mirror of
https://github.com/labring/FastGPT.git
synced 2025-10-13 22:56:28 +00:00
feat: prompt call tool support reason;perf: ai proxy doc (#3982)
* update schema * perf: ai proxy doc * feat: prompt call tool support reason
This commit is contained in:
4
.vscode/settings.json
vendored
4
.vscode/settings.json
vendored
@@ -27,7 +27,5 @@
|
||||
},
|
||||
"markdown.copyFiles.destination": {
|
||||
"/docSite/content/**/*": "${documentWorkspaceFolder}/docSite/assets/imgs/"
|
||||
},
|
||||
"markdown.copyFiles.overwriteBehavior": "nameIncrementally",
|
||||
"markdown.copyFiles.transformPath": "const filename = uri.path.split('/').pop(); return `/imgs/${filename}`;"
|
||||
}
|
||||
}
|
24
README.md
24
README.md
@@ -115,16 +115,6 @@ https://github.com/labring/FastGPT/assets/15308462/7d3a38df-eb0e-4388-9250-2409b
|
||||
<img src="https://img.shields.io/badge/-返回顶部-7d09f1.svg" alt="#" align="right">
|
||||
</a>
|
||||
|
||||
## 🏘️ 社区交流群
|
||||
|
||||
扫码加入飞书话题群:
|
||||
|
||||

|
||||
|
||||
<a href="#readme">
|
||||
<img src="https://img.shields.io/badge/-返回顶部-7d09f1.svg" alt="#" align="right">
|
||||
</a>
|
||||
|
||||
## 🏘️ 加入我们
|
||||
|
||||
我们正在寻找志同道合的小伙伴,加速 FastGPT 的发展。你可以通过 [FastGPT 2025 招聘](https://fael3z0zfze.feishu.cn/wiki/P7FOwEmPziVcaYkvVaacnVX1nvg)了解 FastGPT 的招聘信息。
|
||||
@@ -135,17 +125,25 @@ https://github.com/labring/FastGPT/assets/15308462/7d3a38df-eb0e-4388-9250-2409b
|
||||
- [Sealos:快速部署集群应用](https://github.com/labring/sealos)
|
||||
- [AI Proxy API调用地址](https://sealos.run/aiproxy/?k=fastgpt-github/)
|
||||
- [One API:多模型管理,支持 Azure、文心一言等](https://github.com/songquanpeng/one-api)
|
||||
- [TuShan:5 分钟搭建后台管理系统](https://github.com/msgbyte/tushan)
|
||||
|
||||
<a href="#readme">
|
||||
<img src="https://img.shields.io/badge/-返回顶部-7d09f1.svg" alt="#" align="right">
|
||||
</a>
|
||||
|
||||
|
||||
## 🌿 第三方生态
|
||||
|
||||
- [COW 个人微信/企微机器人](https://doc.tryfastgpt.ai/docs/use-cases/external-integration/onwechat/)
|
||||
- [SiliconCloud (硅基流动) —— 开源模型在线体验平台](https://cloud.siliconflow.cn/i/TR9Ym0c4)
|
||||
- [COW 个人微信/企微机器人](https://doc.tryfastgpt.ai/docs/use-cases/external-integration/onwechat/)
|
||||
|
||||
<a href="#readme">
|
||||
<img src="https://img.shields.io/badge/-返回顶部-7d09f1.svg" alt="#" align="right">
|
||||
</a>
|
||||
|
||||
## 🏘️ 社区交流群
|
||||
|
||||
扫码加入飞书话题群:
|
||||
|
||||

|
||||
|
||||
<a href="#readme">
|
||||
<img src="https://img.shields.io/badge/-返回顶部-7d09f1.svg" alt="#" align="right">
|
||||
|
@@ -141,10 +141,9 @@ services:
|
||||
- AIPROXY_API_ENDPOINT=http://aiproxy:3000
|
||||
# AI Proxy 的 Admin Token,与 AI Proxy 中的环境变量 ADMIN_KEY
|
||||
- AIPROXY_API_TOKEN=aiproxy
|
||||
# AI模型的API地址哦。务必加 /v1。这里默认填写了OneApi的访问地址。
|
||||
- OPENAI_BASE_URL=http://oneapi:3000/v1
|
||||
# AI模型的API Key。(这里默认填写了OneAPI的快速默认key,测试通后,务必及时修改)
|
||||
- CHAT_API_KEY=sk-fastgpt
|
||||
# 模型中转地址(如果用了 AI Proxy,下面 2 个就不需要了,旧版 OneAPI 用户,使用下面的变量)
|
||||
# - OPENAI_BASE_URL=http://oneapi:3000/v1
|
||||
# - CHAT_API_KEY=sk-fastgpt
|
||||
# 数据库最大连接数
|
||||
- DB_MAX_LINK=30
|
||||
# 登录凭证密钥
|
||||
@@ -180,32 +179,37 @@ services:
|
||||
container_name: aiproxy
|
||||
restart: unless-stopped
|
||||
depends_on:
|
||||
pgsql:
|
||||
aiproxy_pg:
|
||||
condition: service_healthy
|
||||
ports:
|
||||
- '3002:3000/tcp'
|
||||
- '3002:3000'
|
||||
networks:
|
||||
- fastgpt
|
||||
environment:
|
||||
- ADMIN_KEY=aiproxy # 对应 fastgpt 里的AIPROXY_API_TOKEN
|
||||
- LOG_DETAIL_STORAGE_HOURS=1 # 日志详情保存时间(小时)
|
||||
- TZ=Asia/Shanghai
|
||||
- SQL_DSN=postgres://postgres:aiproxy@pgsql:5432/aiproxy
|
||||
# 对应 fastgpt 里的AIPROXY_API_TOKEN
|
||||
- ADMIN_KEY=aiproxy
|
||||
# 错误日志详情保存时间(小时)
|
||||
- LOG_DETAIL_STORAGE_HOURS=1
|
||||
# 数据库连接地址
|
||||
- SQL_DSN=postgres://postgres:aiproxy@aiproxy_pg:5432/aiproxy
|
||||
# 最大重试次数
|
||||
- RetryTimes=3
|
||||
# 不需要计费
|
||||
- BILLING_ENABLED=false
|
||||
# 不需要严格检测模型
|
||||
- DISABLE_MODEL_CONFIG=true
|
||||
healthcheck:
|
||||
test: ['CMD', 'curl', '-f', 'http://localhost:3000/api/status']
|
||||
interval: 5s
|
||||
timeout: 5s
|
||||
retries: 10
|
||||
|
||||
# AI Proxy
|
||||
pgsql:
|
||||
# image: "postgres:latest"
|
||||
image: registry.cn-hangzhou.aliyuncs.com/fastgpt/pgvector:v0.7.0 # 阿里云
|
||||
aiproxy_pg:
|
||||
# image: pgvector/pgvector:0.8.0-pg15 # docker hub
|
||||
image: registry.cn-hangzhou.aliyuncs.com/fastgpt/pgvector:v0.8.0-pg15 # 阿里云
|
||||
restart: unless-stopped
|
||||
container_name: pgsql
|
||||
container_name: aiproxy_pg
|
||||
volumes:
|
||||
- ./pgsql:/var/lib/postgresql/data
|
||||
- ./aiproxy_pg:/var/lib/postgresql/data
|
||||
networks:
|
||||
- fastgpt
|
||||
environment:
|
||||
|
@@ -11,8 +11,8 @@ services:
|
||||
# image: registry.cn-hangzhou.aliyuncs.com/fastgpt/pgvector:v0.8.0-pg15 # 阿里云
|
||||
container_name: pg
|
||||
restart: always
|
||||
ports: # 生产环境建议不要暴露
|
||||
- 5432:5432
|
||||
# ports: # 生产环境建议不要暴露
|
||||
# - 5432:5432
|
||||
networks:
|
||||
- fastgpt
|
||||
environment:
|
||||
@@ -99,10 +99,9 @@ services:
|
||||
- AIPROXY_API_ENDPOINT=http://aiproxy:3000
|
||||
# AI Proxy 的 Admin Token,与 AI Proxy 中的环境变量 ADMIN_KEY
|
||||
- AIPROXY_API_TOKEN=aiproxy
|
||||
# AI模型的API地址哦。务必加 /v1。这里默认填写了OneApi的访问地址。
|
||||
- OPENAI_BASE_URL=http://oneapi:3000/v1
|
||||
# AI模型的API Key。(这里默认填写了OneAPI的快速默认key,测试通后,务必及时修改)
|
