mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-21 11:43:56 +00:00
perf: generate queue
This commit is contained in:
@@ -2,7 +2,7 @@ import { GET, POST, PUT, DELETE } from '../request';
|
||||
import type { KbItemType } from '@/types/plugin';
|
||||
import { RequestPaging } from '@/types/index';
|
||||
import { TrainingTypeEnum } from '@/constants/plugin';
|
||||
import { KbDataItemType } from '@/types/plugin';
|
||||
import { Props as PushDataProps } from '@/pages/api/openapi/kb/pushData';
|
||||
|
||||
export type KbUpdateParams = { id: string; name: string; tags: string; avatar: string };
|
||||
|
||||
@@ -46,10 +46,7 @@ export const getKbDataItemById = (dataId: string) =>
|
||||
/**
|
||||
* 直接push数据
|
||||
*/
|
||||
export const postKbDataFromList = (data: {
|
||||
kbId: string;
|
||||
data: { a: KbDataItemType['a']; q: KbDataItemType['q'] }[];
|
||||
}) => POST(`/openapi/kb/pushData`, data);
|
||||
export const postKbDataFromList = (data: PushDataProps) => POST(`/openapi/kb/pushData`, data);
|
||||
|
||||
/**
|
||||
* 更新一条数据
|
||||
@@ -70,4 +67,4 @@ export const postSplitData = (data: {
|
||||
chunks: string[];
|
||||
prompt: string;
|
||||
mode: `${TrainingTypeEnum}`;
|
||||
}) => POST(`/openapi/text/splitText`, data);
|
||||
}) => POST(`/openapi/text/pushData`, data);
|
||||
|
@@ -1,4 +1,8 @@
|
||||
export enum TrainingTypeEnum {
|
||||
'qa' = 'qa',
|
||||
'subsection' = 'subsection'
|
||||
'index' = 'index'
|
||||
}
|
||||
export const TrainingTypeMap = {
|
||||
[TrainingTypeEnum.qa]: 'qa',
|
||||
[TrainingTypeEnum.index]: 'index'
|
||||
};
|
||||
|
37
src/pages/api/admin/countTraining.ts
Normal file
37
src/pages/api/admin/countTraining.ts
Normal file
@@ -0,0 +1,37 @@
|
||||
// Next.js API route support: https://nextjs.org/docs/api-routes/introduction
|
||||
import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { authUser } from '@/service/utils/auth';
|
||||
import { connectToDatabase, TrainingData } from '@/service/mongo';
|
||||
import { TrainingTypeEnum } from '@/constants/plugin';
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
|
||||
try {
|
||||
await authUser({ req, authRoot: true });
|
||||
|
||||
await connectToDatabase();
|
||||
|
||||
// split queue data
|
||||
const result = await TrainingData.aggregate([
|
||||
{
|
||||
$group: {
|
||||
_id: '$mode',
|
||||
count: { $sum: 1 }
|
||||
}
|
||||
}
|
||||
]);
|
||||
|
||||
jsonRes(res, {
|
||||
data: {
|
||||
qaListLen: result.find((item) => item._id === TrainingTypeEnum.qa)?.count || 0,
|
||||
vectorListLen: result.find((item) => item._id === TrainingTypeEnum.index)?.count || 0
|
||||
}
|
||||
});
|
||||
} catch (error) {
|
||||
console.log(error);
|
||||
jsonRes(res, {
|
||||
code: 500,
|
||||
error
|
||||
});
|
||||
}
|
||||
}
|
@@ -3,19 +3,21 @@ import type { KbDataItemType } from '@/types/plugin';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { connectToDatabase, TrainingData } from '@/service/mongo';
|
||||
import { authUser } from '@/service/utils/auth';
|
||||
import { generateVector } from '@/service/events/generateVector';
|
||||
import { PgClient } from '@/service/pg';
|
||||
import { authKb } from '@/service/utils/auth';
|
||||
import { withNextCors } from '@/service/utils/tools';
|
||||
import { TrainingTypeEnum } from '@/constants/plugin';
|
||||
import { startQueue } from '@/service/utils/tools';
|
||||
|
||||
interface Props {
|
||||
export type Props = {
|
||||
kbId: string;
|
||||
data: { a: KbDataItemType['a']; q: KbDataItemType['q'] }[];
|
||||
}
|
||||
mode: `${TrainingTypeEnum}`;
|
||||
prompt?: string;
|
||||
};
|
||||
|
||||
