mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-22 20:37:48 +00:00

* feat: add third party account config (#3443) * temp * editor workflow variable style * add team to dispatch * i18n * delete console * change openai account position * fix * fix * fix * fix * fix * 4.8.17 test (#3461) * perf: external provider config * perf: ui * feat: add template config (#3434) * change template position * template config * delete console * delete * fix * fix * perf: Mongo visutal field (#3464) * remve invalid code * perf: team member visutal code * perf: virtual search; perf: search test data * fix: ts * fix: image response headers * perf: template code * perf: auth layout;perf: auto save (#3472) * perf: auth layout * perf: auto save * perf: auto save * fix: template guide display & http input support external variables (#3475) * fix: template guide display * http editor support external workflow variables * perf: auto save;fix: ifelse checker line break; (#3478) * perf: auto save * perf: auto save * fix: ifelse checker line break * perf: doc * perf: doc * fix: update var type error * 4.8.17 test (#3479) * perf: auto save * perf: auto save * perf: template code * 4.8.17 test (#3480) * perf: auto save * perf: auto save * perf: model price model * feat: add react memo * perf: model provider filter * fix: ts (#3481) * perf: auto save * perf: auto save * fix: ts * simple app tool select (#3473) * workflow plugin userguide & simple tool ui * simple tool filter * reuse component * change component to hook * fix * perf: too selector modal (#3484) * perf: auto save * perf: auto save * perf: markdown render * perf: too selector * fix: app version require tmbId * perf: templates refresh * perf: templates refresh * hide auto save error tip * perf: toolkit guide --------- Co-authored-by: heheer <heheer@sealos.io>
640 lines
18 KiB
TypeScript
640 lines
18 KiB
TypeScript
import {
|
|
DatasetSearchModeEnum,
|
|
DatasetSearchModeMap,
|
|
SearchScoreTypeEnum
|
|
} from '@fastgpt/global/core/dataset/constants';
|
|
import { recallFromVectorStore } from '../../../common/vectorStore/controller';
|
|
import { getVectorsByText } from '../../ai/embedding';
|
|
import { getVectorModel } from '../../ai/model';
|
|
import { MongoDatasetData } from '../data/schema';
|
|
import {
|
|
DatasetCollectionSchemaType,
|
|
DatasetDataSchemaType,
|
|
SearchDataResponseItemType
|
|
} from '@fastgpt/global/core/dataset/type';
|
|
import { MongoDatasetCollection } from '../collection/schema';
|
|
import { reRankRecall } from '../../../core/ai/rerank';
|
|
import { countPromptTokens } from '../../../common/string/tiktoken/index';
|
|
import { datasetSearchResultConcat } from '@fastgpt/global/core/dataset/search/utils';
|
|
import { hashStr } from '@fastgpt/global/common/string/tools';
|
|
import { jiebaSplit } from '../../../common/string/jieba';
|
|
import { getCollectionSourceData } from '@fastgpt/global/core/dataset/collection/utils';
|
|
import { Types } from '../../../common/mongo';
|
|
import json5 from 'json5';
|
|
import { MongoDatasetCollectionTags } from '../tag/schema';
|
|
import { readFromSecondary } from '../../../common/mongo/utils';
|
|
|
|
