum } from '@fastgpt/global/core/workflow/constants';
|
||||
import { datasetSearchQueryExtension } from './utils';
|
||||
import type { RerankModelItemType } from '@fastgpt/global/core/ai/model.d';
|
||||
import { addLog } from '../../../common/system/log';
|
||||
import { formatDatasetDataValue } from '../data/controller';
|
||||
|
||||
export type SearchDatasetDataProps = {
|
||||
histories: ChatItemType[];
|
||||
@@ -175,6 +176,12 @@ export async function searchDatasetData(
|
||||
collectionFilterMatch
|
||||
} = props;
|
||||
|
||||
// Constants data
|
||||
const datasetDataSelectField =
|
||||
'_id datasetId collectionId updateTime q a imageId chunkIndex indexes';
|
||||
const datsaetCollectionSelectField =
|
||||
'_id name fileId rawLink apiFileId externalFileId externalFileUrl';
|
||||
|
||||
/* init params */
|
||||
searchMode = DatasetSearchModeMap[searchMode] ? searchMode : DatasetSearchModeEnum.embedding;
|
||||
usingReRank = usingReRank && !!getDefaultRerankModel();
|
||||
@@ -463,14 +470,14 @@ export async function searchDatasetData(
|
||||
collectionId: { $in: collectionIdList },
|
||||
'indexes.dataId': { $in: results.map((item) => item.id?.trim()) }
|
||||
},
|
||||
'_id datasetId collectionId updateTime q a chunkIndex indexes',
|
||||
datasetDataSelectField,
|
||||
{ ...readFromSecondary }
|
||||
).lean(),
|
||||
MongoDatasetCollection.find(
|
||||
{
|
||||
_id: { $in: collectionIdList }
|
||||
},
|
||||
'_id name fileId rawLink apiFileId externalFileId externalFileUrl',
|
||||
datsaetCollectionSelectField,
|
||||
{ ...readFromSecondary }
|
||||
).lean()
|
||||
]);
|
||||
@@ -494,8 +501,13 @@ export async function searchDatasetData(
|
||||
const result: SearchDataResponseItemType = {
|
||||
id: String(data._id),
|
||||
updateTime: data.updateTime,
|
||||
q: data.q,
|
||||
a: data.a,
|
||||
...formatDatasetDataValue({
|
||||
teamId,
|
||||
datasetId: data.datasetId,
|
||||
q: data.q,
|
||||
a: data.a,
|
||||
imageId: data.imageId
|
||||
}),
|
||||
chunkIndex: data.chunkIndex,
|
||||
datasetId: String(data.datasetId),
|
||||
collectionId: String(data.collectionId),
|
||||
@@ -597,14 +609,14 @@ export async function searchDatasetData(
|
||||
{
|
||||
_id: { $in: searchResults.map((item) => item.dataId) }
|
||||
},
|
||||
'_id datasetId collectionId updateTime q a chunkIndex indexes',
|
||||
datasetDataSelectField,
|
||||
{ ...readFromSecondary }
|
||||
).lean(),
|
||||
MongoDatasetCollection.find(
|
||||
{
|
||||
_id: { $in: searchResults.map((item) => item.collectionId) }
|
||||
},
|
||||
'_id name fileId rawLink apiFileId externalFileId externalFileUrl',
|
||||
datsaetCollectionSelectField,
|
||||
{ ...readFromSecondary }
|
||||
).lean()
|
||||
]);
|
||||
@@ -630,8 +642,13 @@ export async function searchDatasetData(
|
||||
datasetId: String(data.datasetId),
|
||||
collectionId: String(data.collectionId),
|
||||
updateTime: data.updateTime,
|
||||
q: data.q,
|
||||
a: data.a,
|
||||
...formatDatasetDataValue({
|
||||
teamId,
|
||||
datasetId: data.datasetId,
|
||||
q: data.q,
|
||||
a: data.a,
|
||||
imageId: data.imageId
|
||||
}),
|
||||
chunkIndex: data.chunkIndex,
|
||||
indexes: data.indexes,
|
||||
...getCollectionSourceData(collection),
|
||||
|
@@ -12,10 +12,7 @@ import { getCollectionWithDataset } from '../controller';
|
||||
import { mongoSessionRun } from '../../../common/mongo/sessionRun';
|
||||
import { type PushDataToTrainingQueueProps } from '@fastgpt/global/core/dataset/training/type';
|
||||
import { i18nT } from '../../../../web/i18n/utils';
|
||||
import {
|
||||
getLLMDefaultChunkSize,
|
||||
getLLMMaxChunkSize
|
||||
} from '../../../../global/core/dataset/training/utils';
|
||||
import { getLLMMaxChunkSize } from '../../../../global/core/dataset/training/utils';
|
||||
|
||||
export const lockTrainingDataByTeamId = async (teamId: string): Promise<any> => {
|
||||
try {
|
||||
@@ -62,10 +59,10 @@ export async function pushDataListToTrainingQueue({
|
||||
indexSize,
|
||||
session
|
||||
}: PushDataToTrainingQueueProps): Promise<PushDatasetDataResponse> {
|
||||
const getImageChunkMode = (data: PushDatasetDataChunkProps, mode: TrainingModeEnum) => {
|
||||
const formatTrainingMode = (data: PushDatasetDataChunkProps, mode: TrainingModeEnum) => {
|
||||
if (mode !== TrainingModeEnum.image) return mode;
|
||||
// 检查内容中,是否包含  的图片格式
|
||||
const text = data.q + data.a || '';
|
||||
const text = (data.q || '') + (data.a || '');
|
||||
const regex = /!\[\]\((.*?)\)/g;
|
||||
const match = text.match(regex);
|
||||
if (match) {
|
||||
@@ -82,9 +79,6 @@ export async function pushDataListToTrainingQueue({
|
||||
if (!agentModelData) {
|
||||
return Promise.reject(i18nT('common:error_llm_not_config'));
|
||||
}
|
||||
if (mode === TrainingModeEnum.chunk || mode === TrainingModeEnum.auto) {
|
||||
prompt = undefined;
|
||||
}
|
||||
|
||||
const { model, maxToken, weight } = await (async () => {
|
||||
if (mode === TrainingModeEnum.chunk) {
|
||||
@@ -101,7 +95,7 @@ export async function pushDataListToTrainingQueue({
|
||||
weight: 0
|
||||
};
|
||||
}
|
||||
if (mode === TrainingModeEnum.image) {
|
||||
if (mode === TrainingModeEnum.image || mode === TrainingModeEnum.imageParse) {
|
||||
const vllmModelData = getVlmModel(vlmModel);
|
||||
if (!vllmModelData) {
|
||||
return Promise.reject(i18nT('common:error_vlm_not_config'));
|
||||
@@ -116,17 +110,8 @@ export async function pushDataListToTrainingQueue({
|
||||
return Promise.reject(`Training mode "${mode}" is inValid`);
|
||||
})();
|
||||
|
||||
// filter repeat or equal content
|
||||
const set = new Set();
|
||||
const filterResult: Record<string, PushDatasetDataChunkProps[]> = {
|
||||
success: [],
|
||||
overToken: [],
|
||||
repeat: [],
|
||||
error: []
|
||||
};
|
||||
|
||||
// format q and a, remove empty char
|
||||
data.forEach((item) => {
|
||||
data = data.filter((item) => {
|
||||
item.q = simpleText(item.q);
|
||||
item.a = simpleText(item.a);
|
||||
|
||||
@@ -140,8 +125,7 @@ export async function pushDataListToTrainingQueue({
|
||||
.filter(Boolean);
|
||||
|
||||
// filter repeat content
|
||||
if (!item.q) {
|
||||
filterResult.error.push(item);
|
||||
if (!item.imageId && !item.q) {
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -149,42 +133,36 @@ export async function pushDataListToTrainingQueue({
|
||||
|
||||
// Oversize llm tokens
|
||||
if (text.length > maxToken) {
|
||||
filterResult.overToken.push(item);
|
||||
return;
|
||||
}
|
||||
|
||||
if (set.has(text)) {
|
||||
filterResult.repeat.push(item);
|
||||
} else {
|
||||
filterResult.success.push(item);
|
||||
set.add(text);
|
||||
}
|
||||
return true;
|
||||
});
|
||||
|
||||
// insert data to db
|
||||
const insertLen = filterResult.success.length;
|
||||
const failedDocuments: PushDatasetDataChunkProps[] = [];
|
||||
const insertLen = data.length;
|
||||
|
||||
// 使用 insertMany 批量插入
|
||||
const batchSize = 200;
|
||||
const batchSize = 500;
|
||||
const insertData = async (startIndex: number, session: ClientSession) => {
|
||||
const list = filterResult.success.slice(startIndex, startIndex + batchSize);
|
||||
const list = data.slice(startIndex, startIndex + batchSize);
|
||||
|
||||
if (list.length === 0) return;
|
||||
|
||||
try {
|
||||
await MongoDatasetTraining.insertMany(
|
||||
const result = await MongoDatasetTraining.insertMany(
|
||||
list.map((item) => ({
|
||||
teamId,
|
||||
tmbId,
|
||||
datasetId,
|
||||
collectionId,
|
||||
datasetId: datasetId,
|
||||
collectionId: collectionId,
|
||||
billId,
|
||||
mode: getImageChunkMode(item, mode),
|
||||
mode: formatTrainingMode(item, mode),
|
||||
prompt,
|
||||
model,
|
||||
q: item.q,
|
||||
a: item.a,
|
||||
...(item.q && { q: item.q }),
|
||||
...(item.a && { a: item.a }),
|
||||
...(item.imageId && { imageId: item.imageId }),
|
||||
chunkIndex: item.chunkIndex ?? 0,
|
||||
indexSize,
|
||||
weight: weight ?? 0,
|
||||
@@ -193,21 +171,20 @@ export async function pushDataListToTrainingQueue({
|
||||
})),
|
||||
{
|
||||
session,
|
||||
ordered: true
|
||||
ordered: false,
|
||||
rawResult: true,
|
||||
includeResultMetadata: false // 进一步减少返回数据
|
||||
}
|
||||
);
|
||||
|
||||
if (result.insertedCount !== list.length) {
|
||||
return Promise.reject(`Insert data error, ${JSON.stringify(result)}`);
|
||||
}
|
||||
} catch (error: any) {
|
||||
addLog.error(`Insert error`, error);
|
||||
// 如果有错误,将失败的文档添加到失败列表中
|
||||
error.writeErrors?.forEach((writeError: any) => {
|
||||
failedDocuments.push(data[writeError.index]);
|
||||
});
|
||||
console.log('failed', failedDocuments);
|
||||
return Promise.reject(error);
|
||||
}
|
||||
|
||||
// 对于失败的文档,尝试单独插入
|
||||
await MongoDatasetTraining.create(failedDocuments, { session });
|
||||
|
||||
return insertData(startIndex + batchSize, session);
|
||||
};
|
||||
|
||||
@@ -219,10 +196,37 @@ export async function pushDataListToTrainingQueue({
|
||||
});
|
||||
}
|
||||
|
||||
delete filterResult.success;
|
||||
|
||||
return {
|
||||
insertLen,
|
||||
...filterResult
|
||||
insertLen
|
||||
};