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
try {
|
||||
const { kbId, data } = req.body as Props;
|
||||
const { kbId, data, mode, prompt } = req.body as Props;
|
||||
|
||||
if (!kbId || !Array.isArray(data)) {
|
||||
throw new Error('缺少参数');
|
||||
@@ -29,7 +31,9 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
|
||||
data: await pushDataToKb({
|
||||
kbId,
|
||||
data,
|
||||
userId
|
||||
userId,
|
||||
mode,
|
||||
prompt
|
||||
})
|
||||
});
|
||||
} catch (err) {
|
||||
@@ -40,36 +44,43 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
|
||||
}
|
||||
});
|
||||
|
||||
export async function pushDataToKb({ userId, kbId, data }: { userId: string } & Props) {
|
||||
export async function pushDataToKb({
|
||||
userId,
|
||||
kbId,
|
||||
data,
|
||||
mode,
|
||||
prompt
|
||||
}: { userId: string } & Props) {
|
||||
await authKb({
|
||||
userId,
|
||||
kbId
|
||||
});
|
||||
|
||||
if (data.length === 0) {
|
||||
return {
|
||||
trainingId: ''
|
||||
};
|
||||
return {};
|
||||
}
|
||||
|
||||
// 插入记录
|
||||
const { _id } = await TrainingData.create({
|
||||
userId,
|
||||
kbId,
|
||||
vectorList: data
|
||||
});
|
||||
await TrainingData.insertMany(
|
||||
data.map((item) => ({
|
||||
q: item.q,
|
||||
a: item.a,
|
||||
userId,
|
||||
kbId,
|
||||
mode,
|
||||
prompt
|
||||
}))
|
||||
);
|
||||
|
||||
generateVector(_id);
|
||||
startQueue();
|
||||
|
||||
return {
|
||||
trainingId: _id
|
||||
};
|
||||
return {};
|
||||
}
|
||||
|
||||
export const config = {
|
||||
api: {
|
||||
bodyParser: {
|
||||
sizeLimit: '100mb'
|
||||
sizeLimit: '20mb'
|
||||
}
|
||||
}
|
||||
};
|
||||
|
@@ -33,7 +33,15 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
|
||||
// 更新 pg 内容.仅修改a,不需要更新向量。
|
||||
await PgClient.update('modelData', {
|
||||
where: [['id', dataId], 'AND', ['user_id', userId]],
|
||||
values: [{ key: 'a', value: a }, ...(q ? [{ key: 'q', value: `${vector[0]}` }] : [])]
|
||||
values: [
|
||||
{ key: 'a', value: a },
|
||||
...(q
|
||||
? [
|
||||
{ key: 'q', value: q },
|
||||
{ key: 'vector', value: `[${vector[0]}]` }
|
||||
]
|
||||
: [])
|
||||
]
|
||||
});
|
||||
|
||||
jsonRes(res);
|
||||
|
@@ -1,69 +0,0 @@
|
||||
import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { connectToDatabase, TrainingData } from '@/service/mongo';
|
||||
import { authKb, authUser } from '@/service/utils/auth';
|
||||
import { generateQA } from '@/service/events/generateQA';
|
||||
import { TrainingTypeEnum } from '@/constants/plugin';
|
||||
import { withNextCors } from '@/service/utils/tools';
|
||||
import { pushDataToKb } from '../kb/pushData';
|
||||
|
||||
/* split text */
|
||||
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse) {
|
||||
try {
|
||||
const { chunks, kbId, prompt, mode } = req.body as {
|
||||
kbId: string;
|
||||
chunks: string[];
|
||||
prompt: string;
|
||||
mode: `${TrainingTypeEnum}`;
|
||||
};
|
||||
if (!chunks || !kbId || !prompt) {
|
||||
throw new Error('参数错误');
|
||||
}
|
||||
await connectToDatabase();
|
||||
|
||||
const { userId } = await authUser({ req });
|
||||
|
||||
// 验证是否是该用户的 model
|
||||
await authKb({
|
||||
kbId,
|
||||
userId
|
||||
});
|
||||
|
||||
if (mode === TrainingTypeEnum.qa) {
|
||||
// 批量QA拆分插入数据
|
||||
const { _id } = await TrainingData.create({
|
||||
userId,
|
||||
kbId,
|
||||
qaList: chunks,
|
||||
prompt
|
||||
});
|
||||
generateQA(_id);
|
||||
} else if (mode === TrainingTypeEnum.subsection) {
|
||||
// 分段导入,直接插入向量队列
|
||||
const response = await pushDataToKb({
|
||||
kbId,
|
||||
data: chunks.map((item) => ({ q: item, a: '' })),
|
||||
userId
|
||||