type SearchDatasetDataProps = {
|
|
teamId: string;
|
|
model: string;
|
|
similarity?: number; // min distance
|
|
limit: number; // max Token limit
|
|
datasetIds: string[];
|
|
searchMode?: `${DatasetSearchModeEnum}`;
|
|
usingReRank?: boolean;
|
|
reRankQuery: string;
|
|
queries: string[];
|
|
|
|
/*
|
|
{
|
|
tags: {
|
|
$and: ["str1","str2"],
|
|
$or: ["str1","str2",null] null means no tags
|
|
},
|
|
createTime: {
|
|
$gte: 'xx',
|
|
$lte: 'xxx'
|
|
}
|
|
}
|
|
*/
|
|
collectionFilterMatch?: string;
|
|
};
|
|
|
|
export async function searchDatasetData(props: SearchDatasetDataProps) {
|
|
let {
|
|
teamId,
|
|
reRankQuery,
|
|
queries,
|
|
model,
|
|
similarity = 0,
|
|
limit: maxTokens,
|
|
searchMode = DatasetSearchModeEnum.embedding,
|
|
usingReRank = false,
|
|
datasetIds = [],
|
|
collectionFilterMatch
|
|
} = props;
|
|
|
|
/* init params */
|
|
searchMode = DatasetSearchModeMap[searchMode] ? searchMode : DatasetSearchModeEnum.embedding;
|
|
usingReRank = usingReRank && global.reRankModels.length > 0;
|
|
|
|
// Compatible with topk limit
|
|
let set = new Set<string>();
|
|
let usingSimilarityFilter = false;
|
|
|
|
/* function */
|
|
const countRecallLimit = () => {
|
|
if (searchMode === DatasetSearchModeEnum.embedding) {
|
|
return {
|
|
embeddingLimit: 100,
|
|
fullTextLimit: 0
|
|
};
|
|
}
|
|
if (searchMode === DatasetSearchModeEnum.fullTextRecall) {
|
|
return {
|
|
embeddingLimit: 0,
|
|
fullTextLimit: 100
|
|
};
|
|
}
|
|
return {
|
|
embeddingLimit: 80,
|
|
fullTextLimit: 60
|
|
};
|
|
};
|
|
const getForbidData = async () => {
|
|
const collections = await MongoDatasetCollection.find(
|
|
{
|
|
teamId,
|
|
datasetId: { $in: datasetIds },
|
|
forbid: true
|
|
},
|
|
'_id'
|
|
);
|
|
|
|
return {
|
|
forbidCollectionIdList: collections.map((item) => String(item._id))
|
|
};
|
|
};
|
|
/*
|
|
Collection metadata filter
|
|
标签过滤:
|
|
1. and 先生效
|
|
2. and 标签和 null 不能共存,否则返回空数组
|
|
*/
|
|
const filterCollectionByMetadata = async (): Promise<string[] | undefined> => {
|
|
if (!collectionFilterMatch || !global.feConfigs.isPlus) return;
|
|
|
|
let tagCollectionIdList: string[] | undefined = undefined;
|
|
let createTimeCollectionIdList: string[] | undefined = undefined;
|
|
|
|
try {
|
|
const jsonMatch =
|
|
typeof collectionFilterMatch === 'object'
|
|
? collectionFilterMatch
|
|
: json5.parse(collectionFilterMatch);
|
|
|
|
// Tag
|
|
let andTags = jsonMatch?.tags?.$and as (string | null)[] | undefined;
|
|
let orTags = jsonMatch?.tags?.$or as (string | null)[] | undefined;
|
|
|
|
// get andTagIds
|
|
if (andTags && andTags.length > 0) {
|
|
// tag 去重
|
|
andTags = Array.from(new Set(andTags));
|
|
|
|
if (andTags.includes(null) && andTags.some((tag) => typeof tag === 'string')) {
|
|
return [];
|
|
}
|
|
|
|
if (andTags.every((tag) => typeof tag === 'string')) {
|
|
// Get tagId by tag string
|
|
const andTagIdList = await MongoDatasetCollectionTags.find(
|
|
{
|
|
teamId,
|
|
datasetId: { $in: datasetIds },
|
|
tag: { $in: andTags }
|
|
},
|
|
'_id',
|
|
{
|
|
...readFromSecondary
|
|
}
|
|
).lean();
|
|
|
|
// If you enter a tag that does not exist, none will be found
|
|
