mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-21 11:43:56 +00:00

* Feat: Images dataset collection (#4941) * New pic (#4858) * 更新数据集相关类型,添加图像文件ID和预览URL支持;优化数据集导入功能,新增图像数据集处理组件;修复部分国际化文本;更新文件上传逻辑以支持新功能。 * 与原先代码的差别 * 新增 V4.9.10 更新说明,支持 PG 设置`systemEnv.hnswMaxScanTuples`参数,优化 LLM stream 调用超时,修复全文检索多知识库排序问题。同时更新数据集索引,移除 datasetId 字段以简化查询。 * 更换成fileId_image逻辑,并增加训练队列匹配的逻辑 * 新增图片集合判断逻辑,优化预览URL生成流程,确保仅在数据集为图片集合时生成预览URL,并添加相关日志输出以便调试。 * Refactor Docker Compose configuration to comment out exposed ports for production environments, update image versions for pgvector, fastgpt, and mcp_server, and enhance Redis service with a health check. Additionally, standardize dataset collection labels in constants and improve internationalization strings across multiple languages. * Enhance TrainingStates component by adding internationalization support for the imageParse training mode and update defaultCounts to include imageParse mode in trainingDetail API. * Enhance dataset import context by adding additional steps for image dataset import process and improve internationalization strings for modal buttons in the useEditTitle hook. * Update DatasetImportContext to conditionally render MyStep component based on data source type, improving the import process for non-image datasets. * Refactor image dataset handling by improving internationalization strings, enhancing error messages, and streamlining the preview URL generation process. * 图片上传到新建的 dataset_collection_images 表,逻辑跟随更改 * 修改了除了controller的其他部分问题 * 把图片数据集的逻辑整合到controller里面 * 补充i18n * 补充i18n * resolve评论:主要是上传逻辑的更改和组件复用 * 图片名称的图标显示 * 修改编译报错的命名问题 * 删除不需要的collectionid部分 * 多余文件的处理和改动一个删除按钮 * 除了loading和统一的imageId,其他都resolve掉的 * 处理图标报错 * 复用了MyPhotoView并采用全部替换的方式将imageFileId变成imageId * 去除不必要文件修改 * 报错和字段修改 * 增加上传成功后删除临时文件的逻辑以及回退一些修改 * 删除path字段,将图片保存到gridfs内,并修改增删等操作的代码 * 修正编译错误 --------- Co-authored-by: archer <545436317@qq.com> * perf: image dataset * feat: insert image * perf: image icon * fix: training state --------- Co-authored-by: Zhuangzai fa <143257420+ctrlz526@users.noreply.github.com> * fix: ts (#4948) * Thirddatasetmd (#4942) * add thirddataset.md * fix thirddataset.md * fix * delete wrong png --------- Co-authored-by: dreamer6680 <146868355@qq.com> * perf: api dataset code * perf: log * add secondary.tsx (#4946) * add secondary.tsx * fix --------- Co-authored-by: dreamer6680 <146868355@qq.com> * perf: multiple menu * perf: i18n * feat: parse queue (#4960) * feat: parse queue * feat: sync parse queue * fix thirddataset.md (#4962) * fix thirddataset-4.png (#4963) * feat: Dataset template import (#4934) * 模版导入部分除了文档还没写 * 修复模版导入的 build 错误 * Document production * compress pictures * Change some constants to variables --------- Co-authored-by: Archer <545436317@qq.com> * perf: template import * doc * llm pargraph * bocha tool * fix: del collection --------- Co-authored-by: Zhuangzai fa <143257420+ctrlz526@users.noreply.github.com> Co-authored-by: dreamer6680 <1468683855@qq.com> Co-authored-by: dreamer6680 <146868355@qq.com>
244 lines
6.3 KiB
TypeScript
244 lines
6.3 KiB
TypeScript
import { MongoDatasetCollection } from './schema';
|
|
import type { ClientSession } from '../../../common/mongo';
|
|
import { MongoDatasetCollectionTags } from '../tag/schema';
|
|