});
|
||||
|
||||
return jsonRes(res, {
|
||||
data: response
|
||||
});
|
||||
}
|
||||
|
||||
jsonRes(res);
|
||||
} catch (err) {
|
||||
jsonRes(res, {
|
||||
code: 500,
|
||||
error: err
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
export const config = {
|
||||
api: {
|
||||
bodyParser: {
|
||||
sizeLimit: '100mb'
|
||||
}
|
||||
}
|
||||
};
|
@@ -2,9 +2,10 @@ import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { connectToDatabase, TrainingData } from '@/service/mongo';
|
||||
import { authUser } from '@/service/utils/auth';
|
||||
import { Types } from 'mongoose';
|
||||
import { generateQA } from '@/service/events/generateQA';
|
||||
import { generateVector } from '@/service/events/generateVector';
|
||||
import { TrainingTypeEnum } from '@/constants/plugin';
|
||||
import { Types } from 'mongoose';
|
||||
|
||||
/* 拆分数据成QA */
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
|
||||
@@ -19,26 +20,24 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
|
||||
// split queue data
|
||||
const result = await TrainingData.aggregate([
|
||||
{ $match: { userId: new Types.ObjectId(userId), kbId: new Types.ObjectId(kbId) } },
|
||||
{
|
||||
$project: {
|
||||
qaListLength: { $size: { $ifNull: ['$qaList', []] } },
|
||||
vectorListLength: { $size: { $ifNull: ['$vectorList', []] } }
|
||||
$match: {
|
||||
userId: new Types.ObjectId(userId),
|
||||
kbId: new Types.ObjectId(kbId)
|
||||
}
|
||||
},
|
||||
{
|
||||
$group: {
|
||||
_id: null,
|
||||
totalQaListLength: { $sum: '$qaListLength' },
|
||||
totalVectorListLength: { $sum: '$vectorListLength' }
|
||||
_id: '$mode',
|
||||
count: { $sum: 1 }
|
||||
}
|
||||
}
|
||||
]);
|
||||
|
||||
jsonRes(res, {
|
||||
data: {
|
||||
qaListLen: result[0]?.totalQaListLength || 0,
|
||||
vectorListLen: result[0]?.totalVectorListLength || 0
|
||||
qaListLen: result.find((item) => item._id === TrainingTypeEnum.qa)?.count || 0,
|
||||
vectorListLen: result.find((item) => item._id === TrainingTypeEnum.index)?.count || 0
|
||||
}
|
||||
});
|
||||
|
||||
@@ -49,10 +48,10 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
kbId
|
||||
},
|
||||
'_id'
|
||||
);
|
||||
).limit(10);
|
||||
list.forEach((item) => {
|
||||
generateQA(item._id);
|
||||
generateVector(item._id);
|
||||
generateQA();
|
||||
generateVector();
|
||||
});
|
||||
}
|
||||
} catch (err) {
|
||||
|
@@ -13,6 +13,7 @@ import {
|
||||
import { useForm } from 'react-hook-form';
|
||||
import { postKbDataFromList, putKbDataById } from '@/api/plugins/kb';
|
||||
import { useToast } from '@/hooks/useToast';
|
||||
import { TrainingTypeEnum } from '@/constants/plugin';
|
||||
|
||||
export type FormData = { dataId?: string; a: string; q: string };
|
||||
|
||||
@@ -59,7 +60,8 @@ const InputDataModal = ({
|
||||
a: e.a,
|
||||
q: e.q
|
||||
}
|
||||
]
|
||||
],
|
||||
mode: TrainingTypeEnum.index
|
||||
});
|
||||
|
||||
toast({
|
||||
|
@@ -19,6 +19,7 @@ import { postKbDataFromList } from '@/api/plugins/kb';
|
||||
import Markdown from '@/components/Markdown';
|
||||
import { useMarkdown } from '@/hooks/useMarkdown';
|
||||
import { fileDownload } from '@/utils/file';
|
||||
import { TrainingTypeEnum } from '@/constants/plugin';
|
||||
|
||||
const csvTemplate = `question,answer\n"什么是 laf","laf 是一个云函数开发平台……"\n"什么是 sealos","Sealos 是以 kubernetes 为内核的云操作系统发行版,可以……"`;
|
||||
|
||||
@@ -72,7 +73,8 @@ const SelectJsonModal = ({
|
||||
|
||||
const res = await postKbDataFromList({
|
||||
kbId,
|
||||
data: fileData
|
||||
data: fileData,
|
||||
mode: TrainingTypeEnum.index
|
||||
});
|
||||
|
||||
toast({
|
||||
|
