Files
FastGPT/packages/service/core/dataset/collection/utils.ts
Archer c30f069f2f V4.9.11 feature (#4969)
* Feat: Images dataset collection (#4941)

* New pic (#4858)

* 更新数据集相关类型,添加图像文件ID和预览URL支持;优化数据集导入功能,新增图像数据集处理组件;修复部分国际化文本;更新文件上传逻辑以支持新功能。

* 与原先代码的差别

* 新增 V4.9.10 更新说明,支持 PG 设置`systemEnv.hnswMaxScanTuples`参数,优化 LLM stream 调用超时,修复全文检索多知识库排序问题。同时更新数据集索引,移除 datasetId 字段以简化查询。

* 更换成fileId_image逻辑,并增加训练队列匹配的逻辑

* 新增图片集合判断逻辑,优化预览URL生成流程,确保仅在数据集为图片集合时生成预览URL,并添加相关日志输出以便调试。

* Refactor Docker Compose configuration to comment out exposed ports for production environments, update image versions for pgvector, fastgpt, and mcp_server, and enhance Redis service with a health check. Additionally, standardize dataset collection labels in constants and improve internationalization strings across multiple languages.

* Enhance TrainingStates component by adding internationalization support for the imageParse training mode and update defaultCounts to include imageParse mode in trainingDetail API.

* Enhance dataset import context by adding additional steps for image dataset import process and improve internationalization strings for modal buttons in the useEditTitle hook.

* Update DatasetImportContext to conditionally render MyStep component based on data source type, improving the import process for non-image datasets.

* Refactor image dataset handling by improving internationalization strings, enhancing error messages, and streamlining the preview URL generation process.

* 图片上传到新建的 dataset_collection_images 表,逻辑跟随更改

* 修改了除了controller的其他部分问题

* 把图片数据集的逻辑整合到controller里面

* 补充i18n

* 补充i18n

* resolve评论:主要是上传逻辑的更改和组件复用

* 图片名称的图标显示

* 修改编译报错的命名问题

* 删除不需要的collectionid部分

* 多余文件的处理和改动一个删除按钮

* 除了loading和统一的imageId,其他都resolve掉的

* 处理图标报错

* 复用了MyPhotoView并采用全部替换的方式将imageFileId变成imageId

* 去除不必要文件修改

* 报错和字段修改

* 增加上传成功后删除临时文件的逻辑以及回退一些修改

* 删除path字段,将图片保存到gridfs内,并修改增删等操作的代码

* 修正编译错误

---------

Co-authored-by: archer <545436317@qq.com>

* perf: image dataset

* feat: insert image

* perf: image icon

* fix: training state

---------

Co-authored-by: Zhuangzai fa <143257420+ctrlz526@users.noreply.github.com>

* fix: ts (#4948)

* Thirddatasetmd (#4942)

* add thirddataset.md

* fix thirddataset.md

* fix

* delete wrong png

---------

Co-authored-by: dreamer6680 <146868355@qq.com>

* perf: api dataset code

* perf: log

* add secondary.tsx (#4946)

* add secondary.tsx

* fix

---------

Co-authored-by: dreamer6680 <146868355@qq.com>

* perf: multiple menu

* perf: i18n

* feat: parse queue (#4960)

* feat: parse queue

* feat: sync parse queue

* fix thirddataset.md (#4962)

* fix thirddataset-4.png (#4963)

* feat: Dataset template import (#4934)

* 模版导入部分除了文档还没写

* 修复模版导入的 build 错误

* Document production

* compress pictures

* Change some constants to variables

---------

Co-authored-by: Archer <545436317@qq.com>

* perf: template import

* doc

* llm pargraph

* bocha tool

* fix: del collection

---------

Co-authored-by: Zhuangzai fa <143257420+ctrlz526@users.noreply.github.com>
Co-authored-by: dreamer6680 <1468683855@qq.com>
Co-authored-by: dreamer6680 <146868355@qq.com>
2025-06-06 14:48:44 +08:00