|
||||
}
|
||||
|
||||
export const pushDatasetToParseQueue = async ({
|
||||
teamId,
|
||||
tmbId,
|
||||
datasetId,
|
||||
collectionId,
|
||||
billId,
|
||||
session
|
||||
}: {
|
||||
teamId: string;
|
||||
tmbId: string;
|
||||
datasetId: string;
|
||||
collectionId: string;
|
||||
billId: string;
|
||||
session: ClientSession;
|
||||
}) => {
|
||||
await MongoDatasetTraining.create(
|
||||
[
|
||||
{
|
||||
teamId,
|
||||
tmbId,
|
||||
datasetId,
|
||||
collectionId,
|
||||
billId,
|
||||
mode: TrainingModeEnum.parse
|
||||
}
|
||||
],
|
||||
{ session, ordered: true }
|
||||
);
|
||||
};
|
||||
|
@@ -54,16 +54,8 @@ const TrainingDataSchema = new Schema({
|
||||
default: 5
|
||||
},
|
||||
|
||||
model: {
|
||||
// ai model
|
||||
type: String,
|
||||
required: true
|
||||
},
|
||||
prompt: {
|
||||
// qa split prompt
|
||||
type: String,
|
||||
default: ''
|
||||
},
|
||||
model: String,
|
||||
prompt: String,
|
||||
q: {
|
||||
type: String,
|
||||
default: ''
|
||||
@@ -72,6 +64,7 @@ const TrainingDataSchema = new Schema({
|
||||
type: String,
|
||||
default: ''
|
||||
},
|
||||
imageId: String,
|
||||
chunkIndex: {
|
||||
type: Number,
|
||||
default: 0
|
||||
@@ -81,9 +74,7 @@ const TrainingDataSchema = new Schema({
|
||||
type: Number,
|
||||
default: 0
|
||||
},
|
||||
dataId: {
|
||||
type: Schema.Types.ObjectId
|
||||
},
|
||||
dataId: Schema.Types.ObjectId,
|
||||
indexes: {
|
||||
type: [
|
||||
{
|
||||
|
@@ -302,18 +302,21 @@ export const runToolWithPromptCall = async (
|
||||
const reasoningContent: string = aiResponse.choices?.[0]?.message?.reasoning_content || '';
|
||||
const usage = aiResponse.usage;
|
||||
|
||||
const formatReasonContent = removeDatasetCiteText(reasoningContent, retainDatasetCite);
|
||||
const formatContent = removeDatasetCiteText(content, retainDatasetCite);
|
||||
|
||||
// API already parse reasoning content
|
||||
if (reasoningContent || !aiChatReasoning) {
|
||||
if (formatReasonContent || !aiChatReasoning) {
|
||||
return {
|
||||
answer: content,
|
||||
reasoning: reasoningContent,
|
||||
answer: formatContent,
|
||||
reasoning: formatReasonContent,
|
||||
finish_reason,
|
||||
inputTokens: usage?.prompt_tokens,
|
||||
outputTokens: usage?.completion_tokens
|
||||
};
|
||||
}
|
||||
|
||||
const [think, answer] = parseReasoningContent(content);
|
||||
const [think, answer] = parseReasoningContent(formatContent);
|
||||
return {
|
||||
answer,
|
||||
reasoning: think,
|
||||
@@ -328,7 +331,7 @@ export const runToolWithPromptCall = async (
|
||||
workflowStreamResponse?.({
|
||||
event: SseResponseEventEnum.fastAnswer,
|
||||
data: textAdaptGptResponse({
|
||||
reasoning_content: removeDatasetCiteText(reasoning, retainDatasetCite)
|
||||
reasoning_content: reasoning
|
||||
})
|
||||
});
|
||||
}
|
||||
|
@@ -356,11 +356,14 @@ export const runToolWithToolChoice = async (
|
||||
const reasoningContent = result.choices?.[0]?.message?.reasoning_content || '';
|
||||
const usage = result.usage;
|
||||
|
||||
const formatReasoningContent = removeDatasetCiteText(reasoningContent, retainDatasetCite);
|
||||
const formatAnswer = removeDatasetCiteText(answer, retainDatasetCite);
|
||||
|
||||
if (aiChatReasoning && reasoningContent) {
|
||||
workflowStreamResponse?.({
|
||||
event: SseResponseEventEnum.fastAnswer,
|
||||
data: textAdaptGptResponse({
|
||||
reasoning_content: removeDatasetCiteText(reasoningContent, retainDatasetCite)
|
||||
reasoning_content: formatReasoningContent
|
||||
})
|
||||
});
|
||||
}
|
||||
@@ -395,14 +398,14 @@ export const runToolWithToolChoice = async (
|
||||
workflowStreamResponse?.({
|
||||
event: SseResponseEventEnum.fastAnswer,
|
||||
data: textAdaptGptResponse({
|
||||
text: removeDatasetCiteText(answer, retainDatasetCite)
|
||||
text: formatAnswer
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
return {
|
||||
reasoningContent: (reasoningContent as string) || '',
|
||||
answer,
|
||||
reasoningContent: formatReasoningContent,
|
||||
answer: formatAnswer,
|
||||
toolCalls: toolCalls,
|
||||
finish_reason,
|
||||
inputTokens: usage?.prompt_tokens,
|
||||
|
@@ -263,12 +263,15 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
|
||||
};
|
||||
})();
|
||||
|
||||
const formatReasonContent = removeDatasetCiteText(reasoningContent, retainDatasetCite);
|
||||
const formatContent = removeDatasetCiteText(content, retainDatasetCite);
|
||||
|
||||
// Some models do not support streaming
|
||||
if (aiChatReasoning && reasoningContent) {
|
||||
workflowStreamResponse?.({
|
||||
event: SseResponseEventEnum.fastAnswer,
|
||||
data: textAdaptGptResponse({
|
||||
reasoning_content: removeDatasetCiteText(reasoningContent, retainDatasetCite)
|
||||
reasoning_content: formatReasonContent
|
||||
})
|
||||
});
|
||||
}
|
||||
@@ -276,14 +279,14 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
|
||||
workflowStreamResponse?.({
|
||||
event: SseResponseEventEnum.fastAnswer,
|
||||
data: textAdaptGptResponse({
|
||||
text: removeDatasetCiteText(content, retainDatasetCite)
|
||||
text: formatContent
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
return {
|
||||
answerText: content,
|
||||
reasoningText: reasoningContent,
|
||||
reasoningText: formatReasonContent,
|
||||
answerText: formatContent,
|
||||
finish_reason,
|
||||
inputTokens: usage?.prompt_tokens,
|
||||
outputTokens: usage?.completion_tokens
|
||||
@@ -358,7 +361,7 @@ async function filterDatasetQuote({
|
||||
return replaceVariable(quoteTemplate, {
|
||||
id: item.id,
|
||||
q: item.q,
|
||||
a: item.a,
|
||||
a: item.a || '',
|
||||
updateTime: formatTime2YMDHM(item.updateTime),
|
||||
source: item.sourceName,
|
||||
sourceId: String(item.sourceId || ''),
|
||||
|
@@ -16,6 +16,7 @@ import { type AuthModeType, type AuthResponseType } from '../type';
|
||||
import { DatasetTypeEnum } from '@fastgpt/global/core/dataset/constants';
|
||||
import { type ParentIdType } from '@fastgpt/global/common/parentFolder/type';
|
||||
import { DatasetDefaultPermissionVal } from '@fastgpt/global/support/permission/dataset/constant';
|
||||
import { getDatasetImagePreviewUrl } from '../../../core/dataset/image/utils';
|
||||
|
||||
export const authDatasetByTmbId = async ({
|
||||
tmbId,
|
||||
@@ -267,6 +268,15 @@ export async function authDatasetData({
|
||||
updateTime: datasetData.updateTime,
|
||||
q: datasetData.q,
|
||||
a: datasetData.a,
|
||||
imageId: datasetData.imageId,
|
||||
imagePreivewUrl: datasetData.imageId
|
||||
? getDatasetImagePreviewUrl({
|
||||
imageId: datasetData.imageId,
|
||||
teamId: datasetData.teamId,
|
||||
datasetId: datasetData.datasetId,
|
||||
expiredMinutes: 30
|
||||
})
|
||||
: undefined,
|
||||
chunkIndex: datasetData.chunkIndex,
|
||||
indexes: datasetData.indexes,
|
||||
datasetId: String(datasetData.datasetId),
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import { getWorkerController, WorkerNameEnum } from './utils';
|
||||
|
||||
export const preLoadWorker = async () => {
|
||||
const max = Number(global.systemEnv?.tokenWorkers || 30);
|
||||
const max = Math.min(Number(global.systemEnv?.tokenWorkers || 30), 100);
|
||||
const workerController = getWorkerController({
|
||||
name: WorkerNameEnum.countGptMessagesTokens,
|
||||
maxReservedThreads: max
|
||||
|
@@ -220,9 +220,11 @@ export const iconPaths = {
|
||||
import('./icons/core/dataset/feishuDatasetOutline.svg'),
|
||||
'core/dataset/fileCollection': () => import('./icons/core/dataset/fileCollection.svg'),
|
||||
'core/dataset/fullTextRecall': () => import('./icons/core/dataset/fullTextRecall.svg'),
|
||||
'core/dataset/imageFill': () => import('./icons/core/dataset/imageFill.svg'),
|
||||
'core/dataset/manualCollection': () => import('./icons/core/dataset/manualCollection.svg'),
|
||||
'core/dataset/mixedRecall': () => import('./icons/core/dataset/mixedRecall.svg'),
|
||||
'core/dataset/modeEmbedding': () => import('./icons/core/dataset/modeEmbedding.svg'),
|
||||
'core/dataset/otherDataset': () => import('./icons/core/dataset/otherDataset.svg'),
|
||||
'core/dataset/questionExtension': () => import('./icons/core/dataset/questionExtension.svg'),
|
||||
'core/dataset/rerank': () => import('./icons/core/dataset/rerank.svg'),
|
||||
'core/dataset/searchfilter': () => import('./icons/core/dataset/searchfilter.svg'),
|
||||
@@ -230,7 +232,6 @@ export const iconPaths = {
|
||||
'core/dataset/tableCollection': () => import('./icons/core/dataset/tableCollection.svg'),
|
||||
'core/dataset/tag': () => import('./icons/core/dataset/tag.svg'),
|
||||
'core/dataset/websiteDataset': () => import('./icons/core/dataset/websiteDataset.svg'),
|
||||
'core/dataset/otherDataset': () => import('./icons/core/dataset/otherDataset.svg'),
|
||||
'core/dataset/websiteDatasetColor': () => import('./icons/core/dataset/websiteDatasetColor.svg'),
|
||||
'core/dataset/websiteDatasetOutline': () =>
|
||||
import('./icons/core/dataset/websiteDatasetOutline.svg'),
|
||||
@@ -379,10 +380,12 @@ export const iconPaths = {
|
||||
fullScreen: () => import('./icons/fullScreen.svg'),
