This commit is contained in:
Archer
2023-10-17 10:00:32 +08:00
committed by GitHub
parent dd8f2744bf
commit 3b776b6639
98 changed files with 1525 additions and 983 deletions

View File

@@ -1,12 +1,12 @@
import { Bill } from '@/service/mongo';
import { MongoUser } from '@fastgpt/support/user/schema';
import { BillSourceEnum } from '@/constants/user';
import { getModel } from '@/service/utils/data';
import { getModelMap, ModelTypeEnum } from '@/service/core/ai/model';
import { ChatHistoryItemResType } from '@/types/chat';
import { formatPrice } from '@fastgpt/common/bill/index';
import { addLog } from '@/service/utils/tools';
import type { CreateBillType } from '@/types/common/bill';
import { defaultQGModel } from '@/pages/api/system/getInitData';
import { defaultQGModels } from '@/constants/model';
async function createBill(data: CreateBillType) {
try {
@@ -106,7 +106,7 @@ export const pushQABill = async ({
addLog.info('splitData generate success', { totalTokens });
// 获取模型单价格, 都是用 gpt35 拆分
const unitPrice = global.qaModel.price || 3;
const unitPrice = global.qaModels?.[0]?.price || 3;
// 计算价格
const total = unitPrice * totalTokens;
@@ -158,7 +158,7 @@ export const pushGenerateVectorBill = async ({
{
moduleName: '索引生成',
amount: total,
model: vectorModel.model,
model: vectorModel.name,
tokenLen
}
]
@@ -167,14 +167,22 @@ export const pushGenerateVectorBill = async ({
return { total };
};
export const countModelPrice = ({ model, tokens }: { model: string; tokens: number }) => {
const modelData = getModel(model);
export const countModelPrice = ({
model,
tokens,
type
}: {
model: string;
tokens: number;
type: `${ModelTypeEnum}`;
}) => {
const modelData = getModelMap?.[type]?.(model);
if (!modelData) return 0;
return modelData.price * tokens;
};
export const pushQuestionGuideBill = ({ tokens, userId }: { tokens: number; userId: string }) => {
const qgModel = global.qgModel || defaultQGModel;
const qgModel = global.qgModels?.[0] || defaultQGModels[0];
const total = qgModel.price * tokens;
createBill({
userId,

View File

@@ -1,39 +0,0 @@
import type { NextApiResponse } from 'next';
export function responseWriteController({
res,
readStream
}: {
res: NextApiResponse;
readStream: any;
}) {
res.on('drain', () => {
readStream.resume();
});
return (text: string | Buffer) => {
const writeResult = res.write(text);
if (!writeResult) {
readStream.pause();
}
};
}
export function responseWrite({
res,
write,
event,
data
}: {
res?: NextApiResponse;
write?: (text: string) => void;
event?: string;
data: string;
}) {
const Write = write || res?.write;
if (!Write) return;
event && Write(`event: ${event}\n`);
Write(`data: ${data}\n\n`);
}

View File

@@ -0,0 +1,68 @@
import {
defaultChatModels,
defaultCQModels,
defaultExtractModels,
defaultQAModels,
defaultQGModels,
defaultVectorModels
} from '@/constants/model';
export const getChatModel = (model?: string) => {
return (
(global.chatModels || defaultChatModels).find((item) => item.model === model) ||
defaultChatModels[0]
);
};
export const getQAModel = (model?: string) => {
return (
(global.qaModels || defaultQAModels).find((item) => item.model === model) ||
global.qaModels?.[0] ||
defaultQAModels[0]
);
};
export const getCQModel = (model?: string) => {
return (
(global.cqModels || defaultCQModels).find((item) => item.model === model) ||
global.cqModels?.[0] ||
defaultCQModels[0]
);
};
export const getExtractModel = (model?: string) => {
return (
(global.extractModels || defaultExtractModels).find((item) => item.model === model) ||
global.extractModels?.[0] ||
defaultExtractModels[0]
);
};
export const getQGModel = (model?: string) => {
return (
(global.qgModels || defaultQGModels).find((item) => item.model === model) ||
global.qgModels?.[0] ||
defaultQGModels[0]
);
};
export const getVectorModel = (model?: string) => {
return (
global.vectorModels.find((item) => item.model === model) ||
global.vectorModels?.[0] ||
defaultVectorModels[0]
);
};
export enum ModelTypeEnum {
chat = 'chat',
qa = 'qa',
cq = 'cq',
extract = 'extract',
qg = 'qg',
vector = 'vector'
}
export const getModelMap = {
[ModelTypeEnum.chat]: getChatModel,
[ModelTypeEnum.qa]: getQAModel,
[ModelTypeEnum.cq]: getCQModel,
[ModelTypeEnum.extract]: getExtractModel,
[ModelTypeEnum.qg]: getQGModel,
[ModelTypeEnum.vector]: getVectorModel
};