@@ -17,7 +17,7 @@ import { useSelectFile } from '@/hooks/useSelectFile';
|
||||
import { useConfirm } from '@/hooks/useConfirm';
|
||||
import { readTxtContent, readPdfContent, readDocContent } from '@/utils/file';
|
||||
import { useMutation } from '@tanstack/react-query';
|
||||
import { postSplitData } from '@/api/plugins/kb';
|
||||
import { postKbDataFromList } from '@/api/plugins/kb';
|
||||
import Radio from '@/components/Radio';
|
||||
import { splitText_token } from '@/utils/file';
|
||||
import { TrainingTypeEnum } from '@/constants/plugin';
|
||||
@@ -32,7 +32,7 @@ const modeMap = {
|
||||
price: 4,
|
||||
isPrompt: true
|
||||
},
|
||||
subsection: {
|
||||
index: {
|
||||
maxLen: 800,
|
||||
slideLen: 300,
|
||||
price: 0.4,
|
||||
@@ -53,7 +53,7 @@ const SelectFileModal = ({
|
||||
const { toast } = useToast();
|
||||
const [prompt, setPrompt] = useState('');
|
||||
const { File, onOpen } = useSelectFile({ fileType: fileExtension, multiple: true });
|
||||
const [mode, setMode] = useState<`${TrainingTypeEnum}`>(TrainingTypeEnum.subsection);
|
||||
const [mode, setMode] = useState<`${TrainingTypeEnum}`>(TrainingTypeEnum.index);
|
||||
const [fileTextArr, setFileTextArr] = useState<string[]>(['']);
|
||||
const [splitRes, setSplitRes] = useState<{ tokens: number; chunks: string[] }>({
|
||||
tokens: 0,
|
||||
@@ -108,9 +108,9 @@ const SelectFileModal = ({
|
||||
mutationFn: async () => {
|
||||
if (splitRes.chunks.length === 0) return;
|
||||
|
||||
await postSplitData({
|
||||
await postKbDataFromList({
|
||||
kbId,
|
||||
chunks: splitRes.chunks,
|
||||
data: splitRes.chunks.map((text) => ({ q: text, a: '' })),
|
||||
prompt: `下面是"${prompt || '一段长文本'}"`,
|
||||
mode
|
||||
});
|
||||
@@ -195,11 +195,11 @@ const SelectFileModal = ({
|
||||
<Radio
|
||||
ml={3}
|
||||
list={[
|
||||
{ label: '直接分段', value: 'subsection' },
|
||||
{ label: '直接分段', value: 'index' },
|
||||
{ label: 'QA拆分', value: 'qa' }
|
||||
]}
|
||||
value={mode}
|
||||
onChange={(e) => setMode(e as 'subsection' | 'qa')}
|
||||
onChange={(e) => setMode(e as 'index' | 'qa')}
|
||||
/>
|
||||
</Flex>
|
||||
{/* 内容介绍 */}
|
||||
|
@@ -7,49 +7,61 @@ import { modelServiceToolMap } from '../utils/chat';
|
||||
import { ChatRoleEnum } from '@/constants/chat';
|
||||
import { BillTypeEnum } from '@/constants/user';
|
||||
import { pushDataToKb } from '@/pages/api/openapi/kb/pushData';
|
||||
import { TrainingTypeEnum } from '@/constants/plugin';
|
||||
import { ERROR_ENUM } from '../errorCode';
|
||||
|
||||
// 每次最多选 1 组
|
||||
const listLen = 1;
|
||||
export async function generateQA(): Promise<any> {
|
||||
const maxProcess = Number(process.env.QA_MAX_PROCESS || 10);
|
||||
|
||||
if (global.qaQueueLen >= maxProcess) return;
|
||||
global.qaQueueLen++;
|
||||
|
||||
let trainingId = '';
|
||||
let userId = '';
|
||||
|
||||
export async function generateQA(trainingId: string): Promise<any> {
|
||||
try {
|
||||
// 找出一个需要生成的 dataItem (4分钟锁)
|
||||
const data = await TrainingData.findOneAndUpdate(
|
||||
{
|
||||
_id: trainingId,
|
||||
lockTime: { $lte: Date.now() - 4 * 60 * 1000 }
|
||||
mode: TrainingTypeEnum.qa,
|
||||
lockTime: { $lte: new Date(Date.now() - 2 * 60 * 1000) }
|
||||
},
|
||||
{
|
||||
lockTime: new Date()
|
||||
}
|
||||
);
|
||||
).select({
|
||||
_id: 1,
|
||||
userId: 1,
|
||||
kbId: 1,
|
||||
prompt: 1,
|
||||
q: 1
|
||||
});
|
||||
|
||||
if (!data || data.qaList.length === 0) {
|
||||
await TrainingData.findOneAndDelete({
|
||||
_id: trainingId,
|
||||
qaList: [],
|
||||
vectorList: []
|
||||
});
|
||||
/* 无待生成的任务 */
|
||||
if (!data) {
|
||||
global.qaQueueLen--;