|
||||
help: () => import('./icons/help.svg'),
|
||||
history: () => import('./icons/history.svg'),
|
||||
image: () => import('./icons/image.svg'),
|
||||
infoRounded: () => import('./icons/infoRounded.svg'),
|
||||
kbTest: () => import('./icons/kbTest.svg'),
|
||||
key: () => import('./icons/key.svg'),
|
||||
keyPrimary: () => import('./icons/keyPrimary.svg'),
|
||||
loading: () => import('./icons/loading.svg'),
|
||||
menu: () => import('./icons/menu.svg'),
|
||||
minus: () => import('./icons/minus.svg'),
|
||||
'modal/AddClb': () => import('./icons/modal/AddClb.svg'),
|
||||
|
@@ -1,4 +1,4 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" viewBox="0 0 20 20" fill="none">
|
||||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 20 20" fill="none">
|
||||
<path
|
||||
d="M2.02994 3.4867C1.68907 4.1557 1.66801 5.01869 1.66671 6.6646H18.3332C18.3319 5.01869 18.3109 4.1557 17.97 3.4867C17.6504 2.85949 17.1405 2.34956 16.5133 2.02998C15.8002 1.66667 14.8668 1.66667 13 1.66667H6.99996C5.13312 1.66667 4.1997 1.66667 3.48666 2.02998C2.85945 2.34956 2.34952 2.85949 2.02994 3.4867Z"
|
||||
fill="#8774EE" />
|
||||
|
Before Width: | Height: | Size: 928 B After Width: | Height: | Size: 905 B |
@@ -0,0 +1,3 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 21 20" >
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M2.24348 4.15292C1.9165 4.79466 1.9165 5.63474 1.9165 7.31489V12.6852C1.9165 14.3654 1.9165 15.2054 2.24348 15.8472C2.5311 16.4117 2.99005 16.8706 3.55453 17.1582C4.19627 17.4852 5.03635 17.4852 6.7165 17.4852H13.7832C15.4633 17.4852 16.3034 17.4852 16.9451 17.1582C17.5096 16.8706 17.9686 16.4117 18.2562 15.8472C18.5832 15.2054 18.5832 14.3654 18.5832 12.6852V7.31489C18.5832 5.63473 18.5832 4.79466 18.2562 4.15292C17.9686 3.58843 17.5096 3.12949 16.9451 2.84187C16.3034 2.51489 15.4633 2.51489 13.7832 2.51489H6.7165C5.03635 2.51489 4.19627 2.51489 3.55453 2.84187C2.99005 3.12949 2.5311 3.58843 2.24348 4.15292ZM7.88951 6.75656C7.88951 7.67703 7.14331 8.42322 6.22284 8.42322C5.30236 8.42322 4.55617 7.67703 4.55617 6.75656C4.55617 5.83608 5.30236 5.08989 6.22284 5.08989C7.14331 5.08989 7.88951 5.83608 7.88951 6.75656ZM12.8631 8.65525C12.5376 8.32981 12.01 8.32981 11.6845 8.65525L5.92965 14.4101C5.40468 14.9351 5.77648 15.8327 6.5189 15.8327L15.5062 15.8327C16.4267 15.8327 17.1729 15.0865 17.1729 14.1661V13.3103C17.1729 13.0892 17.0851 12.8773 16.9288 12.721L12.8631 8.65525Z" fill="#3370FF"/>
|
||||
</svg>
|
After Width: | Height: | Size: 1.2 KiB |
@@ -1,4 +1,4 @@
|
||||
<svg width="113" height="97" viewBox="0 0 113 97" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<svg viewBox="0 0 113 97" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<path d="M0 31.7259C1.80046 29.9255 3.82784 28.3872 5.96621 27.1988C8.10469 26.0103 10.3126 25.1947 12.4634 24.7992C14.6143 24.4037 16.6664 24.4361 18.5022 24.8938C20.2678 25.334 21.7994 26.1604 23.0183 27.3272L23.021 27.3245L47.189 51.4924L33.4778 65.2037L0 31.7259Z" fill="#C4DEFE"/>
|
||||
<path d="M9.15662 11.5625C11.3617 10.2893 13.7181 9.32825 16.0912 8.73374C18.4645 8.13923 20.8082 7.92284 22.9882 8.09751C25.1681 8.27217 27.1419 8.83457 28.7966 9.75182C30.3881 10.6341 31.6537 11.8287 32.529 13.2712L32.5316 13.2697L32.6082 13.4025C32.6162 13.4162 32.6251 13.4297 32.633 13.4435L49.886 43.3286L33.0941 53.0234L9.15662 11.5625Z" fill="#A6CBFF"/>
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M31.1377 0C33.6839 4.40811e-05 36.2052 0.345872 38.5576 1.01758C40.9099 1.68929 43.0472 2.67394 44.8477 3.91504C46.6482 5.15627 48.0773 6.63021 49.0518 8.25195C49.9888 9.81168 50.4867 11.4792 50.5234 13.166H50.5273V21.4072C56.6623 17.6586 63.874 15.498 71.5898 15.498C93.9304 15.4984 112.042 33.6087 112.042 55.9492C112.042 78.29 93.9305 96.401 71.5898 96.4014C49.3907 96.4014 31.3704 78.5193 31.1426 56.374H31.1377V0ZM71.9473 35.0439C60.1187 35.0441 50.5295 44.6334 50.5293 56.4619C50.5293 63.5338 53.9569 69.8057 59.2412 73.7061C66.4989 79.0625 76.5515 75.3841 85.3955 77.1592C92.613 78.608 97.2369 82.6827 98.3652 83.7686C97.3562 82.731 93.791 78.7138 92.2715 72.3291C89.8011 61.9479 94.8744 49.6043 87.5771 41.8184C83.6695 37.6493 78.1122 35.0441 71.9473 35.0439Z" fill="#006EFF"/>
|
||||
|
Before Width: | Height: | Size: 1.6 KiB After Width: | Height: | Size: 1.5 KiB |
4
packages/web/components/common/Icon/icons/image.svg
Normal file
@@ -0,0 +1,4 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 17 16" >
|
||||
<path d="M5.50794 6.8195C6.06022 6.8195 6.50794 6.37178 6.50794 5.8195C6.50794 5.26721 6.06022 4.8195 5.50794 4.8195C4.95565 4.8195 4.50794 5.26721 4.50794 5.8195C4.50794 6.37178 4.95565 6.8195 5.50794 6.8195Z" />
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M1.55029 5.85187C1.55029 4.50775 1.55029 3.83568 1.81188 3.32229C2.04197 2.87071 2.40913 2.50355 2.86072 2.27346C3.3741 2.01187 4.04617 2.01187 5.39029 2.01187H11.0436C12.3878 2.01187 13.0598 2.01187 13.5732 2.27346C14.0248 2.50355 14.3919 2.87071 14.622 3.32229C14.8836 3.83568 14.8836 4.50775 14.8836 5.85187V10.1481C14.8836 11.4922 14.8836 12.1643 14.622 12.6777C14.3919 13.1293 14.0248 13.4964 13.5732 13.7265C13.0598 13.9881 12.3878 13.9881 11.0436 13.9881H5.39029C4.04617 13.9881 3.3741 13.9881 2.86072 13.7265C2.40913 13.4964 2.04197 13.1293 1.81188 12.6777C1.55029 12.1643 1.55029 11.4922 1.55029 10.1481V5.85187ZM5.39029 3.3452H11.0436C11.7377 3.3452 12.1781 3.34624 12.5114 3.37347C12.8291 3.39944 12.9305 3.44241 12.9679 3.46146C13.1686 3.56373 13.3318 3.72691 13.434 3.92761C13.4531 3.96502 13.4961 4.06638 13.522 4.38413C13.5493 4.71745 13.5503 5.15781 13.5503 5.85187V10.1481C13.5503 10.1562 13.5503 10.1641 13.5503 10.1721L10.3165 6.93829C10.0561 6.67794 9.634 6.67794 9.37365 6.93829L3.70938 12.6026C3.5547 12.5791 3.49333 12.5524 3.46604 12.5385C3.26533 12.4363 3.10215 12.2731 2.99989 12.0724C2.98083 12.035 2.93786 11.9336 2.9119 11.6159C2.88466 11.2825 2.88363 10.8422 2.88363 10.1481V5.85187C2.88363 5.15781 2.88466 4.71745 2.9119 4.38413C2.93786 4.06638 2.98083 3.96502 2.99989 3.92761C3.10215 3.72691 3.26533 3.56373 3.46604 3.46146C3.50344 3.44241 3.6048 3.39944 3.92255 3.37347C4.25587 3.34624 4.69623 3.3452 5.39029 3.3452ZM9.84506 8.3525L5.54277 12.6548H11.0436C11.7377 12.6548 12.1781 12.6538 12.5114 12.6265C12.8291 12.6006 12.9305 12.5576 12.9679 12.5385C13.1686 12.4363 13.3318 12.2731 13.434 12.0724C13.4422 12.0563 13.4549 12.0283 13.4687 11.9762L9.84506 8.3525Z" />
|
||||
</svg>
|
After Width: | Height: | Size: 2.0 KiB |
4
packages/web/components/common/Icon/icons/loading.svg
Normal file
@@ -0,0 +1,4 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" width="48" height="48" viewBox="0 0 48 48" >
|
||||
<path d="M47.3337 24C47.3337 36.8866 36.887 47.3333 24.0003 47.3333C11.1137 47.3333 0.666992 36.8866 0.666992 24C0.666992 11.1133 11.1137 0.666626 24.0003 0.666626C36.887 0.666626 47.3337 11.1133 47.3337 24ZM5.33366 24C5.33366 34.3093 13.691 42.6666 24.0003 42.6666C34.3096 42.6666 42.667 34.3093 42.667 24C42.667 13.6906 34.3096 5.33329 24.0003 5.33329C13.691 5.33329 5.33366 13.6906 5.33366 24Z" />
|
||||
<path d="M24.0003 2.99996C24.0003 1.71129 25.0476 0.654541 26.3298 0.783194C29.1026 1.06141 31.8097 1.83481 34.3204 3.07293C37.5303 4.6559 40.3331 6.95608 42.5119 9.79553C44.6907 12.635 46.1871 15.9376 46.8853 19.4479C47.4314 22.1934 47.4778 25.0084 47.0289 27.7588C46.8213 29.0306 45.5295 29.7687 44.2848 29.4352C43.04 29.1016 42.3169 27.8222 42.4926 26.5456C42.7752 24.4926 42.7147 22.4014 42.3083 20.3583C41.7497 17.5501 40.5526 14.908 38.8096 12.6364C37.0666 10.3649 34.8243 8.52471 32.2564 7.25833C30.3881 6.33698 28.3838 5.73731 26.3276 5.47894C25.049 5.31827 24.0003 4.28862 24.0003 2.99996Z" />
|
||||
</svg>
|
After Width: | Height: | Size: 1.1 KiB |
331
packages/web/components/common/MyMenu/Multiple.tsx
Normal file
@@ -0,0 +1,331 @@
|
||||
import React, { useMemo, useRef, useState } from 'react';
|
||||
import {
|
||||
Box,
|
||||
Flex,
|
||||
type MenuItemProps,
|
||||
type PlacementWithLogical,
|
||||
type AvatarProps,
|
||||
type BoxProps,
|
||||
type DividerProps
|
||||
} from '@chakra-ui/react';
|
||||
import MyDivider from '../MyDivider';
|
||||
import type { IconNameType } from '../Icon/type';
|
||||
import { useSystem } from '../../../hooks/useSystem';
|
||||
import Avatar from '../Avatar';
|
||||
import MyPopover from '../MyPopover';
|
||||
|
||||
export type MenuItemType = 'primary' | 'danger' | 'gray' | 'grayBg';
|
||||
|
||||
export type MenuSizeType = 'sm' | 'md' | 'xs' | 'mini';
|
||||
|
||||
export type MenuItemData = {
|
||||
label?: string;
|
||||
children: Array<{
|
||||
isActive?: boolean;
|
||||
type?: MenuItemType;
|
||||
icon?: IconNameType | string;
|
||||
label: string | React.ReactNode;
|
||||
description?: string;
|
||||
onClick?: () => any;
|
||||
menuItemStyles?: MenuItemProps;
|
||||
menuList?: MenuItemData[];
|
||||
}>;
|
||||
};
|
||||
|
||||
export type Props = {
|
||||
label?: string;
|
||||
width?: number | string;
|
||||
offset?: [number, number];
|
||||
Trigger: React.ReactNode;
|
||||
