V4.8.17 feature (#3485)

* feat: add third party account config (#3443)

* temp

* editor workflow variable style

* add team to dispatch

* i18n

* delete console

* change openai account position

* fix

* fix

* fix

* fix

* fix

* 4.8.17 test (#3461)

* perf: external provider config

* perf: ui

* feat: add template config (#3434)

* change template position

* template config

* delete console

* delete

* fix

* fix

* perf: Mongo visutal field (#3464)

* remve invalid code

* perf: team member visutal code

* perf: virtual search; perf: search test data

* fix: ts

* fix: image response headers

* perf: template code

* perf: auth layout;perf: auto save (#3472)

* perf: auth layout

* perf: auto save

* perf: auto save

* fix: template guide display & http input support external variables (#3475)

* fix: template guide display

* http editor support external workflow variables

* perf: auto save;fix: ifelse checker line break; (#3478)

* perf: auto save

* perf: auto save

* fix: ifelse checker line break

* perf: doc

* perf: doc

* fix: update var type error

* 4.8.17 test (#3479)

* perf: auto save

* perf: auto save

* perf: template code

* 4.8.17 test (#3480)

* perf: auto save

* perf: auto save

* perf: model price model

* feat: add react memo

* perf: model provider filter

* fix: ts (#3481)

* perf: auto save

* perf: auto save

* fix: ts

* simple app tool select (#3473)

* workflow plugin userguide & simple tool ui

* simple tool filter

* reuse component

* change component to hook

* fix

* perf: too selector modal (#3484)

* perf: auto save

* perf: auto save

* perf: markdown render

* perf: too selector

* fix: app version require tmbId

* perf: templates refresh

* perf: templates refresh

* hide auto save error tip

* perf: toolkit guide

---------

Co-authored-by: heheer <heheer@sealos.io>
This commit is contained in:
Archer
2024-12-27 20:05:12 +08:00
committed by GitHub
parent a209856d48
commit b520988c64
207 changed files with 2943 additions and 1378 deletions

View File

@@ -4,11 +4,7 @@ import {
} from '@fastgpt/global/core/dataset/constants';
import type { CreateDatasetCollectionParams } from '@fastgpt/global/core/dataset/api.d';
import { MongoDatasetCollection } from './schema';
import {
CollectionWithDatasetType,
DatasetCollectionSchemaType,
DatasetSchemaType
} from '@fastgpt/global/core/dataset/type';
import { DatasetCollectionSchemaType, DatasetSchemaType } from '@fastgpt/global/core/dataset/type';
import { MongoDatasetTraining } from '../training/schema';
import { MongoDatasetData } from '../data/schema';
import { delImgByRelatedId } from '../../../common/file/image/controller';
@@ -230,7 +226,7 @@ export const delCollectionRelatedSource = async ({
collections,
session
}: {
collections: (CollectionWithDatasetType | DatasetCollectionSchemaType)[];
collections: DatasetCollectionSchemaType[];
session: ClientSession;
}) => {
if (collections.length === 0) return;
@@ -264,7 +260,7 @@ export async function delCollection({
session,
delRelatedSource
}: {
collections: (CollectionWithDatasetType | DatasetCollectionSchemaType)[];
collections: DatasetCollectionSchemaType[];
session: ClientSession;
delRelatedSource: boolean;
}) {
@@ -274,16 +270,7 @@ export async function delCollection({
if (!teamId) return Promise.reject('teamId is not exist');
const datasetIds = Array.from(
new Set(
collections.map((item) => {
if (typeof item.datasetId === 'string') {
return String(item.datasetId);
}
return String(item.datasetId._id);
})
)
);
const datasetIds = Array.from(new Set(collections.map((item) => String(item.datasetId))));
const collectionIds = collections.map((item) => String(item._id));
// delete training data
@@ -324,7 +311,7 @@ export async function delOnlyCollection({
collections,
session
}: {
collections: (CollectionWithDatasetType | DatasetCollectionSchemaType)[];
collections: DatasetCollectionSchemaType[];
session: ClientSession;
}) {
if (collections.length === 0) return;
@@ -333,16 +320,7 @@ export async function delOnlyCollection({
if (!teamId) return Promise.reject('teamId is not exist');
const datasetIds = Array.from(
new Set(
collections.map((item) => {
if (typeof item.datasetId === 'string') {
return String(item.datasetId);
}
return String(item.datasetId._id);
})
)
);
const datasetIds = Array.from(new Set(collections.map((item) => String(item.datasetId))));
const collectionIds = collections.map((item) => String(item._id));
// delete training data

View File

@@ -100,6 +100,13 @@ const DatasetCollectionSchema = new Schema({
}
});
DatasetCollectionSchema.virtual('dataset', {
ref: DatasetCollectionName,
localField: 'datasetId',
foreignField: '_id',
justOne: true
});
try {
// auth file
DatasetCollectionSchema.index({ teamId: 1, fileId: 1 });