||||
- CHAT_API_KEY=sk-fastgpt
|
||||
# 模型中转地址(如果用了 AI Proxy,下面 2 个就不需要了,旧版 OneAPI 用户,使用下面的变量)
|
||||
# - OPENAI_BASE_URL=http://oneapi:3000/v1
|
||||
# - CHAT_API_KEY=sk-fastgpt
|
||||
# 数据库最大连接数
|
||||
- DB_MAX_LINK=30
|
||||
# 登录凭证密钥
|
||||
@@ -137,32 +136,37 @@ services:
|
||||
container_name: aiproxy
|
||||
restart: unless-stopped
|
||||
depends_on:
|
||||
pgsql:
|
||||
aiproxy_pg:
|
||||
condition: service_healthy
|
||||
ports:
|
||||
- '3002:3000/tcp'
|
||||
- '3002:3000'
|
||||
networks:
|
||||
- fastgpt
|
||||
environment:
|
||||
- ADMIN_KEY=aiproxy # 对应 fastgpt 里的AIPROXY_API_TOKEN
|
||||
- LOG_DETAIL_STORAGE_HOURS=1 # 日志详情保存时间(小时)
|
||||
- TZ=Asia/Shanghai
|
||||
- SQL_DSN=postgres://postgres:aiproxy@pgsql:5432/aiproxy
|
||||
# 对应 fastgpt 里的AIPROXY_API_TOKEN
|
||||
- ADMIN_KEY=aiproxy
|
||||
# 错误日志详情保存时间(小时)
|
||||
- LOG_DETAIL_STORAGE_HOURS=1
|
||||
# 数据库连接地址
|
||||
- SQL_DSN=postgres://postgres:aiproxy@aiproxy_pg:5432/aiproxy
|
||||
# 最大重试次数
|
||||
- RetryTimes=3
|
||||
# 不需要计费
|
||||
- BILLING_ENABLED=false
|
||||
# 不需要严格检测模型
|
||||
- DISABLE_MODEL_CONFIG=true
|
||||
healthcheck:
|
||||
test: ['CMD', 'curl', '-f', 'http://localhost:3000/api/status']
|
||||
interval: 5s
|
||||
timeout: 5s
|
||||
retries: 10
|
||||
|
||||
# AI Proxy
|
||||
pgsql:
|
||||
# image: "postgres:latest"
|
||||
image: registry.cn-hangzhou.aliyuncs.com/fastgpt/pgvector:v0.7.0 # 阿里云
|
||||
aiproxy_pg:
|
||||
# image: pgvector/pgvector:0.8.0-pg15 # docker hub
|
||||
image: registry.cn-hangzhou.aliyuncs.com/fastgpt/pgvector:v0.8.0-pg15 # 阿里云
|
||||
restart: unless-stopped
|
||||
container_name: pgsql
|
||||
container_name: aiproxy_pg
|
||||
volumes:
|
||||
- ./pgsql:/var/lib/postgresql/data
|
||||
- ./aiproxy_pg:/var/lib/postgresql/data
|
||||
networks:
|
||||
- fastgpt
|
||||
environment:
|
||||
|
@@ -79,10 +79,9 @@ services:
|
||||
- AIPROXY_API_ENDPOINT=http://aiproxy:3000
|
||||
# AI Proxy 的 Admin Token,与 AI Proxy 中的环境变量 ADMIN_KEY
|
||||
- AIPROXY_API_TOKEN=aiproxy
|
||||
# AI模型的API地址哦。务必加 /v1。这里默认填写了OneApi的访问地址。
|
||||
- OPENAI_BASE_URL=http://oneapi:3000/v1
|
||||
# AI模型的API Key。(这里默认填写了OneAPI的快速默认key,测试通后,务必及时修改)
|
||||
- CHAT_API_KEY=sk-fastgpt
|
||||
# 模型中转地址(如果用了 AI Proxy,下面 2 个就不需要了,旧版 OneAPI 用户,使用下面的变量)
|
||||
# - OPENAI_BASE_URL=http://oneapi:3000/v1
|
||||
# - CHAT_API_KEY=sk-fastgpt
|
||||
# 数据库最大连接数
|
||||
- DB_MAX_LINK=30
|
||||
# 登录凭证密钥
|
||||
@@ -118,32 +117,37 @@ services:
|
||||
container_name: aiproxy
|
||||
restart: unless-stopped
|
||||
depends_on:
|
||||
pgsql:
|
||||
aiproxy_pg:
|
||||
condition: service_healthy
|
||||
ports:
|
||||
- '3002:3000/tcp'
|
||||
- '3002:3000'
|
||||
networks:
|
||||
- fastgpt
|
||||
environment:
|
||||
- ADMIN_KEY=aiproxy # 对应 fastgpt 里的AIPROXY_API_TOKEN
|
||||
- LOG_DETAIL_STORAGE_HOURS=1 # 日志详情保存时间(小时)
|
||||
- TZ=Asia/Shanghai
|
||||
- SQL_DSN=postgres://postgres:aiproxy@pgsql:5432/aiproxy
|
||||
# 对应 fastgpt 里的AIPROXY_API_TOKEN
|
||||
- ADMIN_KEY=aiproxy
|
||||
# 错误日志详情保存时间(小时)
|
||||
- LOG_DETAIL_STORAGE_HOURS=1
|
||||
# 数据库连接地址
|
||||
- SQL_DSN=postgres://postgres:aiproxy@aiproxy_pg:5432/aiproxy
|
||||
# 最大重试次数
|
||||
- RetryTimes=3
|
||||
# 不需要计费
|
||||
- BILLING_ENABLED=false
|
||||
# 不需要严格检测模型
|
||||
- DISABLE_MODEL_CONFIG=true
|
||||
healthcheck:
|
||||
test: ['CMD', 'curl', '-f', 'http://localhost:3000/api/status']
|
||||
interval: 5s
|
||||
timeout: 5s
|
||||
retries: 10
|
||||
|
||||
# AI Proxy
|
||||
pgsql:
|
||||
# image: "postgres:latest"
|
||||
image: registry.cn-hangzhou.aliyuncs.com/fastgpt/pgvector:v0.7.0 # 阿里云
|
||||
aiproxy_pg:
|
||||
# image: pgvector/pgvector:0.8.0-pg15 # docker hub
|
||||
image: registry.cn-hangzhou.aliyuncs.com/fastgpt/pgvector:v0.8.0-pg15 # 阿里云
|
||||
restart: unless-stopped
|
||||
container_name: pgsql
|
||||
container_name: aiproxy_pg
|
||||
volumes:
|
||||
- ./pgsql:/var/lib/postgresql/data
|
||||
- ./aiproxy_pg:/var/lib/postgresql/data
|
||||
networks:
|
||||
- fastgpt
|
||||
environment:
|
||||
|
BIN
docSite/assets/imgs/aiproxy1.png
Normal file
BIN
docSite/assets/imgs/aiproxy1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 135 KiB |
@@ -30,7 +30,7 @@ weight: 707
|
||||
|
||||
### PgVector版本
|
||||
|
||||
非常轻量,适合数据量在 5000 万以下。
|
||||
非常轻量,适合知识库索引量在 5000 万以下。
|
||||
|
||||
{{< table "table-hover table-striped-columns" >}}
|
||||
| 环境 | 最低配置(单节点) | 推荐配置 |
|
||||
@@ -149,18 +149,14 @@ curl -o docker-compose.yml https://raw.githubusercontent.com/labring/FastGPT/mai
|
||||
{{< tab tabName="PgVector版本" >}}
|
||||
{{< markdownify >}}
|
||||
|
||||
```
|
||||
FE_DOMAIN=你的前端你访问地址,例如 http://192.168.0.1:3000;https://cloud.fastgpt.cn
|
||||
```
|
||||
无需操作
|
||||
|
||||
{{< /markdownify >}}
|
||||
{{< /tab >}}
|
||||
{{< tab tabName="Milvus版本" >}}
|
||||
{{< markdownify >}}
|
||||
|
||||
```
|
||||
FE_DOMAIN=你的前端你访问地址,例如 http://192.168.0.1:3000;https://cloud.fastgpt.cn
|
||||
```
|
||||
无需操作
|
||||
|
||||
{{< /markdownify >}}
|
||||
{{< /tab >}}
|
||||
@@ -174,7 +170,6 @@ FE_DOMAIN=你的前端你访问地址,例如 http://192.168.0.1:3000;https://clo
|
||||
{{% alert icon="🤖" context="success" %}}
|
||||
|
||||
1. 修改`MILVUS_ADDRESS`和`MILVUS_TOKEN`链接参数,分别对应 `zilliz` 的 `Public Endpoint` 和 `Api key`,记得把自己ip加入白名单。
|
||||
2. 修改FE_DOMAIN=你的前端你访问地址,例如 http://192.168.0.1:3000;https://cloud.fastgpt.cn