trigger?: 'hover' | 'click';
|
||||
size?: MenuSizeType;
|
||||
placement?: PlacementWithLogical;
|
||||
hasArrow?: boolean;
|
||||
onClose?: () => void;
|
||||
menuList: MenuItemData[];
|
||||
};
|
||||
|
||||
const typeMapStyle: Record<MenuItemType, { styles: MenuItemProps; iconColor?: string }> = {
|
||||
primary: {
|
||||
styles: {
|
||||
_hover: {
|
||||
backgroundColor: 'primary.50',
|
||||
color: 'primary.600'
|
||||
},
|
||||
_focus: {
|
||||
backgroundColor: 'primary.50',
|
||||
color: 'primary.600'
|
||||
},
|
||||
_active: {
|
||||
backgroundColor: 'primary.50',
|
||||
color: 'primary.600'
|
||||
}
|
||||
},
|
||||
iconColor: 'myGray.600'
|
||||
},
|
||||
gray: {
|
||||
styles: {
|
||||
_hover: {
|
||||
backgroundColor: 'myGray.05',
|
||||
color: 'primary.600'
|
||||
},
|
||||
_focus: {
|
||||
backgroundColor: 'myGray.05',
|
||||
color: 'primary.600'
|
||||
},
|
||||
_active: {
|
||||
backgroundColor: 'myGray.05',
|
||||
color: 'primary.600'
|
||||
}
|
||||
},
|
||||
iconColor: 'myGray.400'
|
||||
},
|
||||
grayBg: {
|
||||
styles: {
|
||||
_hover: {
|
||||
backgroundColor: 'myGray.05',
|
||||
color: 'primary.600'
|
||||
},
|
||||
_focus: {
|
||||
backgroundColor: 'myGray.05',
|
||||
color: 'primary.600'
|
||||
},
|
||||
_active: {
|
||||
backgroundColor: 'myGray.05',
|
||||
color: 'primary.600'
|
||||
}
|
||||
},
|
||||
iconColor: 'myGray.600'
|
||||
},
|
||||
danger: {
|
||||
styles: {
|
||||
color: 'red.600',
|
||||
_hover: {
|
||||
background: 'red.1'
|
||||
},
|
||||
_focus: {
|
||||
background: 'red.1'
|
||||
},
|
||||
_active: {
|
||||
background: 'red.1'
|
||||
}
|
||||
},
|
||||
iconColor: 'red.600'
|
||||
}
|
||||
};
|
||||
const sizeMapStyle: Record<
|
||||
MenuSizeType,
|
||||
{
|
||||
iconStyle: AvatarProps;
|
||||
labelStyle: BoxProps;
|
||||
dividerStyle: DividerProps;
|
||||
menuItemStyle: MenuItemProps;
|
||||
}
|
||||
> = {
|
||||
mini: {
|
||||
iconStyle: {
|
||||
w: '14px'
|
||||
},
|
||||
labelStyle: {
|
||||
fontSize: 'mini'
|
||||
},
|
||||
dividerStyle: {
|
||||
my: 0.5
|
||||
},
|
||||
menuItemStyle: {
|
||||
py: 1.5,
|
||||
px: 2
|
||||
}
|
||||
},
|
||||
xs: {
|
||||
iconStyle: {
|
||||
w: '14px'
|
||||
},
|
||||
labelStyle: {
|
||||
fontSize: 'sm'
|
||||
},
|
||||
dividerStyle: {
|
||||
my: 0.5
|
||||
},
|
||||
menuItemStyle: {
|
||||
py: 1.5,
|
||||
px: 2
|
||||
}
|
||||
},
|
||||
sm: {
|
||||
iconStyle: {
|
||||
w: '1rem'
|
||||
},
|
||||
labelStyle: {
|
||||
fontSize: 'sm'
|
||||
},
|
||||
dividerStyle: {
|
||||
my: 1
|
||||
},
|
||||
menuItemStyle: {
|
||||
py: 2,
|
||||
px: 3,
|
||||
_notLast: {
|
||||
mb: 0.5
|
||||
}
|
||||
}
|
||||
},
|
||||
md: {
|
||||
iconStyle: {
|
||||
w: '2rem',
|
||||
borderRadius: '6px'
|
||||
},
|
||||
labelStyle: {
|
||||
fontSize: 'sm'
|
||||
},
|
||||
dividerStyle: {
|
||||
my: 1
|
||||
},
|
||||
menuItemStyle: {
|
||||
py: 2,
|
||||
px: 3,
|
||||
_notLast: {
|
||||
mb: 0.5
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const MenuItem = ({
|
||||
item,
|
||||
size,
|
||||
onClose
|
||||
}: {
|
||||
item: MenuItemData['children'][number];
|
||||
size: MenuSizeType;
|
||||
onClose: () => void;
|
||||
}) => {
|
||||
return (
|
||||
<Box
|
||||
px={3}
|
||||
py={2}
|
||||
cursor="pointer"
|
||||
borderRadius="md"
|
||||
_hover={{
|
||||
bg: 'primary.50',
|
||||
color: 'primary.600'
|
||||
}}
|
||||
onClick={(e) => {
|
||||
if (item.onClick) {
|
||||
item.onClick();
|
||||
}
|
||||
if (!item.menuList) {
|
||||
onClose();
|
||||
}
|
||||
}}
|
||||
>
|
||||
<Flex alignItems="center" w="100%">
|
||||
{!!item.icon && (
|
||||
<Avatar
|
||||
src={item.icon as any}
|
||||
mr={2}
|
||||
{...sizeMapStyle[size].iconStyle}
|
||||
color={item.isActive ? 'inherit' : typeMapStyle[item.type || 'primary'].iconColor}
|
||||
/>
|
||||
)}
|
||||
<Box flex="1">
|
||||
<Box
|
||||
color={item.description ? 'myGray.900' : 'inherit'}
|
||||
{...sizeMapStyle[size].labelStyle}
|
||||
>
|
||||
{item.label}
|
||||
</Box>
|
||||
{item.description && (
|
||||
<Box color={'myGray.500'} fontSize={'mini'}>
|
||||
{item.description}
|
||||
</Box>
|
||||
)}
|
||||
</Box>
|
||||
</Flex>
|
||||
</Box>
|
||||
);
|
||||
};
|
||||
|
||||
const MultipleMenu = (props: Props) => {
|
||||
const {
|
||||
width = 'auto',
|
||||
trigger = 'hover',
|
||||
size = 'sm',
|
||||
offset,
|
||||
Trigger,
|
||||
menuList,
|
||||
hasArrow = false,
|
||||
placement = 'bottom-start'
|
||||
} = props;
|
||||
|
||||
const { isPc } = useSystem();
|
||||
const formatTrigger = !isPc ? 'click' : trigger;
|
||||
|
||||
return (
|
||||
<MyPopover
|
||||
placement={placement}
|
||||
offset={offset}
|
||||
hasArrow={hasArrow}
|
||||
trigger={formatTrigger}
|
||||
w={width}
|
||||
zIndex={999}
|
||||
closeOnBlur={false}
|
||||
autoFocus={false}
|
||||
Trigger={Trigger}
|
||||
>
|
||||
{({ onClose }) => {
|
||||
const onCloseFn = () => {
|
||||
onClose();
|
||||
props?.onClose?.();
|
||||
};
|
||||
|
||||
return (
|
||||
<Box
|
||||
bg="white"
|
||||
maxW="300px"
|
||||
p="6px"
|
||||
border={'1px solid #fff'}
|
||||
boxShadow={'3'}
|
||||
borderRadius={'md'}
|
||||
>
|
||||
{menuList.map((group, i) => (
|
||||
<Box key={i}>
|
||||
{i !== 0 && <MyDivider h={'1.5px'} {...sizeMapStyle[size].dividerStyle} />}
|
||||
{group.label && (
|
||||
<Box fontSize="sm" px={3} py={1} color="myGray.500">
|
||||
{group.label}
|
||||
</Box>
|
||||
)}
|
||||
{group.children.map((item, index) => {
|
||||
return (
|
||||
<Box key={index}>
|
||||
{item.menuList ? (
|
||||
<MultipleMenu
|
||||
{...props}
|
||||
placement={'left'}
|
||||
trigger={'hover'}
|
||||
menuList={item.menuList}
|
||||
onClose={onCloseFn}
|
||||
Trigger={
|
||||
<Box>
|
||||
<MenuItem item={item} size={size} onClose={onCloseFn} />
|
||||
</Box>
|
||||
}
|
||||
hasArrow
|
||||
/>
|
||||
) : (
|
||||
<MenuItem item={item} size={size} onClose={onCloseFn} />
|
||||
)}
|
||||
</Box>
|
||||
);
|
||||
})}
|
||||
</Box>
|
||||
))}
|
||||
</Box>
|
||||
);
|
||||
}}
|
||||
</MyPopover>
|
||||
);
|
||||
};
|
||||
|
||||
export default React.memo(MultipleMenu);
|
@@ -1,4 +1,4 @@
|
||||
import React, { useMemo, useRef, useState } from 'react';
|
||||
import React, { useCallback, useMemo, useRef, useState } from 'react';
|
||||
import {
|
||||
Menu,
|
||||
MenuList,
|
||||
@@ -18,9 +18,20 @@ import { useSystem } from '../../../hooks/useSystem';
|
||||
import Avatar from '../Avatar';
|
||||
|
||||
export type MenuItemType = 'primary' | 'danger' | 'gray' | 'grayBg';
|
||||
|
||||
export type MenuSizeType = 'sm' | 'md' | 'xs' | 'mini';
|
||||
|
||||
export type MenuItemData = {
|
||||
label?: string;
|
||||
children: Array<{
|
||||
isActive?: boolean;
|
||||
type?: MenuItemType;
|
||||
icon?: IconNameType | string;
|
||||
label: string | React.ReactNode;
|
||||
description?: string;
|
||||
onClick?: () => any;
|
||||
menuItemStyles?: MenuItemProps;
|
||||
}>;
|
||||
};
|
||||
export type Props = {
|
||||
width?: number | string;
|
||||
offset?: [number, number];
|
||||
@@ -29,18 +40,7 @@ export type Props = {
|
||||
size?: MenuSizeType;
|
||||
|
||||
placement?: PlacementWithLogical;
|
||||
menuList: {
|
||||
label?: string;
|
||||
children: {
|
||||
isActive?: boolean;
|
||||
type?: MenuItemType;
|
||||
icon?: IconNameType | string;
|
||||
label: string | React.ReactNode;
|
||||
description?: string;
|
||||
onClick?: () => any;
|
||||
menuItemStyles?: MenuItemProps;
|
||||
}[];
|
||||
}[];
|
||||
menuList: MenuItemData[];
|
||||
};
|
||||
|
||||
const typeMapStyle: Record<MenuItemType, { styles: MenuItemProps; iconColor?: string }> = {
|
||||
|
@@ -43,11 +43,11 @@ const MyPopover = ({
|
||||
initialFocusRef={firstFieldRef}
|
||||
onOpen={() => {
|
||||
onOpen();
|
||||
onOpenFunc && onOpenFunc();
|
||||
onOpenFunc?.();
|
||||
}}
|
||||
onClose={() => {
|
||||
onClose();
|
||||
onCloseFunc && onCloseFunc();
|
||||
onCloseFunc?.();
|
||||
}}
|
||||
placement={placement}
|
||||
offset={offset}
|
||||
|
@@ -6,6 +6,7 @@
|
||||
"accept": "accept",
|
||||
"action": "operate",
|
||||
"assign_permission": "Permission change",
|
||||
"audit_log": "audit",
|
||||
"change_department_name": "Department Editor",
|
||||
"change_member_name": "Member name change",
|
||||
"change_member_name_self": "Change member name",
|
||||
@@ -32,6 +33,13 @@
|
||||
"create_invoice": "Issuing invoices",
|
||||
"create_org": "Create organization",
|
||||
"create_sub_org": "Create sub-organization",
|
||||
"dataset.api_file": "API Import",
|
||||
"dataset.common_dataset": "Dataset",
|
||||
"dataset.external_file": "External File",
|
||||
"dataset.feishu_dataset": "Feishu Spreadsheet",
|
||||
"dataset.folder_dataset": "Folder",
|
||||
"dataset.website_dataset": "Website Sync",
|
||||
"dataset.yuque_dataset": "Yuque Knowledge Base",
|
||||
"delete": "delete",
|
||||
"delete_api_key": "Delete the API key",
|
||||
"delete_app": "Delete the workbench application",
|
||||
@@ -46,6 +54,7 @@
|
||||
"delete_from_team": "Move out of the team",
|
||||
"delete_group": "Delete a group",
|
||||
"delete_org": "Delete organization",
|
||||
"department": "department",
|