if (andTagIdList.length !== andTags.length) return [];
|
|
|
|
// Get collectionId by tagId
|
|
const collections = await MongoDatasetCollection.find(
|
|
{
|
|
teamId,
|
|
datasetId: { $in: datasetIds },
|
|
tags: { $all: andTagIdList.map((item) => String(item._id)) }
|
|
},
|
|
'_id',
|
|
{
|
|
...readFromSecondary
|
|
}
|
|
).lean();
|
|
tagCollectionIdList = collections.map((item) => String(item._id));
|
|
} else if (andTags.every((tag) => tag === null)) {
|
|
const collections = await MongoDatasetCollection.find(
|
|
{
|
|
teamId,
|
|
datasetId: { $in: datasetIds },
|
|
$or: [{ tags: { $size: 0 } }, { tags: { $exists: false } }]
|
|
},
|
|
'_id',
|
|
{
|
|
...readFromSecondary
|
|
}
|
|
).lean();
|
|
tagCollectionIdList = collections.map((item) => String(item._id));
|
|
}
|
|
} else if (orTags && orTags.length > 0) {
|
|
// Get tagId by tag string
|
|
const orTagArray = await MongoDatasetCollectionTags.find(
|
|
{
|
|
teamId,
|
|
datasetId: { $in: datasetIds },
|
|
tag: { $in: orTags.filter((tag) => tag !== null) }
|
|
},
|
|
'_id',
|
|
{ ...readFromSecondary }
|
|
).lean();
|
|
const orTagIds = orTagArray.map((item) => String(item._id));
|
|
|
|
// Get collections by tagId
|
|
const collections = await MongoDatasetCollection.find(
|
|
{
|
|
teamId,
|
|
datasetId: { $in: datasetIds },
|
|
$or: [
|
|
{ tags: { $in: orTagIds } },
|
|
...(orTags.includes(null) ? [{ tags: { $size: 0 } }] : [])
|
|
]
|
|
},
|
|
'_id',
|
|
{ ...readFromSecondary }
|
|
).lean();
|
|
|
|
tagCollectionIdList = collections.map((item) => String(item._id));
|
|
}
|
|
|
|
// time
|
|
const getCreateTime = jsonMatch?.createTime?.$gte as string | undefined;
|
|
const lteCreateTime = jsonMatch?.createTime?.$lte as string | undefined;
|
|
if (getCreateTime || lteCreateTime) {
|
|
const collections = await MongoDatasetCollection.find(
|
|
{
|
|
teamId,
|
|
datasetId: { $in: datasetIds },
|
|
createTime: {
|
|
...(getCreateTime && { $gte: new Date(getCreateTime) }),
|
|
...(lteCreateTime && {
|
|
$lte: new Date(lteCreateTime)
|
|
})
|
|
}
|
|
},
|
|
'_id'
|
|
);
|
|
createTimeCollectionIdList = collections.map((item) => String(item._id));
|
|
}
|
|
|
|
// Concat tag and time
|
|
if (tagCollectionIdList && createTimeCollectionIdList) {
|
|
return tagCollectionIdList.filter((id) => createTimeCollectionIdList!.includes(id));
|
|
} else if (tagCollectionIdList) {
|
|
return tagCollectionIdList;
|
|
} else if (createTimeCollectionIdList) {
|
|
return createTimeCollectionIdList;
|
|
}
|
|
} catch (error) {}
|
|
};
|
|
const embeddingRecall = async ({
|
|
query,
|
|
limit,
|
|
forbidCollectionIdList,
|
|
filterCollectionIdList
|
|
}: {
|
|
query: string;
|
|
limit: number;
|
|
forbidCollectionIdList: string[];
|
|
filterCollectionIdList?: string[];
|
|
}) => {
|
|
const { vectors, tokens } = await getVectorsByText({
|
|
model: getVectorModel(model),
|
|
input: query,
|
|
type: 'query'
|
|
});
|
|
|
|
const { results } = await recallFromVectorStore({
|
|
teamId,
|
|
datasetIds,
|
|
vector: vectors[0],
|
|
limit,
|
|
forbidCollectionIdList,
|
|
filterCollectionIdList
|
|
});
|
|
|
|
// get q and a
|
|
const dataList = await MongoDatasetData.find(
|
|
{
|
|
teamId,
|
|