|
||||
|
||||
{{% /alert %}}
|
||||
|
||||
@@ -189,30 +184,28 @@ FE_DOMAIN=你的前端你访问地址,例如 http://192.168.0.1:3000;https://clo
|
||||
```bash
|
||||
# 启动容器
|
||||
docker-compose up -d
|
||||
# 等待10s,OneAPI第一次总是要重启几次才能连上Mysql
|
||||
sleep 10
|
||||
# 重启一次oneapi(由于OneAPI的默认Key有点问题,不重启的话会提示找不到渠道,临时手动重启一次解决,等待作者修复)
|
||||
docker restart oneapi
|
||||
```
|
||||
|
||||
### 4. 访问 FastGPT
|
||||
|
||||
目前可以通过 `ip:3000` 直接访问(注意防火墙)。登录用户名为 `root`,密码为`docker-compose.yml`环境变量里设置的 `DEFAULT_ROOT_PSW`。
|
||||
目前可以通过 `ip:3000` 直接访问(注意开放防火墙)。登录用户名为 `root`,密码为`docker-compose.yml`环境变量里设置的 `DEFAULT_ROOT_PSW`。
|
||||
|
||||
如果需要域名访问,请自行安装并配置 Nginx。
|
||||
|
||||
首次运行,会自动初始化 root 用户,密码为 `1234`(与环境变量中的`DEFAULT_ROOT_PSW`一致),日志里会提示一次`MongoServerError: Unable to read from a snapshot due to pending collection catalog changes;`可忽略。
|
||||
首次运行,会自动初始化 root 用户,密码为 `1234`(与环境变量中的`DEFAULT_ROOT_PSW`一致),日志可能会提示一次`MongoServerError: Unable to read from a snapshot due to pending collection catalog changes;`可忽略。
|
||||
|
||||
### 5. 配置模型
|
||||
|
||||
登录FastGPT后,进入“模型提供商”页面,首先配置模型渠道,[点击查看相关教程](/docs/development/modelconfig/ai-proxy)
|
||||
|
||||
然后配置具体模型,务必先配置至少一个语言模型和一个向量模型,否则系统无法正常使用。
|
||||
|
||||
[点击查看模型配置教程](/docs/development/modelConfig/intro/)
|
||||
- 首次登录FastGPT后,系统会提示未配置`语言模型`和`索引模型`,并自动跳转模型配置页面。系统必须至少有这两类模型才能正常使用。
|
||||
- 如果系统未正常跳转,可以在`账号-模型提供商`页面,进行模型配置。[点击查看相关教程](/docs/development/modelconfig/ai-proxy)
|
||||
- 目前已知可能问题:首次进入系统后,整个浏览器 tab 无法响应。此时需要删除该tab,重新打开一次即可。
|
||||
|
||||
## FAQ
|
||||
|
||||
### 登录系统后,浏览器无法响应
|
||||
|
||||
无法点击任何内容,刷新也无效。此时需要删除该tab,重新打开一次即可。
|
||||
|
||||
### Mongo 副本集自动初始化失败
|
||||
|
||||
最新的 docker-compose 示例优化 Mongo 副本集初始化,实现了全自动。目前在 unbuntu20,22 centos7, wsl2, mac, window 均通过测试。仍无法正常启动,大部分是因为 cpu 不支持 AVX 指令集,可以切换 Mongo4.x 版本。
|
||||
|
@@ -7,7 +7,7 @@ toc: true
|
||||
weight: 744
|
||||
---
|
||||
|
||||
从 FastGPT 4.8.23 版本开始,引入 AI Proxy 来进一步方便模型的配置。
|
||||
从 `FastGPT 4.8.23` 版本开始,引入 AI Proxy 来进一步方便模型的配置。
|
||||
|
||||
AI Proxy 与 One API 类似,也是作为一个 OpenAI 接口管理 & 分发系统,可以通过标准的 OpenAI API 格式访问所有的大模型,开箱即用。
|
||||
|
||||
@@ -15,13 +15,29 @@ AI Proxy 与 One API 类似,也是作为一个 OpenAI 接口管理 & 分发系
|
||||
|
||||
### Docker 版本
|
||||
|
||||
`docker-compose.yml` 文件已加入了 AI Proxy 配置,可直接使用。
|
||||
`docker-compose.yml` 文件已加入了 AI Proxy 配置,可直接使用。[点击查看最新的 yml 配置](https://raw.githubusercontent.com/labring/FastGPT/main/deploy/docker/docker-compose-pgvector.yml)
|
||||
|
||||
## 基础使用
|
||||
从旧版升级的用户,可以复制 yml 里,ai proxy 的配置,加入到旧的 yml 文件中。
|
||||
|
||||
## 运行原理
|
||||
|
||||
AI proxy 核心模块:
|
||||
|
||||
1. 渠道管理:管理各家模型提供商的 API Key 和可用模型列表。
|
||||
2. 模型调用:根据请求的模型,选中对应的渠道;根据渠道的 API 格式,构造请求体,发送请求;格式化响应体成标准格式返回。
|
||||
3. 调用日志:详细记录模型调用的日志,并在错误时候可以记录其入参和报错信息,方便排查。
|
||||
|
||||
运行流程:
|
||||
|
||||

|
||||
|
||||
## 在 FastGPT 中使用
|
||||
|
||||
AI proxy 相关功能,可以在`账号-模型提供商`页面找到。
|
||||
|
||||
### 1. 创建渠道
|
||||
|
||||
如果 FastGPT 的环境变量中,设置了 AIPROXY_API_ENDPOINT 的值,那么在“模型提供商”的配置页面,会多出两个 tab,可以直接在 FastGPT 平台上配置模型渠道,以及查看模型实际调用日志。
|
||||
在`模型提供商`的配置页面,点击`模型渠道`,进入渠道配置页面
|
||||
|
||||

|
||||
|
||||
@@ -36,9 +52,18 @@ AI Proxy 与 One API 类似,也是作为一个 OpenAI 接口管理 & 分发系
|
||||
1. 渠道名:展示在外部的渠道名称,仅作标识;
|
||||
2. 厂商:模型对应的厂商,不同厂商对应不同的默认地址和 API 密钥格式;
|
||||
3. 模型:当前渠道具体可以使用的模型,系统内置了主流的一些模型,如果下拉框中没有想要的选项,可以点击“新增模型”,[增加自定义模型](/docs/development/modelconfig/intro/#新增自定义模型);
|
||||
4. 模型映射:将 FastGPT 请求的模型,映射到具体提供的模型上;
|
||||
5. 代理地址:具体请求的地址,系统给每个主流渠道配置了默认的地址,如果无需改动则不用填
|
||||
6. API 密钥:从模型厂商处获取的 API 凭证
|
||||
4. 模型映射:将 FastGPT 请求的模型,映射到具体提供的模型上。例如:
|
||||
|
||||
```json
|
||||
{
|
||||
"gpt-4o-test": "gpt-4o",
|
||||
}
|
||||
```
|
||||
|
||||
FatGPT 中的模型为 `gpt-4o-test`,向 AI Proxy 发起请求时也是 `gpt-4o-test`。AI proxy 在向上游发送请求时,实际的`model`为 `gpt-4o`。
|
||||
|
||||
5. 代理地址:具体请求的地址,系统给每个主流渠道配置了默认的地址,如果无需改动则不用填。
|
||||
6. API 密钥:从模型厂商处获取的 API 凭证。注意部分厂商需要提供多个密钥组合,可以根据提示进行输入。
|
||||
|
||||
最后点击“新增”,就能在“模型渠道”下看到刚刚配置的渠道
|
||||
|
||||
@@ -60,16 +85,15 @@ AI Proxy 与 One API 类似,也是作为一个 OpenAI 接口管理 & 分发系
|
||||
|
||||
### 3. 启用模型
|
||||
|
||||
最后在“模型配置”中,可以选择启用对应的模型,这样就能在平台中使用了
|
||||
最后在`模型配置`中,可以选择启用对应的模型,这样就能在平台中使用了,更多模型配置可以参考[模型配置](/docs/development/modelconfig/intro)
|
||||
|
||||

|
||||
|
||||
|
||||
## 渠道设置
|
||||
## 其他功能介绍
|
||||
|
||||
### 优先级
|
||||
|
||||
在 FastGPT 中,可以给渠道设置优先级,对于同样的模型,优先级越高的渠道会越优先请求
|
||||
范围1~100。数值越大,越容易被优先选中。
|
||||
|
||||

|
||||
|
||||
@@ -81,13 +105,15 @@ AI Proxy 与 One API 类似,也是作为一个 OpenAI 接口管理 & 分发系
|
||||
|
||||
### 调用日志
|
||||
|
||||
在 “调用日志” 页面,会展示发送到模型处的请求记录,包括具体的输入输出 tokens、请求时间、请求耗时、请求地址等等
|
||||
在 `调用日志` 页面,会展示发送到模型处的请求记录,包括具体的输入输出 tokens、请求时间、请求耗时、请求地址等等。错误的请求,则会详细的入参和错误信息,方便排查,但仅会保留 1 小时(环境变量里可配置)。
|
||||
|
||||

|
||||
|
||||
## 如何从 OneAPI 迁移到 AI Proxy
|
||||
## 从 OneAPI 迁移到 AI Proxy
|
||||
|
||||
可以从任意终端,发起 1 个 HTTP 请求。其中 {{host}} 替换成 AI Proxy 地址,{{admin_key}} 替换成 AI Proxy 中 ADMIN_KEY 的值,参数 dsn 为 OneAPI 的 mysql 连接串
|
||||
可以从任意终端,发起 1 个 HTTP 请求。其中 `{{host}}` 替换成 AI Proxy 地址,`{{admin_key}}` 替换成 AI Proxy 中 `ADMIN_KEY` 的值。
|
||||
|
||||
Body 参数 `dsn` 为 OneAPI 的 mysql 连接串。
|
||||
|
||||
```bash
|
||||
curl --location --request POST '{{host}}/api/channels/import/oneapi' \
|
||||
@@ -100,4 +126,4 @@ curl --location --request POST '{{host}}/api/channels/import/oneapi' \
|
||||
|
||||
执行成功的情况下会返回 "success": true
|
||||
|
||||
脚本目前不是完全准,可能会有部分渠道遗漏,还需要手动再检查下
|