||||
"edit_info": "Edit information",
|
||||
"edit_member": "Edit user",
|
||||
"edit_member_tip": "Name",
|
||||
@@ -136,16 +145,12 @@
|
||||
"login": "Log in",
|
||||
"manage_member": "Managing members",
|
||||
"member": "member",
|
||||
"department": "department",
|
||||
"update": "update",
|
||||
"save_and_publish": "save and publish",
|
||||
"member_group": "Belonging to member group",
|
||||
"move_app": "App location movement",
|
||||
"move_dataset": "Mobile Knowledge Base",
|
||||
"move_member": "Move member",
|
||||
"move_org": "Move organization",
|
||||
"notification_recieve": "Team notification reception",
|
||||
"operation_log": "log",
|
||||
"org": "organization",
|
||||
"org_description": "Organization description",
|
||||
"org_name": "Organization name",
|
||||
@@ -169,6 +174,7 @@
|
||||
"restore_tip_title": "Recovery confirmation",
|
||||
"retain_admin_permissions": "Keep administrator rights",
|
||||
"retrain_collection": "Retrain the set",
|
||||
"save_and_publish": "save and publish",
|
||||
"search_log": "Search log",
|
||||
"search_member": "Search for members",
|
||||
"search_member_group_name": "Search member/group name",
|
||||
@@ -190,14 +196,8 @@
|
||||
"type.Tool": "Tool",
|
||||
"type.Tool set": "Toolset",
|
||||
"type.Workflow bot": "Workflow",
|
||||
"dataset.folder_dataset": "Folder",
|
||||
"dataset.common_dataset": "Dataset",
|
||||
"dataset.website_dataset": "Website Sync",
|
||||
"dataset.external_file": "External File",
|
||||
"dataset.api_file": "API Import",
|
||||
"dataset.feishu_dataset": "Feishu Spreadsheet",
|
||||
"dataset.yuque_dataset": "Yuque Knowledge Base",
|
||||
"unlimited": "Unlimited",
|
||||
"update": "update",
|
||||
"update_api_key": "Update API key",
|
||||
"update_app_collaborator": "Apply permission changes",
|
||||
"update_app_info": "Application information modification",
|
||||
@@ -213,4 +213,4 @@
|
||||
"user_team_leave_team": "Leave the team",
|
||||
"user_team_leave_team_failed": "Failure to leave the team",
|
||||
"waiting": "To be accepted"
|
||||
}
|
||||
}
|
||||
|
@@ -71,13 +71,13 @@
|
||||
"response_embedding_model_tokens": "Vector Model Tokens",
|
||||
"response_hybrid_weight": "Embedding : Full text = {{emb}} : {{text}}",
|
||||
"response_rerank_tokens": "Rearrange Model Tokens",
|
||||
"search_results": "Search results",
|
||||
"select": "Select",
|
||||
"select_file": "Upload File",
|
||||
"select_file_img": "Upload file / image",
|
||||
"select_img": "Upload Image",
|
||||
"source_cronJob": "Scheduled execution",
|
||||
"stream_output": "Stream Output",
|
||||
"to_dataset": "Go to the Knowledge Base",
|
||||
"unsupported_file_type": "Unsupported file types",
|
||||
"upload": "Upload",
|
||||
"variable_invisable_in_share": "Custom variables are not visible in login-free links",
|
||||
|
@@ -180,7 +180,7 @@
|
||||
"code_error.user_error.balance_not_enough": "Insufficient Account Balance",
|
||||
"code_error.user_error.bin_visitor_guest": "You Are Currently a Guest, Unauthorized to Operate",
|
||||
"code_error.user_error.un_auth_user": "User Not Found",
|
||||
"comfirm_import": "comfirm_import",
|
||||
"comfirm_import": "Confirm import",
|
||||
"comfirm_leave_page": "Confirm to Leave This Page?",
|
||||
"comfirn_create": "Confirm Creation",
|
||||
"commercial_function_tip": "Please Upgrade to the Commercial Version to Use This Feature: https://doc.fastgpt.cn/docs/commercial/intro/",
|
||||
@@ -403,7 +403,6 @@
|
||||
"core.chat.response.module model": "Model",
|
||||
"core.chat.response.module name": "Model Name",
|
||||
"core.chat.response.module query": "Question/Search Term",
|
||||
"core.chat.response.module quoteList": "Quote Content",
|
||||
"core.chat.response.module similarity": "Similarity",
|
||||
"core.chat.response.module temperature": "Temperature",
|
||||
"core.chat.response.module time": "Run Time",
|
||||
@@ -424,7 +423,6 @@
|
||||
"core.dataset.Empty Dataset Tips": "No Dataset Yet, Create One Now!",
|
||||
"core.dataset.Folder placeholder": "This is a Directory",
|
||||
"core.dataset.Intro Placeholder": "This Dataset Has No Introduction Yet",
|
||||
"core.dataset.Manual collection": "Manual Dataset",
|
||||
"core.dataset.My Dataset": "My Dataset",
|
||||
"core.dataset.Query extension intro": "Enabling the question optimization function can improve the accuracy of Dataset searches during continuous conversations. After enabling this function, when performing Dataset searches, the AI will complete the missing information of the question based on the conversation history.",
|
||||
"core.dataset.Quote Length": "Quote Content Length",
|
||||
@@ -434,7 +432,6 @@
|
||||
"core.dataset.Text collection": "Text Dataset",
|
||||
"core.dataset.apiFile": "API File",
|
||||
"core.dataset.collection.Click top config website": "Click to Configure Website",
|
||||
"core.dataset.collection.Collection name": "Dataset Name",
|
||||
"core.dataset.collection.Collection raw text": "Dataset Content",
|
||||
"core.dataset.collection.Empty Tip": "The Dataset is Empty",
|
||||
"core.dataset.collection.QA Prompt": "QA Split Prompt",
|
||||
@@ -451,7 +448,6 @@
|
||||
"core.dataset.collection.metadata.metadata": "Metadata",
|
||||
"core.dataset.collection.metadata.read source": "View Original Content",
|
||||
"core.dataset.collection.metadata.source": "Data Source",
|
||||
"core.dataset.collection.metadata.source name": "Source Name",
|
||||
"core.dataset.collection.metadata.source size": "Source Size",
|
||||
"core.dataset.collection.status.active": "Ready",
|
||||
"core.dataset.collection.status.error": "Error",
|
||||
@@ -743,7 +739,7 @@
|
||||
"core.workflow.value": "Value",
|
||||
"core.workflow.variable": "Variable",
|
||||
"create": "Create",
|
||||
"create_failed": "Creation Failed",
|
||||
"create_failed": "Create failed",
|
||||
"create_success": "Created Successfully",
|
||||
"create_time": "Creation Time",
|
||||
"cron_job_run_app": "Scheduled Task",
|
||||
@@ -788,7 +784,6 @@
|
||||
"dataset.dataset_name": "Dataset Name",
|
||||
"dataset.deleteFolderTips": "Confirm to Delete This Folder and All Its Contained Datasets? Data Cannot Be Recovered After Deletion, Please Confirm!",
|
||||
"dataset.test.noResult": "No Search Results",
|
||||
"dataset_data_import_q_placeholder": "Up to {{maxToken}} words.",
|
||||
"dataset_data_input_a": "Answer",
|
||||
"dataset_data_input_chunk": "Chunk",
|
||||
"dataset_data_input_chunk_content": "Chunk",
|
||||
@@ -802,7 +797,6 @@
|
||||
"delete_success": "Deleted Successfully",
|
||||
"delete_warning": "Deletion Warning",
|
||||
"embedding_model_not_config": "No index model is detected",
|
||||
"error.Create failed": "Create failed",
|
||||
"error.code_error": "Verification code error",
|
||||
"error.fileNotFound": "File not found~",
|
||||
"error.inheritPermissionError": "Inherit permission Error",
|
||||
@@ -1208,6 +1202,7 @@
|
||||
"templateTags.Writing": "Writing",
|
||||
"template_market": "Template Market",
|
||||
"textarea_variable_picker_tip": "Enter \"/\" to select a variable",
|
||||
"to_dataset": "To dataset",
|
||||
"ui.textarea.Magnifying": "Magnifying",
|
||||
"un_used": "Unused",
|
||||
"unauth_token": "The certificate has expired, please log in again",
|
||||
@@ -1306,4 +1301,4 @@
|
||||
"zoomin_tip_mac": "Zoom Out ⌘ -",
|
||||
"zoomout_tip": "Zoom In ctrl +",
|
||||
"zoomout_tip_mac": "Zoom In ⌘ +"
|
||||
}
|
||||
}
|
||||
|
@@ -8,12 +8,11 @@
|
||||
"auto_indexes_tips": "Additional index generation is performed through large models to improve semantic richness and improve retrieval accuracy.",
|
||||
"auto_training_queue": "Enhanced index queueing",
|
||||
"backup_collection": "Backup data",
|
||||
"backup_data_parse": "Backup data is being parsed",
|
||||
"backup_data_uploading": "Backup data is being uploaded: {{num}}%",
|
||||
"backup_dataset": "Backup import",
|
||||
"backup_dataset_success": "The backup was created successfully",
|
||||
"backup_dataset_tip": "You can reimport the downloaded csv file when exporting the knowledge base.",
|
||||
"backup_mode": "Backup import",
|
||||
"backup_template_invalid": "The backup file format is incorrect, it should be the csv file with the first column as q,a,indexes",
|
||||
"chunk_max_tokens": "max_tokens",
|
||||
"chunk_process_params": "Block processing parameters",
|
||||
"chunk_size": "Block size",
|
||||
@@ -28,16 +27,21 @@
|
||||
"collection.training_type": "Chunk type",
|
||||
"collection_data_count": "Data amount",
|
||||
"collection_metadata_custom_pdf_parse": "PDF enhancement analysis",
|
||||
"collection_name": "Collection name",
|
||||
"collection_not_support_retraining": "This collection type does not support retuning parameters",
|
||||
"collection_not_support_sync": "This collection does not support synchronization",
|
||||
"collection_sync": "Sync data",
|
||||
"collection_sync_confirm_tip": "Confirm to start synchronizing data? \nThe system will pull the latest data for comparison. If the contents are different, a new collection will be created and the old collection will be deleted. Please confirm!",
