mirror of
https://github.com/labring/FastGPT.git
synced 2025-10-18 17:51:24 +00:00
添加embedding接口 (#136)
This commit is contained in:
@@ -6,12 +6,16 @@ from pydantic import BaseModel, Field
|
|||||||
from fastapi import FastAPI, HTTPException
|
from fastapi import FastAPI, HTTPException
|
||||||
from fastapi.middleware.cors import CORSMiddleware
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
from contextlib import asynccontextmanager
|
from contextlib import asynccontextmanager
|
||||||
from typing import Any, Dict, List, Literal, Optional, Union
|
from typing import List, Literal, Optional, Union
|
||||||
from transformers import AutoTokenizer, AutoModel
|
from transformers import AutoTokenizer, AutoModel
|
||||||
from sse_starlette.sse import ServerSentEvent, EventSourceResponse
|
from sse_starlette.sse import EventSourceResponse
|
||||||
from fastapi import Depends, HTTPException, Request
|
from fastapi import Depends, HTTPException, Request
|
||||||
from starlette.status import HTTP_401_UNAUTHORIZED
|
from starlette.status import HTTP_401_UNAUTHORIZED
|
||||||
import argparse
|
import argparse
|
||||||
|
import tiktoken
|
||||||
|
import numpy as np
|
||||||
|
from sentence_transformers import SentenceTransformer
|
||||||
|
from sklearn.preprocessing import PolynomialFeatures
|
||||||
|
|
||||||
|
|
||||||
@asynccontextmanager
|
@asynccontextmanager
|
||||||
@@ -81,6 +85,34 @@ async def verify_token(request: Request):
|
|||||||
detail="Invalid authorization credentials",
|
detail="Invalid authorization credentials",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
class EmbeddingRequest(BaseModel):
|
||||||
|
input: List[str]
|
||||||
|
model: str
|
||||||
|
|
||||||
|
class EmbeddingResponse(BaseModel):
|
||||||
|
data: list
|
||||||
|
model: str
|
||||||
|
object: str
|
||||||
|
usage: dict
|
||||||
|
|
||||||
|
def num_tokens_from_string(string: str) -> int:
|
||||||
|
"""Returns the number of tokens in a text string."""
|
||||||
|
encoding = tiktoken.get_encoding('cl100k_base')
|
||||||
|
num_tokens = len(encoding.encode(string))
|
||||||
|
return num_tokens
|
||||||
|
|
||||||
|
def expand_features(embedding, target_length):
|
||||||
|
poly = PolynomialFeatures(degree=2)
|
||||||
|
expanded_embedding = poly.fit_transform(embedding.reshape(1, -1))
|
||||||
|
expanded_embedding = expanded_embedding.flatten()
|
||||||
|
if len(expanded_embedding) > target_length:
|
||||||
|
# 如果扩展后的特征超过目标长度,可以通过截断或其他方法来减少维度
|
||||||
|
expanded_embedding = expanded_embedding[:target_length]
|
||||||
|
elif len(expanded_embedding) < target_length:
|
||||||
|
# 如果扩展后的特征少于目标长度,可以通过填充或其他方法来增加维度
|
||||||
|
expanded_embedding = np.pad(expanded_embedding, (0, target_length - len(expanded_embedding)))
|
||||||
|
return expanded_embedding
|
||||||
|
|
||||||
|
|
||||||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||||||
async def create_chat_completion(request: ChatCompletionRequest, token: bool = Depends(verify_token)):
|
async def create_chat_completion(request: ChatCompletionRequest, token: bool = Depends(verify_token)):
|
||||||
@@ -152,6 +184,43 @@ async def predict(query: str, history: List[List[str]], model_id: str):
|
|||||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||||
yield '[DONE]'
|
yield '[DONE]'
|
||||||
|
|
||||||
|
@app.post("/v1/embeddings", response_model=EmbeddingResponse)
|
||||||
|
async def get_embeddings(request: EmbeddingRequest, token: bool = Depends(verify_token)):
|
||||||
|
|
||||||
|
|
||||||
|
# 计算嵌入向量和tokens数量
|
||||||
|
embeddings = [embeddings_model.encode(text) for text in request.input]
|
||||||
|
|
||||||
|
# 如果嵌入向量的维度不为1536,则使用插值法扩展至1536维度
|
||||||
|
embeddings = [expand_features(embedding, 1536) if len(embedding) < 1536 else embedding for embedding in embeddings]
|
||||||
|
|
||||||
|
# Min-Max normalization
|
||||||
|
embeddings = [(embedding - np.min(embedding)) / (np.max(embedding) - np.min(embedding)) if np.max(embedding) != np.min(embedding) else embedding for embedding in embeddings]
|
||||||
|
|
||||||
|
# 将numpy数组转换为列表
|
||||||
|
embeddings = [embedding.tolist() for embedding in embeddings]
|
||||||
|
prompt_tokens = sum(len(text.split()) for text in request.input)
|
||||||
|
total_tokens = sum(num_tokens_from_string(text) for text in request.input)
|
||||||
|
|
||||||
|
|
||||||
|
response = {
|
||||||
|
"data": [
|
||||||
|
{
|
||||||
|
"embedding": embedding,
|
||||||
|
"index": index,
|
||||||
|
"object": "embedding"
|
||||||
|
} for index, embedding in enumerate(embeddings)
|
||||||
|
],
|
||||||
|
"model": request.model,
|
||||||
|
"object": "list",
|
||||||
|
"usage": {
|
||||||
|
"prompt_tokens": prompt_tokens,
|
||||||
|
"total_tokens": total_tokens,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return response
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
@@ -169,6 +238,6 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||||
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()
|
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()
|
||||||
model.eval()
|
embeddings_model = SentenceTransformer('moka-ai/m3e-large',device='cpu')
|
||||||
|
|
||||||
uvicorn.run(app, host='0.0.0.0', port=6006, workers=1)
|
uvicorn.run(app, host='0.0.0.0', port=6006, workers=1)
|
||||||
|
Reference in New Issue
Block a user