mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 13:03:50 +00:00
添加embedding接口 (#136)
This commit is contained in:
@@ -6,12 +6,16 @@ from pydantic import BaseModel, Field
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from contextlib import asynccontextmanager
|
||||
from typing import Any, Dict, List, Literal, Optional, Union
|
||||
from typing import List, Literal, Optional, Union
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
from sse_starlette.sse import ServerSentEvent, EventSourceResponse
|
||||
from sse_starlette.sse import EventSourceResponse
|
||||
from fastapi import Depends, HTTPException, Request
|
||||
from starlette.status import HTTP_401_UNAUTHORIZED
|
||||
import argparse
|
||||
import tiktoken
|
||||
import numpy as np
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from sklearn.preprocessing import PolynomialFeatures
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
@@ -81,6 +85,34 @@ async def verify_token(request: Request):
|
||||
detail="Invalid authorization credentials",
|
||||
)
|
||||
|
||||
class EmbeddingRequest(BaseModel):
|
||||
input: List[str]
|
||||
model: str
|
||||
|
||||
class EmbeddingResponse(BaseModel):
|
||||
data: list
|
||||
model: str
|
||||
object: str
|
||||
usage: dict
|
||||
|
||||
def num_tokens_from_string(string: str) -> int:
|
||||
"""Returns the number of tokens in a text string."""
|
||||
encoding = tiktoken.get_encoding('cl100k_base')
|
||||
num_tokens = len(encoding.encode(string))
|
||||
return num_tokens
|
||||
|
||||
def expand_features(embedding, target_length):
|
||||
poly = PolynomialFeatures(degree=2)
|
||||
expanded_embedding = poly.fit_transform(embedding.reshape(1, -1))
|
||||
expanded_embedding = expanded_embedding.flatten()
|
||||
if len(expanded_embedding) > target_length:
|
||||
# 如果扩展后的特征超过目标长度,可以通过截断或其他方法来减少维度
|
||||
expanded_embedding = expanded_embedding[:target_length]
|
||||
elif len(expanded_embedding) < target_length:
|
||||
# 如果扩展后的特征少于目标长度,可以通过填充或其他方法来增加维度
|
||||
expanded_embedding = np.pad(expanded_embedding, (0, target_length - len(expanded_embedding)))
|
||||
return expanded_embedding
|
||||
|
||||
|
||||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||||
async def create_chat_completion(request: ChatCompletionRequest, token: bool = Depends(verify_token)):
|
||||
@@ -152,6 +184,43 @@ async def predict(query: str, history: List[List[str]], model_id: str):
|
||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
yield '[DONE]'
|
||||
|
||||
@app.post("/v1/embeddings", response_model=EmbeddingResponse)
|
||||
async def get_embeddings(request: EmbeddingRequest, token: bool = Depends(verify_token)):
|
||||
|
||||
|
||||
# 计算嵌入向量和tokens数量
|
||||
embeddings = [embeddings_model.encode(text) for text in request.input]
|
||||
|
||||
# 如果嵌入向量的维度不为1536,则使用插值法扩展至1536维度
|
||||
embeddings = [expand_features(embedding, 1536) if len(embedding) < 1536 else embedding for embedding in embeddings]
|
||||
|
||||
# Min-Max normalization
|
||||
embeddings = [(embedding - np.min(embedding)) / (np.max(embedding) - np.min(embedding)) if np.max(embedding) != np.min(embedding) else embedding for embedding in embeddings]
|
||||
|
||||
# 将numpy数组转换为列表
|
||||
embeddings = [embedding.tolist() for embedding in embeddings]
|
||||
prompt_tokens = sum(len(text.split()) for text in request.input)
|
||||
total_tokens = sum(num_tokens_from_string(text) for text in request.input)
|
||||
|
||||
|
||||
response = {
|
||||
"data": [
|
||||
{
|
||||
"embedding": embedding,
|
||||
"index": index,
|
||||
"object": "embedding"
|
||||
} for index, embedding in enumerate(embeddings)
|
||||
],
|
||||
"model": request.model,
|
||||
"object": "list",
|
||||
"usage": {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"total_tokens": total_tokens,
|
||||
}
|
||||
}
|
||||
|
||||
return response
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -169,6 +238,6 @@ if __name__ == "__main__":
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()
|
||||
model.eval()
|
||||
embeddings_model = SentenceTransformer('moka-ai/m3e-large',device='cpu')
|
||||
|
||||
uvicorn.run(app, host='0.0.0.0', port=6006, workers=1)
|
||||
|
Reference in New Issue
Block a user