View File

@@ -130,7 +130,7 @@ export const collectionTagsToTagLabel = async ({
};
export const syncCollection = async (collection: CollectionWithDatasetType) => {
const dataset = collection.datasetId;
const dataset = collection.dataset;
if (
collection.type !== DatasetCollectionTypeEnum.link &&
@@ -183,7 +183,7 @@ export const syncCollection = async (collection: CollectionWithDatasetType) => {
teamId: collection.teamId,
tmbId: collection.tmbId,
name: collection.name,
datasetId: collection.datasetId._id,
datasetId: collection.datasetId,
parentId: collection.parentId,
type: collection.type,

View File

@@ -1,4 +1,4 @@
import { CollectionWithDatasetType, DatasetSchemaType } from '@fastgpt/global/core/dataset/type';
import { DatasetSchemaType } from '@fastgpt/global/core/dataset/type';
import { MongoDatasetCollection } from './collection/schema';
import { MongoDataset } from './schema';
import { delCollectionRelatedSource } from './collection/controller';
@@ -49,9 +49,9 @@ export async function findDatasetAndAllChildren({
}
export async function getCollectionWithDataset(collectionId: string) {
const data = (await MongoDatasetCollection.findById(collectionId)
.populate('datasetId')
.lean()) as CollectionWithDatasetType;
const data = await MongoDatasetCollection.findById(collectionId)
.populate<{ dataset: DatasetSchemaType }>('dataset')
.lean();
if (!data) {
return Promise.reject('Collection is not exist');
}

View File

@@ -77,21 +77,32 @@ const DatasetDataSchema = new Schema({
rebuilding: Boolean
});
// list collection and count data; list data; delete collection(relate data)
DatasetDataSchema.index({
teamId: 1,
datasetId: 1,
collectionId: 1,
chunkIndex: 1,
updateTime: -1
DatasetDataSchema.virtual('collection', {
ref: DatasetColCollectionName,
localField: 'collectionId',
foreignField: '_id',
justOne: true
});
// full text index
DatasetDataSchema.index({ teamId: 1, datasetId: 1, fullTextToken: 'text' });
// Recall vectors after data matching
DatasetDataSchema.index({ teamId: 1, datasetId: 1, collectionId: 1, 'indexes.dataId': 1 });
DatasetDataSchema.index({ updateTime: 1 });
// rebuild data
DatasetDataSchema.index({ rebuilding: 1, teamId: 1, datasetId: 1 });
try {
// list collection and count data; list data; delete collection(relate data)
DatasetDataSchema.index({
teamId: 1,
datasetId: 1,
collectionId: 1,
chunkIndex: 1,
updateTime: -1
});
// full text index
DatasetDataSchema.index({ teamId: 1, datasetId: 1, fullTextToken: 'text' });
// Recall vectors after data matching
DatasetDataSchema.index({ teamId: 1, datasetId: 1, collectionId: 1, 'indexes.dataId': 1 });
DatasetDataSchema.index({ updateTime: 1 });
// rebuild data
DatasetDataSchema.index({ rebuilding: 1, teamId: 1, datasetId: 1 });
} catch (error) {
console.log(error);
}
export const MongoDatasetData = getMongoModel<DatasetDataSchemaType>(
DatasetDataCollectionName,

View File

@@ -8,8 +8,8 @@ import { getVectorsByText } from '../../ai/embedding';
import { getVectorModel } from '../../ai/model';
import { MongoDatasetData } from '../data/schema';
import {
DatasetCollectionSchemaType,
DatasetDataSchemaType,
DatasetDataWithCollectionType,
SearchDataResponseItemType
} from '@fastgpt/global/core/dataset/type';
import { MongoDatasetCollection } from '../collection/schema';
@@ -267,7 +267,7 @@ export async function searchDatasetData(props: SearchDatasetDataProps) {
});
// get q and a
const dataList = (await MongoDatasetData.find(
const dataList = await MongoDatasetData.find(
{
teamId,
datasetId: { $in: datasetIds },
@@ -276,8 +276,11 @@ export async function searchDatasetData(props: SearchDatasetDataProps) {
},
'datasetId collectionId updateTime q a chunkIndex indexes'
)
.populate('collectionId', 'name fileId rawLink externalFileId externalFileUrl')
.lean()) as DatasetDataWithCollectionType[];
.populate<{ collection: DatasetCollectionSchemaType }>(
'collection',
'name fileId rawLink externalFileId externalFileUrl'
)
.lean();
// add score to data(It's already sorted. The first one is the one with the most points)
const concatResults = dataList.map((data) => {
@@ -307,8 +310,8 @@ export async function searchDatasetData(props: SearchDatasetDataProps) {
a: data.a,
chunkIndex: data.chunkIndex,
datasetId: String(data.datasetId),
collectionId: String(data.collectionId?._id),
...getCollectionSourceData(data.collectionId),
collectionId: String(data.collectionId),
...getCollectionSourceData(data.collection),
score: [{ type: SearchScoreTypeEnum.embedding, value: data.score, index }]
};

View File

@@ -34,7 +34,7 @@ export const pushDataListToTrainingQueueByCollectionId = async ({
session?: ClientSession;
} & PushDatasetDataProps) => {
const {
datasetId: { _id: datasetId, agentModel, vectorModel }
dataset: { _id: datasetId, agentModel, vectorModel }
} = await getCollectionWithDataset(collectionId);
return pushDataListToTrainingQueue({
...props,