||||
脚本目前不是完全准,仅是简单的做数据映射,主要是迁移`代理地址`、`模型`和`API 密钥`,建议迁移后再进行手动检查。
|
@@ -46,6 +46,7 @@ curl --location --request POST 'https://{{host}}/api/admin/initv490' \
|
||||
|
||||
1. 知识库数据不再限制索引数量,可无限自定义。同时可自动更新输入文本的索引,不影响自定义索引。
|
||||
2. Markdown 解析,增加链接后中文标点符号检测,增加空格。
|
||||
3. Prompt 模式工具调用,支持思考模型。同时优化其格式检测,减少空输出的概率。
|
||||
|
||||
## 🐛 修复
|
||||
|
||||
|
@@ -1,8 +1,11 @@
|
||||
import type {
|
||||
AIChatItemValueItemType,
|
||||
ChatItemType,
|
||||
ChatItemValueItemType,
|
||||
RuntimeUserPromptType,
|
||||
UserChatItemType
|
||||
SystemChatItemValueItemType,
|
||||
UserChatItemType,
|
||||
UserChatItemValueItemType
|
||||
} from '../../core/chat/type.d';
|
||||
import { ChatFileTypeEnum, ChatItemValueTypeEnum, ChatRoleEnum } from '../../core/chat/constants';
|
||||
import type {
|
||||
@@ -174,137 +177,24 @@ export const GPTMessages2Chats = (
|
||||
): ChatItemType[] => {
|
||||
const chatMessages = messages
|
||||
.map((item) => {
|
||||
const value: ChatItemType['value'] = [];
|
||||
const obj = GPT2Chat[item.role];
|
||||
|
||||
if (
|
||||
obj === ChatRoleEnum.System &&
|
||||
item.role === ChatCompletionRequestMessageRoleEnum.System
|
||||
) {
|
||||
if (Array.isArray(item.content)) {
|
||||
item.content.forEach((item) => [
|
||||
value.push({
|
||||
type: ChatItemValueTypeEnum.text,
|
||||
text: {
|
||||
content: item.text
|
||||
}
|
||||
})
|
||||
]);
|
||||
} else {
|
||||
value.push({
|
||||
type: ChatItemValueTypeEnum.text,
|
||||
text: {
|
||||
content: item.content
|
||||
}
|
||||
});
|
||||
}
|
||||
} else if (
|
||||
obj === ChatRoleEnum.Human &&
|
||||
item.role === ChatCompletionRequestMessageRoleEnum.User
|
||||
) {
|
||||
if (typeof item.content === 'string') {
|
||||
value.push({
|
||||
type: ChatItemValueTypeEnum.text,
|
||||
text: {
|
||||
content: item.content
|
||||
}
|
||||
});
|
||||
} else if (Array.isArray(item.content)) {
|
||||
item.content.forEach((item) => {
|
||||
if (item.type === 'text') {
|
||||
const value = (() => {
|
||||
if (
|
||||
obj === ChatRoleEnum.System &&
|
||||
item.role === ChatCompletionRequestMessageRoleEnum.System
|
||||
) {
|
||||
const value: SystemChatItemValueItemType[] = [];
|
||||
|
||||
if (Array.isArray(item.content)) {
|
||||
item.content.forEach((item) => [
|
||||
value.push({
|
||||
type: ChatItemValueTypeEnum.text,
|
||||
text: {
|
||||
content: item.text
|
||||
}
|
||||
});
|
||||
} else if (item.type === 'image_url') {
|
||||
value.push({
|
||||
//@ts-ignore
|
||||
type: ChatItemValueTypeEnum.file,
|
||||
file: {
|
||||
type: ChatFileTypeEnum.image,
|
||||
name: '',
|
||||
url: item.image_url.url
|
||||
}
|
||||
});
|
||||
} else if (item.type === 'file_url') {
|
||||
value.push({
|
||||
// @ts-ignore
|
||||
type: ChatItemValueTypeEnum.file,
|
||||
file: {
|
||||
type: ChatFileTypeEnum.file,
|
||||
name: item.name,
|
||||
url: item.url
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
} else if (
|
||||
obj === ChatRoleEnum.AI &&
|
||||
item.role === ChatCompletionRequestMessageRoleEnum.Assistant
|
||||
) {
|
||||
if (item.tool_calls && reserveTool) {
|
||||
// save tool calls
|
||||
const toolCalls = item.tool_calls as ChatCompletionMessageToolCall[];
|
||||
value.push({
|
||||
//@ts-ignore
|
||||
type: ChatItemValueTypeEnum.tool,
|
||||
tools: toolCalls.map((tool) => {
|
||||
let toolResponse =
|
||||
messages.find(
|
||||
(msg) =>
|
||||
msg.role === ChatCompletionRequestMessageRoleEnum.Tool &&
|
||||
msg.tool_call_id === tool.id
|
||||
)?.content || '';
|
||||
toolResponse =
|
||||
typeof toolResponse === 'string' ? toolResponse : JSON.stringify(toolResponse);
|
||||
|
||||
return {
|
||||
id: tool.id,
|
||||
toolName: tool.toolName || '',
|
||||
toolAvatar: tool.toolAvatar || '',
|
||||
functionName: tool.function.name,
|
||||
params: tool.function.arguments,
|
||||
response: toolResponse as string
|
||||
};
|
||||
})
|
||||
});
|
||||
} else if (item.function_call && reserveTool) {
|
||||
const functionCall = item.function_call as ChatCompletionMessageFunctionCall;
|
||||
const functionResponse = messages.find(
|
||||
(msg) =>
|
||||
msg.role === ChatCompletionRequestMessageRoleEnum.Function &&
|
||||
msg.name === item.function_call?.name
|
||||
) as ChatCompletionFunctionMessageParam;
|
||||
|
||||
if (functionResponse) {
|
||||
value.push({
|
||||
//@ts-ignore
|
||||
type: ChatItemValueTypeEnum.tool,
|
||||
tools: [
|
||||
{
|
||||
id: functionCall.id || '',
|
||||
toolName: functionCall.toolName || '',
|
||||
toolAvatar: functionCall.toolAvatar || '',
|
||||
functionName: functionCall.name,
|
||||
params: functionCall.arguments,
|
||||
response: functionResponse.content || ''
|
||||
}
|
||||
]
|
||||
});
|
||||
}
|
||||
} else if (item.interactive) {
|
||||
value.push({
|
||||
//@ts-ignore
|
||||
type: ChatItemValueTypeEnum.interactive,
|
||||
interactive: item.interactive
|
||||
});
|
||||
} else if (typeof item.content === 'string') {
|
||||
const lastValue = value[value.length - 1];
|
||||
if (lastValue && lastValue.type === ChatItemValueTypeEnum.text && lastValue.text) {
|
||||
lastValue.text.content += item.content;
|
||||
})
|
||||
]);
|
||||
} else {
|
||||
value.push({
|
||||
type: ChatItemValueTypeEnum.text,
|
||||
@@ -313,8 +203,145 @@ export const GPTMessages2Chats = (