|
||||
!global.qaQueueLen && console.log(`没有需要【QA】的数据`);
|
||||
return;
|
||||
}
|
||||
|
||||
const qaList: string[] = data.qaList.slice(-listLen);
|
||||
trainingId = data._id;
|
||||
userId = String(data.userId);
|
||||
const kbId = String(data.kbId);
|
||||
|
||||
// 余额校验并获取 openapi Key
|
||||
const { userOpenAiKey, systemAuthKey } = await getApiKey({
|
||||
model: OpenAiChatEnum.GPT35,
|
||||
userId: data.userId,
|
||||
userId,
|
||||
type: 'training'
|
||||
});
|
||||
|
||||
console.log(`正在生成一组QA, 包含 ${qaList.length} 组文本。ID: ${data._id}`);
|
||||
console.log(`正在生成一组QA。ID: ${trainingId}`);
|
||||
|
||||
const startTime = Date.now();
|
||||
|
||||
// 请求 chatgpt 获取回答
|
||||
const response = await Promise.all(
|
||||
qaList.map((text) =>
|
||||
[data.q].map((text) =>
|
||||
modelServiceToolMap[OpenAiChatEnum.GPT35]
|
||||
.chatCompletion({
|
||||
apiKey: userOpenAiKey || systemAuthKey,
|
||||
@@ -100,24 +112,19 @@ A2:
|
||||
|
||||
// 创建 向量生成 队列
|
||||
pushDataToKb({
|
||||
kbId: data.kbId,
|
||||
kbId,
|
||||
data: responseList,
|
||||
userId: data.userId
|
||||
userId,
|
||||
mode: TrainingTypeEnum.index
|
||||
});
|
||||
|
||||
// 删除 QA 队列。如果小于 n 条,整个数据删掉。 如果大于 n 条,仅删数组后 n 个
|
||||
if (data.vectorList.length <= listLen) {
|
||||
await TrainingData.findByIdAndDelete(data._id);
|
||||
} else {
|
||||
await TrainingData.findByIdAndUpdate(data._id, {
|
||||
qaList: data.qaList.slice(0, -listLen),
|
||||
lockTime: new Date('2000/1/1')
|
||||
});
|
||||
}
|
||||
// delete data from training
|
||||
await TrainingData.findByIdAndDelete(data._id);
|
||||
|
||||
console.log('生成QA成功,time:', `${(Date.now() - startTime) / 1000}s`);
|
||||
|
||||
generateQA(trainingId);
|
||||
global.qaQueueLen--;
|
||||
generateQA();
|
||||
} catch (err: any) {
|
||||
// log
|
||||
if (err?.response) {
|
||||
@@ -130,25 +137,28 @@ A2:
|
||||
// openai 账号异常或者账号余额不足,删除任务
|
||||
if (openaiError2[err?.response?.data?.error?.type] || err === ERROR_ENUM.insufficientQuota) {
|
||||
console.log('余额不足,删除向量生成任务');
|
||||
await TrainingData.findByIdAndDelete(trainingId);
|
||||
return;
|
||||
await TrainingData.deleteMany({
|
||||
userId
|
||||
});
|
||||
return generateQA();
|
||||
}
|
||||
|
||||
// unlock
|
||||
global.qaQueueLen--;
|
||||
await TrainingData.findByIdAndUpdate(trainingId, {
|
||||
lockTime: new Date('2000/1/1')
|
||||
});
|
||||
|
||||
// 频率限制
|
||||
if (err?.response?.statusText === 'Too Many Requests') {
|
||||
console.log('生成向量次数限制,30s后尝试');
|
||||
console.log('生成向量次数限制,20s后尝试');
|
||||
return setTimeout(() => {
|
||||
generateQA(trainingId);
|
||||
}, 30000);
|
||||
generateQA();
|
||||
}, 20000);
|
||||
}
|
||||
|
||||
setTimeout(() => {
|
||||
generateQA(trainingId);
|
||||
generateQA();
|
||||
}, 1000);
|
||||
}
|
||||
}
|
||||
|
@@ -3,104 +3,109 @@ import { insertKbItem, PgClient } from '@/service/pg';
|
||||
import { openaiEmbedding } from '@/pages/api/openapi/plugin/openaiEmbedding';
|
||||
import { TrainingData } from '../models/trainingData';
|
||||
import { ERROR_ENUM } from '../errorCode';
|
||||
|
||||
// 每次最多选 5 组
|
||||
const listLen = 5;
|
||||
import { TrainingTypeEnum } from '@/constants/plugin';
|
||||
|
||||
/* 索引生成队列。每导入一次,就是一个单独的线程 */
|
||||
export async function generateVector(trainingId: string): Promise<any> {
|
||||
export async function generateVector(): Promise<any> {
|
||||
const maxProcess = Number(process.env.VECTOR_MAX_PROCESS || 10);
|
||||
|
||||
if (global.vectorQueueLen >= maxProcess) return;
|
||||
global.vectorQueueLen++;
|
||||
|
||||
let trainingId = '';
|
||||
let userId = '';
|
||||
|
||||
try {
|
||||