|
||||
"collection_tags": "Collection Tags",
|
||||
"common.dataset.data.Input Error Tip": "[Image Dataset] Process error:",
|
||||
"common.error.unKnow": "Unknown error",
|
||||
"common_dataset": "General Dataset",
|
||||
"common_dataset_desc": "Building a knowledge base by importing files, web page links, or manual entry",
|
||||
"condition": "condition",
|
||||
"config_sync_schedule": "Configure scheduled synchronization",
|
||||
"confirm_import_images": "Total {{num}} | Confirm create",
|
||||
"confirm_to_rebuild_embedding_tip": "Are you sure you want to switch the index for the Dataset?\nSwitching the index is a significant operation that requires re-indexing all data in your Dataset, which may take a long time. Please ensure your account has sufficient remaining points.\n\nAdditionally, you need to update the applications that use this Dataset to avoid conflicts with other indexed model Datasets.",
|
||||
"core.dataset.Image collection": "Image dataset",
|
||||
"core.dataset.import.Adjust parameters": "Adjust parameters",
|
||||
"custom_data_process_params": "Custom",
|
||||
"custom_data_process_params_desc": "Customize data processing rules",
|
||||
@@ -46,8 +50,10 @@
|
||||
"data_error_amount": "{{errorAmount}} Group training exception",
|
||||
"data_index_image": "Image index",
|
||||
"data_index_num": "Index {{index}}",
|
||||
"data_parsing": "Data analysis",
|
||||
"data_process_params": "Params",
|
||||
"data_process_setting": "Processing config",
|
||||
"data_uploading": "Data is being uploaded: {{num}}%",
|
||||
"dataset.Chunk_Number": "Block number",
|
||||
"dataset.Completed": "Finish",
|
||||
"dataset.Delete_Chunk": "delete",
|
||||
@@ -67,7 +73,9 @@
|
||||
"dataset.no_tags": "No tags available",
|
||||
"default_params": "default",
|
||||
"default_params_desc": "Use system default parameters and rules",
|
||||
"download_csv_template": "Click to download the CSV template",
|
||||
"edit_dataset_config": "Edit knowledge base configuration",
|
||||
"empty_collection": "Blank dataset",
|
||||
"enhanced_indexes": "Index enhancement",
|
||||
"error.collectionNotFound": "Collection not found~",
|
||||
"external_file": "External File Library",
|
||||
@@ -90,6 +98,7 @@
|
||||
"image_auto_parse": "Automatic image indexing",
|
||||
"image_auto_parse_tips": "Call VLM to automatically label the pictures in the document and generate additional search indexes",
|
||||
"image_training_queue": "Queue of image processing",
|
||||
"images_creating": "Creating",
|
||||
"immediate_sync": "Immediate Synchronization",
|
||||
"import.Auto mode Estimated Price Tips": "The text understanding model needs to be called, which requires more points: {{price}} points/1K tokens",
|
||||
"import.Embedding Estimated Price Tips": "Only use the index model and consume a small amount of AI points: {{price}} points/1K tokens",
|
||||
@@ -104,6 +113,8 @@
|
||||
"index_size": "Index size",
|
||||
"index_size_tips": "When vectorized, the system will automatically further segment the blocks according to this size.",
|
||||
"input_required_field_to_select_baseurl": "Please enter the required information first",
|
||||
"insert_images": "Added pictures",
|
||||
"insert_images_success": "The new picture is successfully added, and you need to wait for the training to be completed before it will be displayed.",
|
||||
"is_open_schedule": "Enable scheduled synchronization",
|
||||
"keep_image": "Keep the picture",
|
||||
"loading": "Loading...",
|
||||
@@ -135,6 +146,7 @@
|
||||
"process.Image_Index": "Image index generation",
|
||||
"process.Is_Ready": "Ready",
|
||||
"process.Is_Ready_Count": "{{count}} Group is ready",
|
||||
"process.Parse_Image": "Image analysis",
|
||||
"process.Parsing": "Parsing",
|
||||
"process.Vectorizing": "Index vectorization",
|
||||
"process.Waiting": "Queue",
|
||||
@@ -174,18 +186,28 @@
|
||||
"tag.searchOrAddTag": "Search or Add Tag",
|
||||
"tag.tags": "Tags",
|
||||
"tag.total_tags": "Total {{total}} tags",
|
||||
"template_dataset": "Template import",
|
||||
"template_file_invalid": "The template file format is incorrect, it should be the csv file with the first column as q,a,indexes",
|
||||
"template_mode": "Template import",
|
||||
"the_knowledge_base_has_indexes_that_are_being_trained_or_being_rebuilt": "The Dataset has indexes that are being trained or rebuilt",
|
||||
"total_num_files": "Total {{total}} files",
|
||||
"training.Error": "{{count}} Group exception",
|
||||
"training.Normal": "Normal",
|
||||
"training_mode": "Chunk mode",
|
||||
"training_queue_tip": "Training queue status",
|
||||
"training_ready": "{{count}} Group",
|
||||
"upload_by_template_format": "Upload by template file",
|
||||
"uploading_progress": "Uploading: {{num}}%",
|
||||
"vector_model_max_tokens_tip": "Each chunk of data has a maximum length of 3000 tokens",
|
||||
"vector_training_queue": "Vector training queue",
|
||||
"vllm_model": "Image understanding model",
|
||||
"vlm_model_required_tooltip": "A Vision Language Model is required to create image collections",
|
||||
"vlm_model_required_warning": "Image datasets require a Vision Language Model (VLM) to be configured. Please add a model that supports image understanding in the model configuration first.",
|
||||
"waiting_for_training": "Waiting for training",
|
||||
"website_dataset": "Website Sync",
|
||||
"website_dataset_desc": "Build knowledge base by crawling web page data in batches",
|
||||
"website_info": "Website Information",
|
||||
"yuque_dataset": "Yuque Dataset",
|
||||
"yuque_dataset_config": "Yuque Dataset Config",
|
||||
"yuque_dataset_desc": "Can build a dataset using Yuque documents by configuring permissions, without secondary storage"
|
||||
"yuque_dataset": "Yuque Knowledge Base",
|
||||
"yuque_dataset_config": "Configure Yuque Knowledge Base",
|
||||
"yuque_dataset_desc": "Build knowledge base using Yuque documents by configuring document permissions, documents will not be stored twice"
|
||||
}
|
||||
|
@@ -1,9 +1,32 @@
|
||||
{
|
||||
"Action": "Please select the image to upload",
|
||||
"All images import failed": "All pictures failed to import",
|
||||
"Dataset_ID_not_found": "The dataset ID does not exist",
|
||||
"Failed_to_get_token": "Failed to obtain the token",
|
||||
"Image_ID_copied": "Copy ID",
|
||||
"Image_Preview": "Picture preview",
|
||||
"Image_dataset_requires_VLM_model_to_be_configured": "The image dataset needs to be configured with the image understanding model (VLM) to be used. Please add a model that supports image understanding in the model configuration first.",
|
||||
"Image_does_not_belong_to_current_team": "The picture does not belong to the current team",
|
||||
"Image_file_does_not_exist": "The picture does not exist",
|
||||
"Loading_image": "Loading the picture...",
|
||||
"Loading_image failed": "Preview loading failed",
|
||||
"Only_support_uploading_one_image": "Only support uploading one image",
|
||||
"Please select the image to upload": "Please select the image to upload",
|
||||
"Please select the image to upload select the image to upload": "",
|
||||
"Please wait for all files to upload": "Please wait for all files to be uploaded to complete",
|
||||
"bucket_chat": "Conversation Files",
|
||||
"bucket_file": "Dataset Documents",
|
||||
"click_to_view_raw_source": "Click to View Original Source",
|
||||
"common.dataset_data_input_image_support_format": "Support .jpg, .jpeg, .png, .gif, .webp formats",
|
||||
"delete_image": "Delete pictures",
|
||||
"file_name": "Filename",
|
||||
"file_size": "Filesize",
|
||||
"image": "picture",
|
||||
"image_collection": "Picture collection",
|
||||
"image_description": "Image description",
|
||||
"image_description_tip": "Please enter the description of the picture",
|
||||
"please_upload_image_first": "Please upload the picture first",
|
||||
"reached_max_file_count": "Maximum file count reached",
|
||||
"release_the_mouse_to_upload_the_file": "Release Mouse to Upload File",
|
||||
"select_and_drag_file_tip": "Click or Drag Files Here to Upload",
|
||||
"select_file_amount_limit": "You can select up to {{max}} files",
|
||||
@@ -12,7 +35,11 @@
|
||||
"support_file_type": "Supports {{fileType}} file types",
|
||||
"support_max_count": "Supports up to {{maxCount}} files",
|
||||
"support_max_size": "Maximum file size is {{maxSize}}",
|
||||
"template_csv_file_select_tip": "Only support {{fileType}} files that are strictly in accordance with template format</highlight>",
|
||||
"template_strict_highlight": "Strictly follow the template",
|
||||
"total_files": "Total {{selectFiles.length}} files",
|
||||
"upload_error_description": "Only multiple files or a single folder can be uploaded at a time",
|
||||
"upload_failed": "Upload Failed",
|
||||
"reached_max_file_count": "Maximum file count reached",
|
||||
"upload_error_description": "Only multiple files or a single folder can be uploaded at a time"
|
||||
}
|
||||
"upload_file_error": "Please upload pictures",
|
||||
"uploading": "Uploading..."