|
||||
}
|
||||
});
|
||||
}
|
||||
return value;
|
||||
} else if (
|
||||
obj === ChatRoleEnum.Human &&
|
||||
item.role === ChatCompletionRequestMessageRoleEnum.User
|
||||
) {
|
||||
const value: UserChatItemValueItemType[] = [];
|
||||
|
||||
if (typeof item.content === 'string') {
|
||||
value.push({
|
||||
type: ChatItemValueTypeEnum.text,
|
||||
text: {
|
||||
content: item.content
|
||||
}
|
||||
});
|
||||
} else if (Array.isArray(item.content)) {
|
||||
item.content.forEach((item) => {
|
||||
if (item.type === 'text') {
|
||||
value.push({
|
||||
type: ChatItemValueTypeEnum.text,
|
||||
text: {
|
||||
content: item.text
|
||||
}
|
||||
});
|
||||
} else if (item.type === 'image_url') {
|
||||
value.push({
|
||||
//@ts-ignore
|
||||
type: ChatItemValueTypeEnum.file,
|
||||
file: {
|
||||
type: ChatFileTypeEnum.image,
|
||||
name: '',
|
||||
url: item.image_url.url
|
||||
}
|
||||
});
|
||||
} else if (item.type === 'file_url') {
|
||||
value.push({
|
||||
// @ts-ignore
|
||||
type: ChatItemValueTypeEnum.file,
|
||||
file: {
|
||||
type: ChatFileTypeEnum.file,
|
||||
name: item.name,
|
||||
url: item.url
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
return value;
|
||||
} else if (
|
||||
obj === ChatRoleEnum.AI &&
|
||||
item.role === ChatCompletionRequestMessageRoleEnum.Assistant
|
||||
) {
|
||||
const value: AIChatItemValueItemType[] = [];
|
||||
|
||||
if (typeof item.reasoning_text === 'string') {
|
||||
value.push({
|
||||
type: ChatItemValueTypeEnum.reasoning,
|
||||
reasoning: {
|
||||
content: item.reasoning_text
|
||||
}
|
||||
});
|
||||
}
|
||||
if (item.tool_calls && reserveTool) {
|
||||
// save tool calls
|
||||
const toolCalls = item.tool_calls as ChatCompletionMessageToolCall[];
|
||||
value.push({
|
||||
//@ts-ignore
|
||||
type: ChatItemValueTypeEnum.tool,
|
||||
tools: toolCalls.map((tool) => {
|
||||
let toolResponse =
|
||||
messages.find(
|
||||
(msg) =>
|
||||
msg.role === ChatCompletionRequestMessageRoleEnum.Tool &&
|
||||
msg.tool_call_id === tool.id
|
||||
)?.content || '';
|
||||
toolResponse =
|
||||
typeof toolResponse === 'string' ? toolResponse : JSON.stringify(toolResponse);
|
||||
|
||||
return {
|
||||
id: tool.id,
|
||||
toolName: tool.toolName || '',
|
||||
toolAvatar: tool.toolAvatar || '',
|
||||
functionName: tool.function.name,
|
||||
params: tool.function.arguments,
|
||||
response: toolResponse as string
|
||||
};
|
||||
})
|
||||
});
|
||||
}
|
||||
if (item.function_call && reserveTool) {
|
||||
const functionCall = item.function_call as ChatCompletionMessageFunctionCall;
|
||||
const functionResponse = messages.find(
|
||||
(msg) =>
|
||||
msg.role === ChatCompletionRequestMessageRoleEnum.Function &&
|
||||
msg.name === item.function_call?.name
|
||||
) as ChatCompletionFunctionMessageParam;
|
||||
|
||||
if (functionResponse) {
|
||||
value.push({
|
||||
//@ts-ignore
|
||||
type: ChatItemValueTypeEnum.tool,
|
||||
tools: [
|
||||
{
|
||||
id: functionCall.id || '',
|
||||
toolName: functionCall.toolName || '',
|
||||
toolAvatar: functionCall.toolAvatar || '',
|
||||
functionName: functionCall.name,
|
||||
params: functionCall.arguments,
|
||||
response: functionResponse.content || ''
|
||||
}
|
||||
]
|
||||
});
|
||||
}
|
||||
}
|
||||
if (item.interactive) {
|
||||
value.push({
|
||||
//@ts-ignore
|
||||
type: ChatItemValueTypeEnum.interactive,
|
||||
interactive: item.interactive
|
||||
});
|
||||
}
|
||||
if (typeof item.content === 'string') {
|
||||
const lastValue = value[value.length - 1];
|
||||
if (lastValue && lastValue.type === ChatItemValueTypeEnum.text && lastValue.text) {
|
||||
lastValue.text.content += item.content;
|
||||
} else {
|
||||
value.push({
|
||||
type: ChatItemValueTypeEnum.text,
|
||||
text: {
|
||||
content: item.content
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return value;
|
||||
}
|
||||
}
|
||||
|
||||
return [];
|
||||
})();
|
||||
|
||||
return {
|
||||
dataId: item.dataId,
|
||||
|
1
packages/global/core/chat/type.d.ts
vendored
1
packages/global/core/chat/type.d.ts
vendored
@@ -77,6 +77,7 @@ export type AIChatItemValueItemType = {
|
||||
| ChatItemValueTypeEnum.reasoning
|
||||
| ChatItemValueTypeEnum.tool
|
||||
| ChatItemValueTypeEnum.interactive;
|
||||
|
||||
text?: {
|
||||
content: string;
|
||||
};
|
||||
|
@@ -55,7 +55,7 @@ export const AiChatModule: FlowNodeTemplateType = {
|
||||
showStatus: true,
|
||||
isTool: true,
|
||||
courseUrl: '/docs/guide/workbench/workflow/ai_chat/',
|
||||
version: '4813',
|
||||
version: '490',
|
||||
inputs: [
|
||||
Input_Template_SettingAiModel,
|
||||
// --- settings modal
|
||||
|
@@ -58,6 +58,13 @@ export const ToolModule: FlowNodeTemplateType = {
|
||||
valueType: WorkflowIOValueTypeEnum.boolean,
|
||||
value: true
|
||||
},
|
||||
{
|
||||
key: NodeInputKeyEnum.aiChatReasoning,
|
||||
renderTypeList: [FlowNodeInputTypeEnum.hidden],
|
||||
label: '',
|
||||
valueType: WorkflowIOValueTypeEnum.boolean,
|
||||
value: true
|
||||
},
|
||||
{
|
||||
key: NodeInputKeyEnum.aiChatTopP,
|
||||
renderTypeList: [FlowNodeInputTypeEnum.hidden],
|
||||
|
@@ -245,7 +245,7 @@ export const readRawContentByFileBuffer = async ({
|
||||
if (result_data.data.status === 'success') {
|
||||