datasetId: { $in: datasetIds },
|
|
collectionId: { $in: Array.from(new Set(results.map((item) => item.collectionId))) },
|
|
'indexes.dataId': { $in: results.map((item) => item.id?.trim()) }
|
|
},
|
|
'datasetId collectionId updateTime q a chunkIndex indexes'
|
|
)
|
|
.populate<{ collection: DatasetCollectionSchemaType }>(
|
|
'collection',
|
|
'name fileId rawLink externalFileId externalFileUrl'
|
|
)
|
|
.lean();
|
|
|
|
// add score to data(It's already sorted. The first one is the one with the most points)
|
|
const concatResults = dataList.map((data) => {
|
|
const dataIdList = data.indexes.map((item) => item.dataId);
|
|
|
|
const maxScoreResult = results.find((item) => {
|
|
return dataIdList.includes(item.id);
|
|
});
|
|
|
|
return {
|
|
...data,
|
|
score: maxScoreResult?.score || 0
|
|
};
|
|
});
|
|
|
|
concatResults.sort((a, b) => b.score - a.score);
|
|
|
|
const formatResult = concatResults.map((data, index) => {
|
|
if (!data.collectionId) {
|
|
console.log('Collection is not found', data);
|
|
}
|
|
|
|
const result: SearchDataResponseItemType = {
|
|
id: String(data._id),
|
|
updateTime: data.updateTime,
|
|
q: data.q,
|
|
a: data.a,
|
|
chunkIndex: data.chunkIndex,
|
|
datasetId: String(data.datasetId),
|
|
collectionId: String(data.collectionId),
|
|
...getCollectionSourceData(data.collection),
|
|
score: [{ type: SearchScoreTypeEnum.embedding, value: data.score, index }]
|
|
};
|
|
|
|
return result;
|
|
});
|
|
|
|
return {
|
|
embeddingRecallResults: formatResult,
|
|
tokens
|
|
};
|
|
};
|
|
const fullTextRecall = async ({
|
|
query,
|
|
limit,
|
|
filterCollectionIdList,
|
|
forbidCollectionIdList
|
|
}: {
|
|
query: string;
|
|
limit: number;
|
|
filterCollectionIdList?: string[];
|
|
forbidCollectionIdList: string[];
|
|
}): Promise<{
|
|
fullTextRecallResults: SearchDataResponseItemType[];
|
|
tokenLen: number;
|
|
}> => {
|
|
if (limit === 0) {
|
|
return {
|
|
fullTextRecallResults: [],
|
|
tokenLen: 0
|
|
};
|
|
}
|
|
|
|
let searchResults = (
|
|
await Promise.all(
|
|
datasetIds.map(async (id) => {
|
|
return MongoDatasetData.aggregate([
|
|
{
|
|
$match: {
|
|
teamId: new Types.ObjectId(teamId),
|
|
datasetId: new Types.ObjectId(id),
|
|
$text: { $search: jiebaSplit({ text: query }) },
|
|
...(filterCollectionIdList
|
|
? {
|
|
collectionId: {
|
|
$in: filterCollectionIdList.map((id) => new Types.ObjectId(id))
|
|
}
|
|
}
|
|
: {}),
|
|
...(forbidCollectionIdList && forbidCollectionIdList.length > 0
|
|
? {
|
|
collectionId: {
|
|
$nin: forbidCollectionIdList.map((id) => new Types.ObjectId(id))
|
|
}
|
|
}
|
|
: {})
|
|
}
|
|
},
|
|
{
|
|
$addFields: {
|
|
score: { $meta: 'textScore' }
|
|
}
|
|
},
|
|
{
|
|
$sort: {
|
|
score: { $meta: 'textScore' }
|
|
}
|
|
},
|
|
{
|
|
$limit: limit
|
|
},
|
|
{
|
|
$project: {
|
|
_id: 1,
|
|
datasetId: 1,
|
|
collectionId: 1,
|
|
updateTime: 1,
|
|
q: 1,
|
|
a: 1,
|
|
chunkIndex: 1,
|
|
score: 1
|
|
}
|
|
}
|
|
]);
|
|
})
|
|
)
|
|
).flat() as (DatasetDataSchemaType & { score: number })[];
|
|
|
|
// resort
|
|
searchResults.sort((a, b) => b.score - a.score);
|
|
searchResults.slice(0, limit);
|
|
|
|
const collections = await MongoDatasetCollection.find(