|
||||
}
|
||||
|
@@ -6,6 +6,7 @@
|
||||
"accept": "接受",
|
||||
"action": "操作",
|
||||
"assign_permission": "权限变更",
|
||||
"audit_log": "审计",
|
||||
"change_department_name": "部门编辑",
|
||||
"change_member_name": "成员改名",
|
||||
"change_member_name_self": "变更成员名",
|
||||
@@ -33,6 +34,13 @@
|
||||
"create_invoice": "开发票",
|
||||
"create_org": "创建部门",
|
||||
"create_sub_org": "创建子部门",
|
||||
"dataset.api_file": "API导入",
|
||||
"dataset.common_dataset": "知识库",
|
||||
"dataset.external_file": "外部文件",
|
||||
"dataset.feishu_dataset": "飞书多维表格",
|
||||
"dataset.folder_dataset": "文件夹",
|
||||
"dataset.website_dataset": "网站同步",
|
||||
"dataset.yuque_dataset": "语雀知识库",
|
||||
"delete": "删除",
|
||||
"delete_api_key": "删除api密钥",
|
||||
"delete_app": "删除工作台应用",
|
||||
@@ -47,6 +55,7 @@
|
||||
"delete_from_team": "移出团队",
|
||||
"delete_group": "删除群组",
|
||||
"delete_org": "删除部门",
|
||||
"department": "部门",
|
||||
"edit_info": "编辑信息",
|
||||
"edit_member": "编辑用户",
|
||||
"edit_member_tip": "成员名",
|
||||
@@ -138,16 +147,12 @@
|
||||
"login": "登录",
|
||||
"manage_member": "管理成员",
|
||||
"member": "成员",
|
||||
"department": "部门",
|
||||
"update": "更新",
|
||||
"save_and_publish": "保存并发布",
|
||||
"member_group": "所属群组",
|
||||
"move_app": "应用位置移动",
|
||||
"move_dataset": "移动知识库",
|
||||
"move_member": "移动成员",
|
||||
"move_org": "移动部门",
|
||||
"notification_recieve": "团队通知接收",
|
||||
"operation_log": "日志",
|
||||
"org": "部门",
|
||||
"org_description": "介绍",
|
||||
"org_name": "部门名称",
|
||||
@@ -171,6 +176,7 @@
|
||||
"restore_tip_title": "恢复确认",
|
||||
"retain_admin_permissions": "保留管理员权限",
|
||||
"retrain_collection": "重新训练集合",
|
||||
"save_and_publish": "保存并发布",
|
||||
"search_log": "搜索日志",
|
||||
"search_member": "搜索成员",
|
||||
"search_member_group_name": "搜索成员/群组名称",
|
||||
@@ -192,14 +198,8 @@
|
||||
"type.Tool": "工具",
|
||||
"type.Tool set": "工具集",
|
||||
"type.Workflow bot": "工作流",
|
||||
"dataset.folder_dataset": "文件夹",
|
||||
"dataset.common_dataset": "知识库",
|
||||
"dataset.website_dataset": "网站同步",
|
||||
"dataset.external_file": "外部文件",
|
||||
"dataset.api_file": "API导入",
|
||||
"dataset.feishu_dataset": "飞书多维表格",
|
||||
"dataset.yuque_dataset": "语雀知识库",
|
||||
"unlimited": "无限制",
|
||||
"update": "更新",
|
||||
"update_api_key": "更新api密钥",
|
||||
"update_app_collaborator": "应用权限更改",
|
||||
"update_app_info": "应用信息修改",
|
||||
@@ -215,4 +215,4 @@
|
||||
"user_team_leave_team": "离开团队",
|
||||
"user_team_leave_team_failed": "离开团队失败",
|
||||
"waiting": "待接受"
|
||||
}
|
||||
}
|
||||
|
@@ -71,13 +71,13 @@
|
||||
"response_embedding_model_tokens": "向量模型 Tokens",
|
||||
"response_hybrid_weight": "语义检索 : 全文检索 = {{emb}} : {{text}}",
|
||||
"response_rerank_tokens": "重排模型 Tokens",
|
||||
"search_results": "搜索结果",
|
||||
"select": "选择",
|
||||
"select_file": "上传文件",
|
||||
"select_file_img": "上传文件/图片",
|
||||
"select_img": "上传图片",
|
||||
"source_cronJob": "定时执行",
|
||||
"stream_output": "流输出",
|
||||
"to_dataset": "前往知识库",
|
||||
"unsupported_file_type": "不支持的文件类型",
|
||||
"upload": "上传",
|
||||
"variable_invisable_in_share": "自定义变量在免登录链接中不可见",
|
||||
|
@@ -403,7 +403,6 @@
|
||||
"core.chat.response.module model": "模型",
|
||||
"core.chat.response.module name": "模型名",
|
||||
"core.chat.response.module query": "问题/检索词",
|
||||
"core.chat.response.module quoteList": "引用内容",
|
||||
"core.chat.response.module similarity": "相似度",
|
||||
"core.chat.response.module temperature": "温度",
|
||||
"core.chat.response.module time": "运行时长",
|
||||
@@ -424,7 +423,6 @@
|
||||
"core.dataset.Empty Dataset Tips": "还没有知识库,快去创建一个吧!",
|
||||
"core.dataset.Folder placeholder": "这是一个目录",
|
||||
"core.dataset.Intro Placeholder": "这个知识库还没有介绍~",
|
||||
"core.dataset.Manual collection": "手动数据集",
|
||||
"core.dataset.My Dataset": "我的知识库",
|
||||
"core.dataset.Query extension intro": "开启问题优化功能,可以提高提高连续对话时,知识库搜索的精度。开启该功能后,在进行知识库搜索时,会根据对话记录,利用 AI 补全问题缺失的信息。",
|
||||
"core.dataset.Quote Length": "引用内容长度",
|
||||
@@ -434,7 +432,6 @@
|
||||
"core.dataset.Text collection": "文本数据集",
|
||||
"core.dataset.apiFile": "API 文件",
|
||||
"core.dataset.collection.Click top config website": "点击配置网站",
|
||||
"core.dataset.collection.Collection name": "数据集名称",
|
||||
"core.dataset.collection.Collection raw text": "数据集内容",
|
||||
"core.dataset.collection.Empty Tip": "数据集空空如也",
|
||||
"core.dataset.collection.QA Prompt": "QA 拆分引导词",
|
||||
@@ -451,7 +448,6 @@
|
||||
"core.dataset.collection.metadata.metadata": "元数据",
|
||||
"core.dataset.collection.metadata.read source": "查看原始内容",
|
||||
"core.dataset.collection.metadata.source": "数据来源",
|
||||
"core.dataset.collection.metadata.source name": "来源名",
|
||||
"core.dataset.collection.metadata.source size": "来源大小",
|
||||
"core.dataset.collection.status.active": "已就绪",
|
||||
"core.dataset.collection.status.error": "训练异常",
|
||||
@@ -743,7 +739,7 @@
|
||||
"core.workflow.value": "值",
|
||||
"core.workflow.variable": "变量",
|
||||
"create": "去创建",
|
||||
"create_failed": "创建异常",
|
||||
"create_failed": "创建失败",
|
||||
"create_success": "创建成功",
|
||||
"create_time": "创建时间",
|
||||
"cron_job_run_app": "定时任务",
|
||||
@@ -788,7 +784,6 @@
|
||||
"dataset.dataset_name": "知识库名称",
|
||||
"dataset.deleteFolderTips": "确认删除该文件夹及其包含的所有知识库?删除后数据无法恢复,请确认!",
|
||||
"dataset.test.noResult": "搜索结果为空",
|
||||
"dataset_data_import_q_placeholder": "最多 {{maxToken}} 字。",
|
||||
"dataset_data_input_a": "答案",
|
||||
"dataset_data_input_chunk": "常规模式",
|
||||
"dataset_data_input_chunk_content": "内容",
|
||||
@@ -802,7 +797,6 @@
|
||||
"delete_success": "删除成功",
|
||||
"delete_warning": "删除警告",
|
||||
"embedding_model_not_config": "检测到没有可用的索引模型",
|
||||
"error.Create failed": "创建失败",
|
||||
"error.code_error": "验证码错误",
|
||||
"error.fileNotFound": "文件找不到了~",
|
||||
"error.inheritPermissionError": "权限继承错误",
|
||||
@@ -1208,6 +1202,7 @@
|
||||
"templateTags.Writing": "文本创作",
|
||||
"template_market": "模板市场",
|
||||
"textarea_variable_picker_tip": "输入\"/\"可选择变量",
|
||||
"to_dataset": "前往知识库",
|
||||
"ui.textarea.Magnifying": "放大",
|
||||
"un_used": "未使用",
|
||||
"unauth_token": "凭证已过期,请重新登录",
|
||||
@@ -1306,4 +1301,4 @@
|
||||
"zoomin_tip_mac": "缩小 ⌘ -",
|
||||
"zoomout_tip": "放大 ctrl +",
|
||||
"zoomout_tip_mac": "放大 ⌘ +"
|
||||
}
|
||||
}
|
||||
|
@@ -8,12 +8,11 @@
|
||||
"auto_indexes_tips": "通过大模型进行额外索引生成,提高语义丰富度,提高检索的精度。",
|
||||
"auto_training_queue": "增强索引排队",
|
||||
"backup_collection": "备份数据",
|
||||
"backup_data_parse": "备份数据解析中",
|
||||
"backup_data_uploading": "备份数据上传中: {{num}}%",
|
||||
"backup_dataset": "备份导入",
|
||||
"backup_dataset_success": "备份创建成功",
|
||||
"backup_dataset_tip": "可以将导出知识库时,下载的 csv 文件重新导入。",
|
||||
"backup_mode": "备份导入",
|
||||
"backup_template_invalid": "备份文件格式不正确,应该是首列为 q,a,indexes 的 csv 文件",
|
||||
"chunk_max_tokens": "分块上限",
|
||||
"chunk_process_params": "分块处理参数",
|
||||
"chunk_size": "分块大小",
|
||||
@@ -28,16 +27,21 @@
|
||||
"collection.training_type": "处理模式",
|
||||
"collection_data_count": "数据量",
|
||||
"collection_metadata_custom_pdf_parse": "PDF增强解析",
|
||||
"collection_name": "数据集名称",
|
||||
"collection_not_support_retraining": "该集合类型不支持重新调整参数",
|
||||
"collection_not_support_sync": "该集合不支持同步",
|
||||
"collection_sync": "立即同步",
|
||||
"collection_sync_confirm_tip": "确认开始同步数据?系统将会拉取最新数据进行比较,如果内容不相同,则会创建一个新的集合并删除旧的集合,请确认!",
|
||||
"collection_tags": "集合标签",
|
||||
"common.dataset.data.Input Error Tip": "[图片数据集] 处理过程错误:",
|
||||
"common.error.unKnow": "未知错误",
|
||||
"common_dataset": "通用知识库",
|
||||
"common_dataset_desc": "通过导入文件、网页链接或手动录入形式构建知识库",
|
||||
"condition": "条件",
|
||||
"config_sync_schedule": "配置定时同步",
|
||||
"confirm_import_images": "共 {{num}} 张图片 | 确认创建",
|
||||
"confirm_to_rebuild_embedding_tip": "确认为知识库切换索引?\n切换索引是一个非常重量的操作,需要对您知识库内所有数据进行重新索引,时间可能较长,请确保账号内剩余积分充足。\n\n此外,你还需要注意修改选择该知识库的应用,避免它们与其他索引模型知识库混用。",
|
||||
"core.dataset.Image collection": "图片数据集",
|
||||
"core.dataset.import.Adjust parameters": "调整参数",
|
||||
"custom_data_process_params": "自定义",
|
||||
"custom_data_process_params_desc": "自定义设置数据处理规则",
|
||||
@@ -46,8 +50,10 @@
|
||||
"data_error_amount": "{{errorAmount}} 组训练异常",
|