const result = result_data.data.result.pages
|
||||
.map((page) => page.md)
|
||||
.join('\n')
|
||||
.join('')
|
||||
// Do some post-processing
|
||||
.replace(/\\[\(\)]/g, '$')
|
||||
.replace(/\\[\[\]]/g, '$$')
|
||||
|
@@ -75,6 +75,81 @@
|
||||
"showTopP": true,
|
||||
"showStopSign": true,
|
||||
"responseFormatList": ["text", "json_object"]
|
||||
},
|
||||
{
|
||||
"model": "moonshot-v1-8k-vision-preview",
|
||||
"name": "moonshot-v1-8k-vision-preview",
|
||||
"maxContext": 8000,
|
||||
"maxResponse": 4000,
|
||||
"quoteMaxToken": 6000,
|
||||
"maxTemperature": 1,
|
||||
"vision": true,
|
||||
"toolChoice": true,
|
||||
"functionCall": false,
|
||||
"defaultSystemChatPrompt": "",
|
||||
"datasetProcess": true,
|
||||
"usedInClassify": true,
|
||||
"customCQPrompt": "",
|
||||
"usedInExtractFields": true,
|
||||
"usedInQueryExtension": true,
|
||||
"customExtractPrompt": "",
|
||||
"usedInToolCall": true,
|
||||
"defaultConfig": {},
|
||||
"fieldMap": {},
|
||||
"type": "llm",
|
||||
"showTopP": true,
|
||||
"showStopSign": true,
|
||||
"responseFormatList": ["text", "json_object"]
|
||||
},
|
||||
{
|
||||
"model": "moonshot-v1-32k-vision-preview",
|
||||
"name": "moonshot-v1-32k-vision-preview",
|
||||
"maxContext": 32000,
|
||||
"maxResponse": 4000,
|
||||
"quoteMaxToken": 32000,
|
||||
"maxTemperature": 1,
|
||||
"vision": true,
|
||||
"toolChoice": true,
|
||||
"functionCall": false,
|
||||
"defaultSystemChatPrompt": "",
|
||||
"datasetProcess": true,
|
||||
"usedInClassify": true,
|
||||
"customCQPrompt": "",
|
||||
"usedInExtractFields": true,
|
||||
"usedInQueryExtension": true,
|
||||
"customExtractPrompt": "",
|
||||
"usedInToolCall": true,
|
||||
"defaultConfig": {},
|
||||
"fieldMap": {},
|
||||
"type": "llm",
|
||||
"showTopP": true,
|
||||
"showStopSign": true,
|
||||
"responseFormatList": ["text", "json_object"]
|
||||
},
|
||||
{
|
||||
"model": "moonshot-v1-128k-vision-preview",
|
||||
"name": "moonshot-v1-128k-vision-preview",
|
||||
"maxContext": 128000,
|
||||
"maxResponse": 4000,
|
||||
"quoteMaxToken": 60000,
|
||||
"maxTemperature": 1,
|
||||
"vision": true,
|
||||
"toolChoice": true,
|
||||
"functionCall": false,
|
||||
"defaultSystemChatPrompt": "",
|
||||
"datasetProcess": true,
|
||||
"usedInClassify": true,
|
||||
"customCQPrompt": "",
|
||||
"usedInExtractFields": true,
|
||||
"usedInQueryExtension": true,
|
||||
"customExtractPrompt": "",
|
||||
"usedInToolCall": true,
|
||||
"defaultConfig": {},
|
||||
"fieldMap": {},
|
||||
"type": "llm",
|
||||
"showTopP": true,
|
||||
"showStopSign": true,
|
||||
"responseFormatList": ["text", "json_object"]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
@@ -9,41 +9,23 @@ const AppTemplateSchema = new Schema({
|
||||
type: String,
|
||||
required: true
|
||||
},
|
||||
name: {
|
||||
type: String
|
||||
},
|
||||
intro: {
|
||||
type: String
|
||||
},
|
||||
avatar: {
|
||||
type: String
|
||||
},
|
||||
author: {
|
||||
type: String
|
||||
},
|
||||
name: String,
|
||||
intro: String,
|
||||
avatar: String,
|
||||
author: String,
|
||||
tags: {
|
||||
type: [String],
|
||||
default: undefined
|
||||
},
|
||||
type: {
|
||||
type: String
|
||||
},
|
||||
isActive: {
|
||||
type: Boolean
|
||||
},
|
||||
userGuide: {
|
||||
type: Object
|
||||
},
|
||||
isQuickTemplate: {
|
||||
type: Boolean
|
||||
},
|
||||
type: String,
|
||||
isActive: Boolean,
|
||||
userGuide: Object,
|
||||
isQuickTemplate: Boolean,
|
||||
order: {
|
||||
type: Number,
|
||||
default: -1
|
||||
},
|
||||
workflow: {
|
||||
type: Object
|
||||
}
|
||||
workflow: Object
|
||||
});
|
||||
|
||||
AppTemplateSchema.index({ templateId: 1 });
|
||||
|
@@ -55,7 +55,8 @@ export const dispatchRunTools = async (props: DispatchToolModuleProps): Promise<
|
||||
userChatInput,
|
||||
history = 6,
|
||||
fileUrlList: fileLinks,
|
||||
aiChatVision
|
||||
aiChatVision,
|
||||
aiChatReasoning
|
||||
}
|
||||
} = props;
|
||||
|
||||
@@ -63,6 +64,9 @@ export const dispatchRunTools = async (props: DispatchToolModuleProps): Promise<
|
||||
const useVision = aiChatVision && toolModel.vision;
|
||||
const chatHistories = getHistories(history, histories);
|
||||
|
||||
props.params.aiChatVision = aiChatVision && toolModel.vision;
|
||||
props.params.aiChatReasoning = aiChatReasoning && toolModel.reasoning;
|
||||
|
||||
const toolNodeIds = filterToolNodeIdByEdges({ nodeId, edges: runtimeEdges });
|
||||
|
||||
// Gets the module to which the tool is connected
|
||||
|
@@ -24,7 +24,12 @@ import {
|
||||
import { AIChatItemType } from '@fastgpt/global/core/chat/type';
|
||||
import { GPTMessages2Chats } from '@fastgpt/global/core/chat/adapt';
|
||||
import { formatToolResponse, initToolCallEdges, initToolNodes } from './utils';
|
||||
import { computedMaxToken, llmCompletionsBodyFormat } from '../../../../ai/utils';
|
||||
import {
|
||||
computedMaxToken,
|
||||
llmCompletionsBodyFormat,
|
||||
parseReasoningContent,
|
||||
parseReasoningStreamContent
|
||||
} from '../../../../ai/utils';
|
||||
import { WorkflowResponseType } from '../../type';
|
||||
import { toolValueTypeList } from '@fastgpt/global/core/workflow/constants';
|
||||
import { WorkflowInteractiveResponseType } from '@fastgpt/global/core/workflow/template/system/interactive/type';