// 找出一个需要生成的 dataItem (2分钟锁)
|
||||
const data = await TrainingData.findOneAndUpdate(
|
||||
{
|
||||
_id: trainingId,
|
||||
lockTime: { $lte: Date.now() - 2 * 60 * 1000 }
|
||||
mode: TrainingTypeEnum.index,
|
||||
lockTime: { $lte: new Date(Date.now() - 2 * 60 * 1000) }
|
||||
},
|
||||
{
|
||||
lockTime: new Date()
|
||||
}
|
||||
);
|
||||
).select({
|
||||
_id: 1,
|
||||
userId: 1,
|
||||
kbId: 1,
|
||||
q: 1,
|
||||
a: 1
|
||||
});
|
||||
|
||||
/* 无待生成的任务 */
|
||||
if (!data) {
|
||||
await TrainingData.findOneAndDelete({
|
||||
_id: trainingId,
|
||||
qaList: [],
|
||||
vectorList: []
|
||||
});
|
||||
global.vectorQueueLen--;
|
||||
!global.vectorQueueLen && console.log(`没有需要【索引】的数据`);
|
||||
return;
|
||||
}
|
||||
|
||||
const userId = String(data.userId);
|
||||
trainingId = data._id;
|
||||
userId = String(data.userId);
|
||||
const kbId = String(data.kbId);
|
||||
|
||||
const dataItems: { q: string; a: string }[] = data.vectorList.slice(-listLen).map((item) => ({
|
||||
q: item.q,
|
||||
a: item.a
|
||||
}));
|
||||
const dataItems = [
|
||||
{
|
||||
q: data.q,
|
||||
a: data.a
|
||||
}
|
||||
];
|
||||
|
||||
// 过滤重复的 qa 内容
|
||||
const searchRes = await Promise.allSettled(
|
||||
dataItems.map(async ({ q, a = '' }) => {
|
||||
if (!q) {
|
||||
return Promise.reject('q为空');
|
||||
}
|
||||
// const searchRes = await Promise.allSettled(
|
||||
// dataItems.map(async ({ q, a = '' }) => {
|
||||
// if (!q) {
|
||||
// return Promise.reject('q为空');
|
||||
// }
|
||||
|
||||
q = q.replace(/\\n/g, '\n');
|
||||
a = a.replace(/\\n/g, '\n');
|
||||
// q = q.replace(/\\n/g, '\n');
|
||||
// a = a.replace(/\\n/g, '\n');
|
||||
|
||||
// Exactly the same data, not push
|
||||
try {
|
||||
const count = await PgClient.count('modelData', {
|
||||
where: [['user_id', userId], 'AND', ['kb_id', kbId], 'AND', ['q', q], 'AND', ['a', a]]
|
||||
});
|
||||
if (count > 0) {
|
||||
return Promise.reject('已经存在');
|
||||
}
|
||||
} catch (error) {
|
||||
error;
|
||||
}
|
||||
return Promise.resolve({
|
||||
q,
|
||||
a
|
||||
});
|
||||
})
|
||||
);
|
||||
const filterData = searchRes
|
||||
.filter((item) => item.status === 'fulfilled')
|
||||
.map<{ q: string; a: string }>((item: any) => item.value);
|
||||
// // Exactly the same data, not push
|
||||
// try {
|
||||
// const count = await PgClient.count('modelData', {
|
||||
// where: [['user_id', userId], 'AND', ['kb_id', kbId], 'AND', ['q', q], 'AND', ['a', a]]
|
||||
// });
|
||||
|
||||
if (filterData.length > 0) {
|
||||
// 生成词向量
|
||||
const vectors = await openaiEmbedding({
|
||||
input: filterData.map((item) => item.q),
|
||||
userId,
|
||||
type: 'training'
|
||||
});
|
||||
// if (count > 0) {
|
||||
// return Promise.reject('已经存在');
|
||||
// }
|
||||
// } catch (error) {
|
||||
// error;
|
||||
// }
|
||||
// return Promise.resolve({
|
||||
// q,
|
||||
// a
|
||||
// });
|
||||
// })
|
||||
// );
|
||||
// const filterData = searchRes
|
||||
// .filter((item) => item.status === 'fulfilled')
|
||||
// .map<{ q: string; a: string }>((item: any) => item.value);
|
||||
|
||||
// 生成结果插入到 pg
|
||||
await insertKbItem({
|
||||
userId,
|
||||
kbId,
|
||||
data: vectors.map((vector, i) => ({
|
||||
q: filterData[i].q,
|
||||
a: filterData[i].a,
|
||||
vector
|
||||
}))
|
||||
});
|
||||
}
|
||||
// 生成词向量
|
||||
const vectors = await openaiEmbedding({
|
||||
input: dataItems.map((item) => item.q),
|
||||
userId,
|
||||
type: 'training'
|
||||
});
|
||||
|
||||
// 删除 mongo 训练队列. 如果小于 n 条,整个数据删掉。 如果大于 n 条,仅删数组后 n 个
|
||||
if (data.vectorList.length <= listLen) {
|
||||
await TrainingData.findByIdAndDelete(trainingId);