||||
"data_index_image": "图片索引",
|
||||
"data_index_num": "索引 {{index}}",
|
||||
"data_parsing": "数据解析中",
|
||||
"data_process_params": "处理参数",
|
||||
"data_process_setting": "数据处理配置",
|
||||
"data_uploading": "数据上传中: {{num}}%",
|
||||
"dataset.Chunk_Number": "分块号",
|
||||
"dataset.Completed": "完成",
|
||||
"dataset.Delete_Chunk": "删除",
|
||||
@@ -67,7 +73,9 @@
|
||||
"dataset.no_tags": "暂无标签",
|
||||
"default_params": "默认",
|
||||
"default_params_desc": "使用系统默认的参数和规则",
|
||||
"download_csv_template": "点击下载 CSV 模板",
|
||||
"edit_dataset_config": "编辑知识库配置",
|
||||
"empty_collection": "空白数据集",
|
||||
"enhanced_indexes": "索引增强",
|
||||
"error.collectionNotFound": "集合找不到了~",
|
||||
"external_file": "外部文件库",
|
||||
@@ -90,6 +98,7 @@
|
||||
"image_auto_parse": "图片自动索引",
|
||||
"image_auto_parse_tips": "调用 VLM 自动标注文档里的图片,并生成额外的检索索引",
|
||||
"image_training_queue": "图片处理排队",
|
||||
"images_creating": "正在创建",
|
||||
"immediate_sync": "立即同步",
|
||||
"import.Auto mode Estimated Price Tips": "需调用文本理解模型,需要消耗较多AI 积分:{{price}} 积分/1K tokens",
|
||||
"import.Embedding Estimated Price Tips": "仅使用索引模型,消耗少量 AI 积分:{{price}} 积分/1K tokens",
|
||||
@@ -104,6 +113,8 @@
|
||||
"index_size": "索引大小",
|
||||
"index_size_tips": "向量化时内容的长度,系统会自动按该大小对分块进行进一步的分割。",
|
||||
"input_required_field_to_select_baseurl": "请先输入必填信息",
|
||||
"insert_images": "新增图片",
|
||||
"insert_images_success": "新增图片成功,需等待训练完成才会展示",
|
||||
"is_open_schedule": "启用定时同步",
|
||||
"keep_image": "保留图片",
|
||||
"loading": "加载中...",
|
||||
@@ -135,6 +146,7 @@
|
||||
"process.Image_Index": "图片索引生成",
|
||||
"process.Is_Ready": "已就绪",
|
||||
"process.Is_Ready_Count": "{{count}} 组已就绪",
|
||||
"process.Parse_Image": "图片解析中",
|
||||
"process.Parsing": "内容解析中",
|
||||
"process.Vectorizing": "索引向量化",
|
||||
"process.Waiting": "排队中",
|
||||
@@ -173,14 +185,21 @@
|
||||
"tag.searchOrAddTag": "搜索或添加标签",
|
||||
"tag.tags": "标签",
|
||||
"tag.total_tags": "共{{total}}个标签",
|
||||
"template_dataset": "模版导入",
|
||||
"template_file_invalid": "模板文件格式不正确,应该是首列为 q,a,indexes 的 csv 文件",
|
||||
"template_mode": "模板导入",
|
||||
"the_knowledge_base_has_indexes_that_are_being_trained_or_being_rebuilt": "知识库有训练中或正在重建的索引",
|
||||
"total_num_files": "共 {{total}} 个文件",
|
||||
"training.Error": "{{count}} 组异常",
|
||||
"training.Image mode": "图片处理",
|
||||
"training.Normal": "正常",
|
||||
"training_mode": "处理方式",
|
||||
"training_ready": "{{count}} 组",
|
||||
"upload_by_template_format": "按模版文件上传",
|
||||
"uploading_progress": "上传中: {{num}}%",
|
||||
"vector_model_max_tokens_tip": "每个分块数据,最大长度为 3000 tokens",
|
||||
"vllm_model": "图片理解模型",
|
||||
"vlm_model_required_warning": "需要图片理解模型",
|
||||
"website_dataset": "Web 站点同步",
|
||||
"website_dataset_desc": "通过爬虫,批量爬取网页数据构建知识库",
|
||||
"website_info": "网站信息",
|
||||
|
@@ -1,9 +1,33 @@
|
||||
{
|
||||
"Action": "请选择要上传的图片",
|
||||
"All images import failed": "所有图片导入失败",
|
||||
"Dataset_ID_not_found": "数据集ID不存在",
|
||||
"Failed_to_get_token": "获取令牌失败",
|
||||
"Image_ID_copied": "已复制ID",
|
||||
"Image_Preview": "图片预览",
|
||||
"Image_dataset_requires_VLM_model_to_be_configured": "图片数据集需要配置图片理解模型(VLM)才能使用,请先在模型配置中添加支持图片理解的模型",
|
||||
"Image_does_not_belong_to_current_team": "图片不属于当前团队",
|
||||
"Image_file_does_not_exist": "图片不存在",
|
||||
"Loading_image": "加载图片中...",
|
||||
"Loading_image failed": "预览加载失败",
|
||||
"Only_support_uploading_one_image": "仅支持上传一张图片",
|
||||
"Please select the image to upload": "请选择要上传的图片",
|
||||
"Please wait for all files to upload": "请等待所有文件上传完成",
|
||||
"bucket_chat": "对话文件",
|
||||
"bucket_file": "知识库文件",
|
||||
"click_to_view_raw_source": "点击查看来源",
|
||||
"common.Some images failed to process": "部分图片处理失败",
|
||||
"common.dataset_data_input_image_support_format": "支持 .jpg, .jpeg, .png, .gif, .webp 格式",
|
||||
"count.core.dataset.collection.Create Success": "成功导入 {{count}} 张图片",
|
||||
"delete_image": "删除图片",
|
||||
"file_name": "文件名",
|
||||
"file_size": "文件大小",
|
||||
"image": "图片",
|
||||
"image_collection": "图片集合",
|
||||
"image_description": "图片描述",
|
||||
"image_description_tip": "请输入图片的描述内容",
|
||||
"please_upload_image_first": "请先上传图片",
|
||||
"reached_max_file_count": "已达到最大文件数量",
|
||||
"release_the_mouse_to_upload_the_file": "松开鼠标上传文件",
|
||||
"select_and_drag_file_tip": "点击或拖动文件到此处上传",
|
||||
"select_file_amount_limit": "最多选择 {{max}} 个文件",
|
||||
@@ -12,7 +36,11 @@
|
||||
"support_file_type": "支持 {{fileType}} 类型文件",
|
||||
"support_max_count": "最多支持 {{maxCount}} 个文件",
|
||||
"support_max_size": "单个文件最大 {{maxSize}}",
|
||||
"template_csv_file_select_tip": "仅支持<highlight>严格按照模板</highlight>填写的 {{fileType}} 文件",
|
||||
"template_strict_highlight": "严格按照模版",
|
||||
"total_files": "共{{selectFiles.length}}个文件",
|
||||
"upload_error_description": "单次只支持上传多个文件或者一个文件夹",
|
||||
"upload_failed": "上传异常",
|
||||
"reached_max_file_count": "已达到最大文件数量",
|
||||
"upload_error_description": "单次只支持上传多个文件或者一个文件夹"
|
||||
}
|
||||
"upload_file_error": "请上传图片",
|
||||
"uploading": "正在上传..."
|
||||
}
|
||||
|
@@ -6,6 +6,7 @@
|
||||
"accept": "接受",
|
||||
"action": "操作",
|
||||
"assign_permission": "權限變更",
|
||||
"audit_log": "審計",
|
||||
"change_department_name": "部門編輯",
|
||||
"change_member_name": "成員改名",
|
||||
"change_member_name_self": "變更成員名",
|
||||
@@ -32,6 +33,13 @@
|
||||
"create_invoice": "開發票",
|
||||
"create_org": "建立部門",
|
||||
"create_sub_org": "建立子部門",
|
||||
"dataset.api_file": "API 匯入",
|
||||
"dataset.common_dataset": "知識庫",
|
||||
"dataset.external_file": "外部文件",
|
||||
"dataset.feishu_dataset": "飛書多維表格",
|
||||
"dataset.folder_dataset": "資料夾",
|
||||
"dataset.website_dataset": "網站同步",
|
||||
"dataset.yuque_dataset": "語雀知識庫",
|
||||
"delete": "刪除",
|
||||
"delete_api_key": "刪除api密鑰",
|
||||
"delete_app": "刪除工作台應用",
|
||||
@@ -46,6 +54,7 @@
|
||||
"delete_from_team": "移出團隊",
|
||||
"delete_group": "刪除群組",
|
||||
"delete_org": "刪除部門",
|
||||
"department": "部門",
|
||||
"edit_info": "編輯訊息",
|
||||
"edit_member": "編輯使用者",
|
||||
"edit_member_tip": "成員名",
|
||||
@@ -136,16 +145,12 @@
|
||||
"login": "登入",
|
||||
"manage_member": "管理成員",
|
||||
"member": "成員",
|
||||
"department": "部門",
|
||||
"update": "更新",
|
||||
"save_and_publish": "儲存並發布",
|
||||
"member_group": "所屬成員組",
|
||||
"move_app": "應用位置移動",
|
||||
"move_dataset": "移動知識庫",
|
||||
"move_member": "移動成員",
|
||||
"move_org": "行動部門",
|
||||
"notification_recieve": "團隊通知接收",
|
||||
"operation_log": "紀錄",
|
||||
"org": "組織",
|
||||
"org_description": "介紹",
|
||||
"org_name": "部門名稱",
|
||||
@@ -169,6 +174,7 @@
|
||||
"restore_tip_title": "恢復確認",
|
||||
"retain_admin_permissions": "保留管理員權限",
|
||||
"retrain_collection": "重新訓練集合",
|
||||
"save_and_publish": "儲存並發布",
|
||||
"search_log": "搜索日誌",
|
||||
"search_member": "搜索成員",
|
||||
"search_member_group_name": "搜尋成員/群組名稱",
|
||||
@@ -190,14 +196,8 @@
|
||||
"type.Tool": "工具",
|
||||
"type.Tool set": "工具集",
|
||||
"type.Workflow bot": "工作流程",
|
||||
"dataset.folder_dataset": "資料夾",
|
||||
"dataset.common_dataset": "知識庫",
|
||||
"dataset.website_dataset": "網站同步",
|
||||
"dataset.external_file": "外部文件",
|
||||
"dataset.api_file": "API 匯入",
|
||||
"dataset.feishu_dataset": "飛書多維表格",
|
||||
"dataset.yuque_dataset": "語雀知識庫",
|
||||
"unlimited": "無限制",
|
||||
"update": "更新",
|
||||
"update_api_key": "更新api密鑰",
|
||||
"update_app_collaborator": "應用權限更改",
|
||||
"update_app_info": "應用信息修改",
|
||||
@@ -213,4 +213,4 @@
|
||||
"user_team_leave_team": "離開團隊",
|
||||
"user_team_leave_team_failed": "離開團隊失敗",
|
||||
"waiting": "待接受"
|
||||
}
|
||||
}
|
||||
|
@@ -71,13 +71,13 @@
|
||||
"response_embedding_model_tokens": "向量模型 Tokens",
|
||||
"response_hybrid_weight": "語義檢索 : 全文檢索 = {{emb}} : {{text}}",
|
||||
"response_rerank_tokens": "重排模型 Tokens",
|
||||
"search_results": "搜索結果",
|
||||
"select": "選取",
|
||||
"select_file": "上傳檔案",
|
||||
"select_file_img": "上傳檔案 / 圖片",
|
||||
"select_img": "上傳圖片",
|
||||
"source_cronJob": "定時執行",
|
||||
"stream_output": "串流輸出",
|
||||
"to_dataset": "前往知識庫",
|
||||
"unsupported_file_type": "不支援的檔案類型",
|
||||
"upload": "上傳",
|
||||
"variable_invisable_in_share": "自定義變數在免登入連結中不可見",
|
||||
|