244 lines
6.3 KiB
TypeScript

import { MongoDatasetCollection } from './schema';
import type { ClientSession } from '../../../common/mongo';
import { MongoDatasetCollectionTags } from '../tag/schema';
import { readFromSecondary } from '../../../common/mongo/utils';
import type { CollectionWithDatasetType } from '@fastgpt/global/core/dataset/type';
import { DatasetCollectionSchemaType } from '@fastgpt/global/core/dataset/type';
import {
DatasetCollectionDataProcessModeEnum,
DatasetCollectionSyncResultEnum,
DatasetCollectionTypeEnum,
DatasetSourceReadTypeEnum,
TrainingModeEnum
} from '@fastgpt/global/core/dataset/constants';
import { DatasetErrEnum } from '@fastgpt/global/common/error/code/dataset';
import { readDatasetSourceRawText } from '../read';
import { hashStr } from '@fastgpt/global/common/string/tools';
import { mongoSessionRun } from '../../../common/mongo/sessionRun';
import { createCollectionAndInsertData, delCollection } from './controller';
import { collectionCanSync } from '@fastgpt/global/core/dataset/collection/utils';
/**
* get all collection by top collectionId
*/
export async function findCollectionAndChild({
teamId,
datasetId,
collectionId,
fields = '_id parentId name metadata'
}: {
teamId: string;
datasetId: string;
collectionId: string;
fields?: string;
}) {
async function find(id: string) {
// find children
const children = await MongoDatasetCollection.find(
{ teamId, datasetId, parentId: id },
fields
).lean();
let collections = children;
for (const child of children) {
const grandChildrenIds = await find(child._id);
collections = collections.concat(grandChildrenIds);
}
return collections;
}
const [collection, childCollections] = await Promise.all([
MongoDatasetCollection.findById(collectionId, fields).lean(),
find(collectionId)
]);
if (!collection) {
return Promise.reject('Collection not found');
}
return [collection, ...childCollections];
}
export function getCollectionUpdateTime({ name, time }: { time?: Date; name: string }) {
if (time) return time;
if (name.startsWith('手动') || ['manual', 'mark'].includes(name)) return new Date('2999/9/9');
return new Date();
}
export const createOrGetCollectionTags = async ({
tags,
datasetId,
teamId,
session
}: {
tags?: string[];
datasetId: string;
teamId: string;
session?: ClientSession;
}) => {
if (!tags) return undefined;
if (tags.length === 0) return [];
const existingTags = await MongoDatasetCollectionTags.find(
{
teamId,
datasetId,
tag: { $in: tags }
},
undefined,
{ session }
).lean();
const existingTagContents = existingTags.map((tag) => tag.tag);
const newTagContents = tags.filter((tag) => !existingTagContents.includes(tag));
const newTags = await MongoDatasetCollectionTags.insertMany(
newTagContents.map((tagContent) => ({
teamId,
datasetId,
tag: tagContent
})),
{ session, ordered: true }
);
return [...existingTags.map((tag) => tag._id), ...newTags.map((tag) => tag._id)];
};
export const collectionTagsToTagLabel = async ({
datasetId,
tags
}: {
datasetId: string;
tags?: string[];
}) => {
if (!tags) return undefined;
if (tags.length === 0) return;
// Get all the tags
const collectionTags = await MongoDatasetCollectionTags.find({ datasetId }, undefined, {
...readFromSecondary
}).lean();
const tagsMap = new Map<string, string>();
collectionTags.forEach((tag) => {
tagsMap.set(String(tag._id), tag.tag);
});
return tags
.map((tag) => {
return tagsMap.get(tag) || '';
})
.filter(Boolean);
};
export const syncCollection = async (collection: CollectionWithDatasetType) => {
const dataset = collection.dataset;
if (!collectionCanSync(collection.type)) {
return Promise.reject(DatasetErrEnum.notSupportSync);
}
// Get new text
const sourceReadType = await (async () => {
if (collection.type === DatasetCollectionTypeEnum.link) {
if (!collection.rawLink) return Promise.reject('rawLink is missing');
return {
type: DatasetSourceReadTypeEnum.link,
sourceId: collection.rawLink,
selector: collection.metadata?.webPageSelector
};
}
const sourceId = collection.apiFileId;
if (!sourceId) return Promise.reject('apiFileId is missing');
return {
type: DatasetSourceReadTypeEnum.apiFile,
sourceId,
apiDatasetServer: dataset.apiDatasetServer
};
})();
const { title, rawText } = await readDatasetSourceRawText({
teamId: collection.teamId,
tmbId: collection.tmbId,
...sourceReadType
});
if (!rawText) {
return DatasetCollectionSyncResultEnum.failed;
}
// Check if the original text is the same: skip if same
const hashRawText = hashStr(rawText);
if (collection.hashRawText && hashRawText === collection.hashRawText) {
return DatasetCollectionSyncResultEnum.sameRaw;
}
await mongoSessionRun(async (session) => {
// Delete old collection
await delCollection({
collections: [collection],
delImg: false,
delFile: false,
session
});
// Create new collection
await createCollectionAndInsertData({
session,
dataset,
rawText: rawText,
createCollectionParams: {
...collection,
name: title || collection.name,
updateTime: new Date()
}
});
});
return DatasetCollectionSyncResultEnum.success;
};
/*
QA: 独立进程
Chunk: Image Index -> Auto index -> chunk index
*/
export const getTrainingModeByCollection = ({
trainingType,
autoIndexes,
imageIndex
}: {
trainingType: DatasetCollectionDataProcessModeEnum;
autoIndexes?: boolean;
imageIndex?: boolean;
}) => {
if (
trainingType === DatasetCollectionDataProcessModeEnum.imageParse &&
global.feConfigs?.isPlus
) {
return TrainingModeEnum.imageParse;
}
if (trainingType === DatasetCollectionDataProcessModeEnum.qa) {
return TrainingModeEnum.qa;
}
if (
trainingType === DatasetCollectionDataProcessModeEnum.chunk &&
imageIndex &&
global.feConfigs?.isPlus
) {
return TrainingModeEnum.image;
}
if (
trainingType === DatasetCollectionDataProcessModeEnum.chunk &&
autoIndexes &&
global.feConfigs?.isPlus
) {
return TrainingModeEnum.auto;
}
return TrainingModeEnum.chunk;
};