|
||||
console.log(`全部向量生成完毕: ${trainingId}`);
|
||||
} else {
|
||||
await TrainingData.findByIdAndUpdate(trainingId, {
|
||||
vectorList: data.vectorList.slice(0, -listLen),
|
||||
lockTime: new Date('2000/1/1')
|
||||
});
|
||||
console.log(`生成向量成功: ${trainingId}`);
|
||||
generateVector(trainingId);
|
||||
}
|
||||
// 生成结果插入到 pg
|
||||
await insertKbItem({
|
||||
userId,
|
||||
kbId,
|
||||
data: vectors.map((vector, i) => ({
|
||||
q: dataItems[i].q,
|
||||
a: dataItems[i].a,
|
||||
vector
|
||||
}))
|
||||
});
|
||||
|
||||
// delete data from training
|
||||
await TrainingData.findByIdAndDelete(data._id);
|
||||
console.log(`生成向量成功: ${data._id}`);
|
||||
|
||||
global.vectorQueueLen--;
|
||||
generateVector();
|
||||
} catch (err: any) {
|
||||
// log
|
||||
if (err?.response) {
|
||||
@@ -113,25 +118,28 @@ export async function generateVector(trainingId: string): Promise<any> {
|
||||
// openai 账号异常或者账号余额不足,删除任务
|
||||
if (openaiError2[err?.response?.data?.error?.type] || err === ERROR_ENUM.insufficientQuota) {
|
||||
console.log('余额不足,删除向量生成任务');
|
||||
await TrainingData.findByIdAndDelete(trainingId);
|
||||
return;
|
||||
await TrainingData.deleteMany({
|
||||
userId
|
||||
});
|
||||
return generateVector();
|
||||
}
|
||||
|
||||
// unlock
|
||||
global.vectorQueueLen--;
|
||||
await TrainingData.findByIdAndUpdate(trainingId, {
|
||||
lockTime: new Date('2000/1/1')
|
||||
});
|
||||
|
||||
// 频率限制
|
||||
if (err?.response?.statusText === 'Too Many Requests') {
|
||||
console.log('生成向量次数限制,30s后尝试');
|
||||
console.log('生成向量次数限制,20s后尝试');
|
||||
return setTimeout(() => {
|
||||
generateVector(trainingId);
|
||||
}, 30000);
|
||||
generateVector();
|
||||
}, 20000);
|
||||
}
|
||||
|
||||
setTimeout(() => {
|
||||
generateVector(trainingId);
|
||||
generateVector();
|
||||
}, 1000);
|
||||
}
|
||||
}
|
||||
|
@@ -1,9 +1,9 @@
|
||||
/* 模型的知识库 */
|
||||
import { Schema, model, models, Model as MongoModel } from 'mongoose';
|
||||
import { TrainingDataSchema as TrainingDateType } from '@/types/mongoSchema';
|
||||
import { TrainingTypeMap } from '@/constants/plugin';
|
||||
|
||||
// pgList and vectorList, Only one of them will work
|
||||
|
||||
const TrainingDataSchema = new Schema({
|
||||
userId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
@@ -19,18 +19,27 @@ const TrainingDataSchema = new Schema({
|
||||
type: Date,
|
||||
default: () => new Date('2000/1/1')
|
||||
},
|
||||
vectorList: {
|
||||
type: [{ q: String, a: String }],
|
||||
default: []
|
||||
mode: {
|
||||
type: String,
|
||||
enum: Object.keys(TrainingTypeMap),
|
||||
required: true
|
||||
},
|
||||
prompt: {
|
||||
// 拆分时的提示词
|
||||
type: String,
|
||||
default: ''
|
||||
},
|
||||
qaList: {
|
||||
type: [String],
|
||||
default: []
|
||||
q: {
|
||||
// 如果是
|
||||
type: String,
|
||||
default: ''
|
||||
},
|
||||
a: {
|
||||
type: String,
|
||||
default: ''
|
||||
},
|
||||
vectorList: {
|
||||
type: Object
|
||||
}
|
||||
});
|
||||
|
||||
|
@@ -1,8 +1,7 @@
|
||||
import mongoose from 'mongoose';
|
||||
import { generateQA } from './events/generateQA';
|
||||
import { generateVector } from './events/generateVector';
|
||||
import tunnel from 'tunnel';
|
||||
import { TrainingData } from './mongo';
|
||||
import { startQueue } from './utils/tools';
|
||||
|
||||
/**
|
||||
* 连接 MongoDB 数据库
|
||||
@@ -38,7 +37,10 @@ export async function connectToDatabase(): Promise<void> {
|
||||
});
|
||||
}
|
||||
|
||||
startTrain();
|
||||
global.qaQueueLen = 0;
|
||||
global.vectorQueueLen = 0;
|
||||
|
||||
startQueue();
|
||||
// 5 分钟后解锁不正常的数据,并触发开始训练