|
||||
@@ -58,6 +63,7 @@ export const runToolWithPromptCall = async (
|
||||
temperature,
|
||||
maxToken,
|
||||
aiChatVision,
|
||||
aiChatReasoning,
|
||||
aiChatTopP,
|
||||
aiChatStopSign,
|
||||
aiChatResponseFormat,
|
||||
@@ -216,7 +222,7 @@ export const runToolWithPromptCall = async (
|
||||
const [requestMessages] = await Promise.all([
|
||||
loadRequestMessages({
|
||||
messages: filterMessages,
|
||||
useVision: toolModel.vision && aiChatVision,
|
||||
useVision: aiChatVision,
|
||||
origin: requestOrigin
|
||||
})
|
||||
]);
|
||||
@@ -251,22 +257,46 @@ export const runToolWithPromptCall = async (
|
||||
}
|
||||
});
|
||||
|
||||
const answer = await (async () => {
|
||||
const { answer, reasoning } = await (async () => {
|
||||
if (res && isStreamResponse) {
|
||||
const { answer } = await streamResponse({
|
||||
const { answer, reasoning } = await streamResponse({
|
||||
res,
|
||||
toolNodes,
|
||||
stream: aiResponse,
|
||||
workflowStreamResponse
|
||||
workflowStreamResponse,
|
||||
aiChatReasoning
|
||||
});
|
||||
|
||||
return answer;
|
||||
return { answer, reasoning };
|
||||
} else {
|
||||
const result = aiResponse as ChatCompletion;
|
||||
const content = aiResponse.choices?.[0]?.message?.content || '';
|
||||
const reasoningContent: string = aiResponse.choices?.[0]?.message?.reasoning_content || '';
|
||||
|
||||
return result.choices?.[0]?.message?.content || '';
|
||||
// API already parse reasoning content
|
||||
if (reasoningContent || !aiChatReasoning) {
|
||||
return {
|
||||
answer: content,
|
||||
reasoning: reasoningContent
|
||||
};
|
||||
}
|
||||
|
||||
const [think, answer] = parseReasoningContent(content);
|
||||
return {
|
||||
answer,
|
||||
reasoning: think
|
||||
};
|
||||
}
|
||||
})();
|
||||
|
||||
if (stream && !isStreamResponse && aiChatReasoning && reasoning) {
|
||||
workflowStreamResponse?.({
|
||||
event: SseResponseEventEnum.fastAnswer,
|
||||
data: textAdaptGptResponse({
|
||||
reasoning_content: reasoning
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
const { answer: replaceAnswer, toolJson } = parseAnswer(answer);
|
||||
if (!answer && !toolJson) {
|
||||
return Promise.reject(getEmptyResponseTip());
|
||||
@@ -294,11 +324,16 @@ export const runToolWithPromptCall = async (
|
||||
}
|
||||
|
||||
// No tool is invoked, indicating that the process is over
|
||||
const gptAssistantResponse: ChatCompletionAssistantMessageParam = {
|
||||
const gptAssistantResponse: ChatCompletionMessageParam = {
|
||||
role: ChatCompletionRequestMessageRoleEnum.Assistant,
|
||||
content: replaceAnswer
|
||||
content: replaceAnswer,
|
||||
reasoning_text: reasoning
|
||||
};
|
||||
const completeMessages = filterMessages.concat(gptAssistantResponse);
|
||||
const completeMessages = filterMessages.concat({
|
||||
...gptAssistantResponse,
|
||||
reasoning_text: undefined
|
||||
});
|
||||
|
||||
const inputTokens = await countGptMessagesTokens(requestMessages);
|
||||
const outputTokens = await countGptMessagesTokens([gptAssistantResponse]);
|
||||
|
||||
@@ -379,9 +414,10 @@ export const runToolWithPromptCall = async (
|
||||
})();
|
||||
|
||||
// 合并工具调用的结果,使用 functionCall 格式存储。
|
||||
const assistantToolMsgParams: ChatCompletionAssistantMessageParam = {
|
||||
const assistantToolMsgParams: ChatCompletionMessageParam = {
|
||||
role: ChatCompletionRequestMessageRoleEnum.Assistant,
|
||||
function_call: toolJson
|
||||
function_call: toolJson,
|
||||
reasoning_text: reasoning
|
||||
};
|
||||
|
||||
// Only toolCall tokens are counted here, Tool response tokens count towards the next reply
|
||||
@@ -502,12 +538,14 @@ ANSWER: `;
|
||||
async function streamResponse({
|
||||
res,
|
||||
stream,
|
||||
workflowStreamResponse
|
||||
workflowStreamResponse,
|
||||
aiChatReasoning
|
||||
}: {
|
||||
res: NextApiResponse;
|
||||
toolNodes: ToolNodeItemType[];
|
||||
stream: StreamChatType;
|
||||
workflowStreamResponse?: WorkflowResponseType;
|
||||
aiChatReasoning?: boolean;
|
||||
}) {
|
||||
const write = responseWriteController({
|
||||
res,
|
||||
@@ -515,7 +553,9 @@ async function streamResponse({
|
||||
});
|
||||
|
||||
let startResponseWrite = false;
|
||||
let textAnswer = '';
|
||||
let answer = '';
|
||||
let reasoning = '';
|
||||
const { parsePart, getStartTagBuffer } = parseReasoningStreamContent();
|
||||
|
||||
for await (const part of stream) {
|
||||
if (res.closed) {
|
||||
@@ -523,13 +563,21 @@ async function streamResponse({
|
||||
break;
|
||||
}
|
||||
|
||||
const responseChoice = part.choices?.[0]?.delta;
|
||||
// console.log(responseChoice, '---===');
|
||||
const [reasoningContent, content] = parsePart(part, aiChatReasoning);
|
||||
answer += content;
|
||||
reasoning += reasoningContent;
|
||||
|
||||
if (responseChoice?.content) {
|
||||
const content = responseChoice?.content || '';
|
||||
textAnswer += content;
|
||||
if (aiChatReasoning && reasoningContent) {
|
||||
workflowStreamResponse?.({
|
||||
write,
|
||||
event: SseResponseEventEnum.answer,
|
||||
data: textAdaptGptResponse({
|
||||
reasoning_content: reasoningContent
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
if (content) {
|
||||
if (startResponseWrite) {
|
||||