|
|
{
|
|
_id: { $in: searchResults.map((item) => item.collectionId) }
|
|
},
|
|
'_id name fileId rawLink'
|
|
);
|
|
|
|
return {
|
|
fullTextRecallResults: searchResults.map((item, index) => {
|
|
const collection = collections.find((col) => String(col._id) === String(item.collectionId));
|
|
return {
|
|
id: String(item._id),
|
|
datasetId: String(item.datasetId),
|
|
collectionId: String(item.collectionId),
|
|
updateTime: item.updateTime,
|
|
...getCollectionSourceData(collection),
|
|
q: item.q,
|
|
a: item.a,
|
|
chunkIndex: item.chunkIndex,
|
|
indexes: item.indexes,
|
|
score: [{ type: SearchScoreTypeEnum.fullText, value: item.score, index }]
|
|
};
|
|
}),
|
|
tokenLen: 0
|
|
};
|
|
};
|
|
const reRankSearchResult = async ({
|
|
data,
|
|
query
|
|
}: {
|
|
data: SearchDataResponseItemType[];
|
|
query: string;
|
|
}): Promise<SearchDataResponseItemType[]> => {
|
|
try {
|
|
const results = await reRankRecall({
|
|
query,
|
|
documents: data.map((item) => ({
|
|
id: item.id,
|
|
text: `${item.q}\n${item.a}`
|
|
}))
|
|
});
|
|
|
|
if (results.length === 0) {
|
|
usingReRank = false;
|
|
return [];
|
|
}
|
|
|
|
// add new score to data
|
|
const mergeResult = results
|
|
.map((item, index) => {
|
|
const target = data.find((dataItem) => dataItem.id === item.id);
|
|
if (!target) return null;
|
|
const score = item.score || 0;
|
|
|
|
return {
|
|
...target,
|
|
score: [{ type: SearchScoreTypeEnum.reRank, value: score, index }]
|
|
};
|
|
})
|
|
.filter(Boolean) as SearchDataResponseItemType[];
|
|
|
|
return mergeResult;
|
|
} catch (error) {
|
|
usingReRank = false;
|
|
return [];
|
|
}
|
|
};
|
|
const multiQueryRecall = async ({
|
|
embeddingLimit,
|
|
fullTextLimit
|
|
}: {
|
|
embeddingLimit: number;
|
|
fullTextLimit: number;
|
|
}) => {
|
|
// multi query recall
|
|
const embeddingRecallResList: SearchDataResponseItemType[][] = [];
|
|
const fullTextRecallResList: SearchDataResponseItemType[][] = [];
|
|
let totalTokens = 0;
|
|
|
|
const [{ forbidCollectionIdList }, filterCollectionIdList] = await Promise.all([
|
|
getForbidData(),
|
|
filterCollectionByMetadata()
|
|
]);
|
|
|
|
await Promise.all(
|
|
queries.map(async (query) => {
|
|
const [{ tokens, embeddingRecallResults }, { fullTextRecallResults }] = await Promise.all([
|
|
embeddingRecall({
|
|
query,
|
|
limit: embeddingLimit,
|
|
forbidCollectionIdList,
|
|
filterCollectionIdList
|
|
}),
|
|
fullTextRecall({
|
|
query,
|
|
limit: fullTextLimit,
|
|
filterCollectionIdList,
|
|
forbidCollectionIdList
|
|
})
|
|
]);
|
|
totalTokens += tokens;
|
|
|
|
embeddingRecallResList.push(embeddingRecallResults);
|
|
fullTextRecallResList.push(fullTextRecallResults);
|
|
})
|
|
);
|
|
|
|
// rrf concat
|
|
const rrfEmbRecall = datasetSearchResultConcat(
|
|
embeddingRecallResList.map((list) => ({ k: 60, list }))
|
|
).slice(0, embeddingLimit);
|
|
const rrfFTRecall = datasetSearchResultConcat(
|
|
fullTextRecallResList.map((list) => ({ k: 60, list }))
|
|
).slice(0, fullTextLimit);
|
|
|
|
return {
|
|
tokens: totalTokens,
|
|
embeddingRecallResults: rrfEmbRecall,
|
|
fullTextRecallResults: rrfFTRecall
|
|
};
|
|
};
|
|
|
|
/* main step */