|
||||
setTimeout(async () => {
|
||||
await TrainingData.updateMany(
|
||||
@@ -49,24 +51,10 @@ export async function connectToDatabase(): Promise<void> {
|
||||
lockTime: new Date('2000/1/1')
|
||||
}
|
||||
);
|
||||
startTrain();
|
||||
startQueue();
|
||||
}, 5 * 60 * 1000);
|
||||
}
|
||||
|
||||
async function startTrain() {
|
||||
const qa = await TrainingData.find({
|
||||
qaList: { $exists: true, $ne: [] }
|
||||
});
|
||||
|
||||
qa.map((item) => generateQA(String(item._id)));
|
||||
|
||||
const vector = await TrainingData.find({
|
||||
vectorList: { $exists: true, $ne: [] }
|
||||
});
|
||||
|
||||
vector.map((item) => generateVector(String(item._id)));
|
||||
}
|
||||
|
||||
export * from './models/authCode';
|
||||
export * from './models/chat';
|
||||
export * from './models/model';
|
||||
|
@@ -14,8 +14,8 @@ export const connectPg = async () => {
|
||||
password: process.env.PG_PASSWORD,
|
||||
database: process.env.PG_DB_NAME,
|
||||
max: 20,
|
||||
idleTimeoutMillis: 30000,
|
||||
connectionTimeoutMillis: 2000
|
||||
idleTimeoutMillis: 60000,
|
||||
connectionTimeoutMillis: 20000
|
||||
});
|
||||
|
||||
global.pgClient.on('error', (err) => {
|
||||
|
@@ -45,7 +45,7 @@ export const jsonRes = <T = any>(
|
||||
} else if (openaiError[error?.response?.statusText]) {
|
||||
msg = openaiError[error.response.statusText];
|
||||
}
|
||||
console.log(error);
|
||||
console.log(error?.message || error);
|
||||
}
|
||||
|
||||
res.json({
|
||||
|
@@ -2,6 +2,8 @@ import type { NextApiResponse, NextApiHandler, NextApiRequest } from 'next';
|
||||
import NextCors from 'nextjs-cors';
|
||||
import crypto from 'crypto';
|
||||
import jwt from 'jsonwebtoken';
|
||||
import { generateQA } from '../events/generateQA';
|
||||
import { generateVector } from '../events/generateVector';
|
||||
|
||||
/* 密码加密 */
|
||||
export const hashPassword = (psw: string) => {
|
||||
@@ -45,7 +47,7 @@ export function withNextCors(handler: NextApiHandler): NextApiHandler {
|
||||
req: NextApiRequest,
|
||||
res: NextApiResponse
|
||||
) {
|
||||
const methods = ['GET', 'HEAD', 'PUT', 'PATCH', 'POST', 'DELETE'];
|
||||
const methods = ['GET', 'eHEAD', 'PUT', 'PATCH', 'POST', 'DELETE'];
|
||||
const origin = req.headers.origin;
|
||||
await NextCors(req, res, {
|
||||
methods,
|
||||
@@ -56,3 +58,15 @@ export function withNextCors(handler: NextApiHandler): NextApiHandler {
|
||||
return handler(req, res);
|
||||
};
|
||||
}
|
||||
|
||||
export const startQueue = () => {
|
||||
const qaMax = Number(process.env.QA_MAX_PROCESS || 10);
|
||||
const vectorMax = Number(process.env.VECTOR_MAX_PROCESS || 10);
|
||||
|
||||
for (let i = 0; i < qaMax; i++) {
|
||||
generateQA();
|
||||
}
|
||||
for (let i = 0; i < vectorMax; i++) {
|
||||
generateVector();
|
||||
}
|
||||
};
|
||||
|
2
src/types/index.d.ts
vendored
2
src/types/index.d.ts
vendored
@@ -9,6 +9,8 @@ declare global {
|
||||
var particlesJS: any;
|
||||
var grecaptcha: any;
|
||||
var QRCode: any;
|
||||
var qaQueueLen: number;
|
||||
var vectorQueueLen: number;
|
||||
|
||||
interface Window {
|
||||
['pdfjs-dist/build/pdf']: any;
|
||||
|
5
src/types/mongoSchema.d.ts
vendored
5
src/types/mongoSchema.d.ts
vendored
@@ -74,9 +74,10 @@ export interface TrainingDataSchema {
|
||||
userId: string;
|
||||
kbId: string;
|
||||
lockTime: Date;
|
||||
vectorList: { q: string; a: string }[];
|
||||
mode: `${TrainingTypeEnum}`;
|
||||
prompt: string;
|
||||
qaList: string[];
|
||||
q: string;
|
||||
a: string;
|
||||
}
|
||||
|
||||
export interface ChatSchema {
|
||||
|
Reference in New Issue
Block a user