workflowStreamResponse?.({
|
||||
write,
|
||||
@@ -538,18 +586,20 @@ async function streamResponse({
|
||||
text: content
|
||||
})
|
||||
});
|
||||
} else if (textAnswer.length >= 3) {
|
||||
textAnswer = textAnswer.trim();
|
||||
if (textAnswer.startsWith('0')) {
|
||||
} else if (answer.length >= 3) {
|
||||
answer = answer.trimStart();
|
||||
if (/0(:|:)/.test(answer)) {
|
||||
startResponseWrite = true;
|
||||
|
||||
// find first : index
|
||||
const firstIndex = textAnswer.indexOf(':');
|
||||
textAnswer = textAnswer.substring(firstIndex + 1).trim();
|
||||
const firstIndex =
|
||||
answer.indexOf('0:') !== -1 ? answer.indexOf('0:') : answer.indexOf('0:');
|
||||
answer = answer.substring(firstIndex + 2).trim();
|
||||
workflowStreamResponse?.({
|
||||
write,
|
||||
event: SseResponseEventEnum.answer,
|
||||
data: textAdaptGptResponse({
|
||||
text: textAnswer
|
||||
text: answer
|
||||
})
|
||||
});
|
||||
}
|
||||
@@ -557,7 +607,23 @@ async function streamResponse({
|
||||
}
|
||||
}
|
||||
|
||||
return { answer: textAnswer.trim() };
|
||||
if (answer === '') {
|
||||
answer = getStartTagBuffer();
|
||||
if (/0(:|:)/.test(answer)) {
|
||||
// find first : index
|
||||
const firstIndex = answer.indexOf('0:') !== -1 ? answer.indexOf('0:') : answer.indexOf('0:');
|
||||
answer = answer.substring(firstIndex + 2).trim();
|
||||
workflowStreamResponse?.({
|
||||
write,
|
||||
event: SseResponseEventEnum.answer,
|
||||
data: textAdaptGptResponse({
|
||||
text: answer
|
||||
})
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return { answer, reasoning };
|
||||
}
|
||||
|
||||
const parseAnswer = (
|
||||
@@ -568,8 +634,7 @@ const parseAnswer = (
|
||||
} => {
|
||||
str = str.trim();
|
||||
// 首先,使用正则表达式提取TOOL_ID和TOOL_ARGUMENTS
|
||||
const prefixReg = /^1(:|:)/;
|
||||
const answerPrefixReg = /^0(:|:)/;
|
||||
const prefixReg = /1(:|:)/;
|
||||
|
||||
if (prefixReg.test(str)) {
|
||||
const toolString = sliceJsonStr(str);
|
||||
@@ -585,13 +650,21 @@ const parseAnswer = (
|
||||
}
|
||||
};
|
||||
} catch (error) {
|
||||
return {
|
||||
answer: ERROR_TEXT
|
||||
};
|
||||
if (/^1(:|:)/.test(str)) {
|
||||
return {
|
||||
answer: ERROR_TEXT
|
||||
};
|
||||
} else {
|
||||
return {
|
||||
answer: str
|
||||
};
|
||||
}
|
||||
}
|
||||
} else {
|
||||
const firstIndex = str.indexOf('0:') !== -1 ? str.indexOf('0:') : str.indexOf('0:');
|
||||
const answer = str.substring(firstIndex + 2).trim();
|
||||
return {
|
||||
answer: str.replace(answerPrefixReg, '')
|
||||
answer
|
||||
};
|
||||
}
|
||||
};
|
||||
|
@@ -22,6 +22,7 @@ export type DispatchToolModuleProps = ModuleDispatchProps<{
|
||||
[NodeInputKeyEnum.aiChatTemperature]: number;
|
||||
[NodeInputKeyEnum.aiChatMaxToken]: number;
|
||||
[NodeInputKeyEnum.aiChatVision]?: boolean;
|
||||
[NodeInputKeyEnum.aiChatReasoning]?: boolean;
|
||||
[NodeInputKeyEnum.aiChatTopP]?: number;
|
||||
[NodeInputKeyEnum.aiChatStopSign]?: string;
|
||||
[NodeInputKeyEnum.aiChatResponseFormat]?: string;
|
||||
|
@@ -563,6 +563,15 @@ async function streamResponse({
|
||||
// if answer is empty, try to get value from startTagBuffer. (Cause: The response content is too short to exceed the minimum parse length)
|
||||
if (answer === '') {
|
||||
answer = getStartTagBuffer();
|
||||
if (isResponseAnswerText && answer) {
|
||||
workflowStreamResponse?.({
|
||||
write,
|
||||
event: SseResponseEventEnum.answer,
|
||||
data: textAdaptGptResponse({
|
||||
text: answer
|
||||
})
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return { answer, reasoning };
|
||||
|
@@ -27,7 +27,9 @@ parentPort?.on('message', async (props: ReadRawTextProps<Uint8Array>) => {
|
||||
case 'csv':
|
||||
return readCsvRawText(params);
|
||||
default:
|
||||
return Promise.reject('Only support .txt, .md, .html, .pdf, .docx, pptx, .csv, .xlsx');
|
||||
return Promise.reject(
|
||||
`Only support .txt, .md, .html, .pdf, .docx, pptx, .csv, .xlsx. "${params.extension}" is not supported.`
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
|
@@ -139,14 +139,14 @@ const ChannelTable = ({ Tab }: { Tab: React.ReactNode }) => {
|
||||
</Td>
|
||||
<Td>
|
||||
<MyNumberInput
|
||||
defaultValue={item.priority || 0}
|
||||
min={0}
|
||||
defaultValue={item.priority || 1}
|
||||
min={1}
|
||||
max={100}
|
||||
h={'32px'}
|
||||
w={'80px'}
|
||||
onBlur={(e) => {
|
||||
const val = (() => {
|
||||
if (!e) return 0;
|
||||
if (!e) return 1;
|
||||
return e;
|
||||
})();
|
||||
updateChannel({
|
||||
|
@@ -130,7 +130,8 @@ export const postCreateChannel = (data: CreateChannelProps) =>
|
||||
base_url: data.base_url,
|
||||
models: data.models,
|
||||
model_mapping: data.model_mapping,
|
||||
key: data.key
|
||||
key: data.key,
|
||||
priority: 1
|
||||
});
|
||||
|
||||
export const putChannelStatus = (id: number, status: ChannelStatusEnum) =>
|
||||
@@ -146,7 +147,7 @@ export const putChannel = (data: ChannelInfoType) =>
|
||||
model_mapping: data.model_mapping,
|
||||
key: data.key,
|
||||
status: data.status,
|
||||
priority: data.priority
|
||||
priority: data.priority ? Math.max(data.priority, 1) : undefined
|
||||
});
|
||||
|
||||
export const deleteChannel = (id: number) => DELETE(`/channel/${id}`);
|
||||
|
Reference in New Issue
Block a user