|
|
// count limit
|
|
const { embeddingLimit, fullTextLimit } = countRecallLimit();
|
|
|
|
// recall
|
|
const { embeddingRecallResults, fullTextRecallResults, tokens } = await multiQueryRecall({
|
|
embeddingLimit,
|
|
fullTextLimit
|
|
});
|
|
|
|
// ReRank results
|
|
const reRankResults = await (async () => {
|
|
if (!usingReRank) return [];
|
|
|
|
set = new Set<string>(embeddingRecallResults.map((item) => item.id));
|
|
const concatRecallResults = embeddingRecallResults.concat(
|
|
fullTextRecallResults.filter((item) => !set.has(item.id))
|
|
);
|
|
|
|
// remove same q and a data
|
|
set = new Set<string>();
|
|
const filterSameDataResults = concatRecallResults.filter((item) => {
|
|
// 删除所有的标点符号与空格等,只对文本进行比较
|
|
const str = hashStr(`${item.q}${item.a}`.replace(/[^\p{L}\p{N}]/gu, ''));
|
|
if (set.has(str)) return false;
|
|
set.add(str);
|
|
return true;
|
|
});
|
|
return reRankSearchResult({
|
|
query: reRankQuery,
|
|
data: filterSameDataResults
|
|
});
|
|
})();
|
|
|
|
// embedding recall and fullText recall rrf concat
|
|
const rrfConcatResults = datasetSearchResultConcat([
|
|
{ k: 60, list: embeddingRecallResults },
|
|
{ k: 60, list: fullTextRecallResults },
|
|
{ k: 58, list: reRankResults }
|
|
]);
|
|
|
|
// remove same q and a data
|
|
set = new Set<string>();
|
|
const filterSameDataResults = rrfConcatResults.filter((item) => {
|
|
// 删除所有的标点符号与空格等,只对文本进行比较
|
|
const str = hashStr(`${item.q}${item.a}`.replace(/[^\p{L}\p{N}]/gu, ''));
|
|
if (set.has(str)) return false;
|
|
set.add(str);
|
|
return true;
|
|
});
|
|
|
|
// score filter
|
|
const scoreFilter = (() => {
|
|
if (usingReRank) {
|
|
usingSimilarityFilter = true;
|
|
|
|
return filterSameDataResults.filter((item) => {
|
|
const reRankScore = item.score.find((item) => item.type === SearchScoreTypeEnum.reRank);
|
|
if (reRankScore && reRankScore.value < similarity) return false;
|
|
return true;
|
|
});
|
|
}
|
|
if (searchMode === DatasetSearchModeEnum.embedding) {
|
|
usingSimilarityFilter = true;
|
|
return filterSameDataResults.filter((item) => {
|
|
const embeddingScore = item.score.find(
|
|
(item) => item.type === SearchScoreTypeEnum.embedding
|
|
);
|
|
if (embeddingScore && embeddingScore.value < similarity) return false;
|
|
return true;
|
|
});
|
|
}
|
|
return filterSameDataResults;
|
|
})();
|
|
|
|
// token filter
|
|
const filterMaxTokensResult = await (async () => {
|
|
const tokensScoreFilter = await Promise.all(
|
|
scoreFilter.map(async (item) => ({
|
|
...item,
|
|
tokens: await countPromptTokens(item.q + item.a)
|
|
}))
|
|
);
|
|
|
|
const results: SearchDataResponseItemType[] = [];
|
|
let totalTokens = 0;
|
|
|
|
for await (const item of tokensScoreFilter) {
|
|
totalTokens += item.tokens;
|
|
|
|
if (totalTokens > maxTokens + 500) {
|
|
break;
|
|
}
|
|
results.push(item);
|
|
if (totalTokens > maxTokens) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return results.length === 0 ? scoreFilter.slice(0, 1) : results;
|
|
})();
|
|
|
|
return {
|
|
searchRes: filterMaxTokensResult,
|
|
tokens,
|
|
searchMode,
|
|
limit: maxTokens,
|
|
similarity,
|
|
usingReRank,
|
|
usingSimilarityFilter
|
|
};
|
|
}
|