import { readFromSecondary } from '../../../common/mongo/utils';
|
|
import type { CollectionWithDatasetType } from '@fastgpt/global/core/dataset/type';
|
|
import { DatasetCollectionSchemaType } from '@fastgpt/global/core/dataset/type';
|
|
import {
|
|
DatasetCollectionDataProcessModeEnum,
|
|
DatasetCollectionSyncResultEnum,
|
|
DatasetCollectionTypeEnum,
|
|
DatasetSourceReadTypeEnum,
|
|
TrainingModeEnum
|
|
} from '@fastgpt/global/core/dataset/constants';
|
|
import { DatasetErrEnum } from '@fastgpt/global/common/error/code/dataset';
|
|
import { readDatasetSourceRawText } from '../read';
|
|
import { hashStr } from '@fastgpt/global/common/string/tools';
|
|
import { mongoSessionRun } from '../../../common/mongo/sessionRun';
|
|
import { createCollectionAndInsertData, delCollection } from './controller';
|
|
import { collectionCanSync } from '@fastgpt/global/core/dataset/collection/utils';
|
|
|
|
/**
|
|
* get all collection by top collectionId
|
|
*/
|
|
export async function findCollectionAndChild({
|
|
teamId,
|
|
datasetId,
|
|
collectionId,
|
|
fields = '_id parentId name metadata'
|
|
}: {
|
|
teamId: string;
|
|
datasetId: string;
|
|
collectionId: string;
|
|
fields?: string;
|
|
}) {
|
|
async function find(id: string) {
|
|
// find children
|
|
const children = await MongoDatasetCollection.find(
|
|
{ teamId, datasetId, parentId: id },
|
|
fields
|
|
).lean();
|
|
|
|
let collections = children;
|
|
|
|
for (const child of children) {
|
|
const grandChildrenIds = await find(child._id);
|
|
collections = collections.concat(grandChildrenIds);
|
|
}
|
|
|
|
return collections;
|
|
}
|
|
const [collection, childCollections] = await Promise.all([
|
|
MongoDatasetCollection.findById(collectionId, fields).lean(),
|
|
find(collectionId)
|
|
]);
|
|
|
|
if (!collection) {
|
|
return Promise.reject('Collection not found');
|
|
}
|
|
|
|
return [collection, ...childCollections];
|
|
}
|
|
|
|
export function getCollectionUpdateTime({ name, time }: { time?: Date; name: string }) {
|
|
if (time) return time;
|
|
if (name.startsWith('手动') || ['manual', 'mark'].includes(name)) return new Date('2999/9/9');
|
|
return new Date();
|
|
}
|
|
|
|
export const createOrGetCollectionTags = async ({
|
|
tags,
|
|
datasetId,
|
|
teamId,
|
|
session
|
|
}: {
|
|
tags?: string[];
|
|
datasetId: string;
|
|
teamId: string;
|
|
session?: ClientSession;
|
|
}) => {
|
|
if (!tags) return undefined;
|
|
|
|
if (tags.length === 0) return [];
|
|
|
|
const existingTags = await MongoDatasetCollectionTags.find(
|
|
{
|
|
teamId,
|
|
datasetId,
|
|
tag: { $in: tags }
|
|
},
|
|
undefined,
|
|
{ session }
|
|
).lean();
|
|
|
|
const existingTagContents = existingTags.map((tag) => tag.tag);
|
|
const newTagContents = tags.filter((tag) => !existingTagContents.includes(tag));
|
|
|
|
const newTags = await MongoDatasetCollectionTags.insertMany(
|
|
newTagContents.map((tagContent) => ({
|
|
teamId,
|
|
datasetId,
|
|
tag: tagContent
|
|
})),
|
|
{ session, ordered: true }
|
|
);
|
|
|
|
return [...existingTags.map((tag) => tag._id), ...newTags.map((tag) => tag._id)];
|
|
};
|
|
|
|
export const collectionTagsToTagLabel = async ({
|
|
datasetId,
|
|
tags
|
|
}: {
|
|
datasetId: string;
|
|
tags?: string[];
|
|
}) => {
|
|
if (!tags) return undefined;
|
|
if (tags.length === 0) return;
|
|
|
|
// Get all the tags
|
|
const collectionTags = await MongoDatasetCollectionTags.find({ datasetId }, undefined, {
|
|
...readFromSecondary
|
|
}).lean();
|
|
const tagsMap = new Map<string, string>();
|
|
collectionTags.forEach((tag) => {
|
|
tagsMap.set(String(tag._id), tag.tag);
|
|
});
|
|
|
|
return tags
|
|
.map((tag) => {
|
|
return tagsMap.get(tag) || '';
|
|
})
|
|
.filter(Boolean);
|
|
};
|
|
|
|
export const syncCollection = async (collection: CollectionWithDatasetType) => {
|
|
const dataset = collection.dataset;
|
|
|
|
if (!collectionCanSync(collection.type)) {
|
|
return Promise.reject(DatasetErrEnum.notSupportSync);
|
|
}
|
|
|
|
// Get new text
|
|
const sourceReadType = await (async () => {
|
|
if (collection.type === DatasetCollectionTypeEnum.link) {
|
|
if (!collection.rawLink) return Promise.reject('rawLink is missing');
|
|
return {
|
|
type: DatasetSourceReadTypeEnum.link,
|
|
sourceId: collection.rawLink,
|
|
selector: collection.metadata?.webPageSelector
|
|
};
|
|
}
|
|
|
|
const sourceId = collection.apiFileId;
|
|
|
|
if (!sourceId) return Promise.reject('apiFileId is missing');
|
|
|
|
return {
|
|
type: DatasetSourceReadTypeEnum.apiFile,
|
|
sourceId,
|
|
apiDatasetServer: dataset.apiDatasetServer
|
|
};
|
|
})();
|
|
|
|
const { title, rawText } = await readDatasetSourceRawText({
|
|
teamId: collection.teamId,
|
|
tmbId: collection.tmbId,
|
|
...sourceReadType
|
|
});
|
|
|
|
if (!rawText) {
|
|
return DatasetCollectionSyncResultEnum.failed;
|
|
}
|
|
|
|
// Check if the original text is the same: skip if same
|
|
const hashRawText = hashStr(rawText);
|
|
if (collection.hashRawText && hashRawText === collection.hashRawText) {
|
|
return DatasetCollectionSyncResultEnum.sameRaw;
|
|
}
|
|
|
|
await mongoSessionRun(async (session) => {
|
|
// Delete old collection
|
|
await delCollection({
|
|
collections: [collection],
|
|
delImg: false,
|
|
delFile: false,
|
|
session
|
|
});
|
|
|
|
// Create new collection
|
|
await createCollectionAndInsertData({
|
|
session,
|
|
dataset,
|
|
rawText: rawText,
|
|
createCollectionParams: {
|
|
...collection,
|
|
name: title || collection.name,
|
|
updateTime: new Date()
|
|
}
|
|
});
|
|
});
|
|
|
|
return DatasetCollectionSyncResultEnum.success;
|
|
};
|
|
|
|
/*
|
|
QA: 独立进程
|
|
Chunk: Image Index -> Auto index -> chunk index
|
|
*/
|
|
export const getTrainingModeByCollection = ({
|
|
trainingType,
|
|
autoIndexes,
|
|
imageIndex
|
|
}: {
|
|
trainingType: DatasetCollectionDataProcessModeEnum;
|
|
autoIndexes?: boolean;
|
|
imageIndex?: boolean;
|
|
}) => {
|
|
if (
|
|
trainingType === DatasetCollectionDataProcessModeEnum.imageParse &&
|
|
global.feConfigs?.isPlus
|
|
) {
|
|
return TrainingModeEnum.imageParse;
|
|
}
|
|
|
|
if (trainingType === DatasetCollectionDataProcessModeEnum.qa) {
|
|
return TrainingModeEnum.qa;
|
|
}
|
|
if (
|
|
trainingType === DatasetCollectionDataProcessModeEnum.chunk &&
|
|
imageIndex &&
|
|
global.feConfigs?.isPlus
|
|
) {
|
|
return TrainingModeEnum.image;
|
|
}
|
|
if (
|
|
trainingType === DatasetCollectionDataProcessModeEnum.chunk &&
|
|
autoIndexes &&
|
|
global.feConfigs?.isPlus
|
|
) {
|
|
return TrainingModeEnum.auto;
|
|
}
|
|
return TrainingModeEnum.chunk;
|
|
};
|