View File

@@ -0,0 +1,12 @@
import { FlowModuleTypeEnum } from '@/constants/flow';
import { AppModuleItemType } from '@/types/app';
export const getChatModelNameListByModules = (modules: AppModuleItemType[]): string[] => {
const chatModules = modules.filter((item) => item.flowType === FlowModuleTypeEnum.chatNode);
return chatModules
.map((item) => {
const model = item.inputs.find((input) => input.key === 'model')?.value;
return global.chatModels.find((item) => item.model === model)?.name || '';
})
.filter((item) => item);
};

View File

@@ -73,7 +73,7 @@ export async function generateQA(): Promise<any> {
];
const ai = getAIApi(undefined, 480000);
const chatResponse = await ai.chat.completions.create({
model: global.qaModel.model,
model: global.qaModels[0].model,
temperature: 0.01,
messages,
stream: false

View File

@@ -10,9 +10,11 @@ import { FlowModuleTypeEnum } from '@/constants/flow';
import type { ModuleDispatchProps } from '@/types/core/chat/type';
import { replaceVariable } from '@/utils/common/tools/text';
import { Prompt_CQJson } from '@/global/core/prompt/agent';
import { defaultCQModel } from '@/pages/api/system/getInitData';
import { FunctionModelItemType } from '@/types/model';
import { getCQModel } from '@/service/core/ai/model';
type Props = ModuleDispatchProps<{
model: string;
systemPrompt?: string;
history?: ChatItemType[];
[SystemInputEnum.userChatInput]: string;
@@ -30,20 +32,26 @@ export const dispatchClassifyQuestion = async (props: Props): Promise<CQResponse
const {
moduleName,
user,
inputs: { agents, userChatInput }
inputs: { model, agents, userChatInput }
} = props as Props;
if (!userChatInput) {
return Promise.reject('Input is empty');
}
const cqModel = global.cqModel || defaultCQModel;
const cqModel = getCQModel(model);
const { arg, tokens } = await (async () => {
if (cqModel.functionCall) {
return functionCall(props);
return functionCall({
...props,
cqModel
});
}
return completions(props);
return completions({
...props,
cqModel
});
})();
const result = agents.find((item) => item.key === arg?.type) || agents[agents.length - 1];
@@ -64,45 +72,45 @@ export const dispatchClassifyQuestion = async (props: Props): Promise<CQResponse
async function functionCall({
user,
cqModel,
inputs: { agents, systemPrompt, history = [], userChatInput }
}: Props) {
const cqModel = global.cqModel;
}: Props & { cqModel: FunctionModelItemType }) {
const messages: ChatItemType[] = [
...(systemPrompt
? [
{
obj: ChatRoleEnum.System,
value: systemPrompt
}
]
: []),
...history,
{
obj: ChatRoleEnum.Human,
value: userChatInput
value: systemPrompt
? `补充的背景知识:
"""
${systemPrompt}
"""
我的问题: ${userChatInput}
`
: userChatInput
}
];
const filterMessages = ChatContextFilter({
messages,
maxTokens: cqModel.maxToken
});
const adaptMessages = adaptChat2GptMessages({ messages: filterMessages, reserveId: false });
// function body
// function body
const agentFunction = {
name: agentFunName,
description: '判断用户问题类型属于哪方面,返回对应的字段',
description: '请根据对话记录及补充的背景知识,判断用户问题类型,返回对应的字段',
parameters: {
type: 'object',
properties: {
type: {
type: 'string',
description: agents.map((item) => `${item.value},返回:'${item.key}'`).join(''),
description: `判断用户的问题类型,并返回对应的字段。下面是几种问题类型: ${agents
.map((item) => `${item.value},返回:'${item.key}'`)
.join('')}`,
enum: agents.map((item) => item.key)
}
},
required: ['type']
}
}
};
const ai = getAIApi(user.openaiAccount, 48000);
@@ -133,15 +141,14 @@ async function functionCall({
}
async function completions({
cqModel,
user,
inputs: { agents, systemPrompt = '', history = [], userChatInput }
}: Props) {
const extractModel = global.extractModel;
}: Props & { cqModel: FunctionModelItemType }) {
const messages: ChatItemType[] = [
{
obj: ChatRoleEnum.Human,
value: replaceVariable(extractModel.prompt || Prompt_CQJson, {
value: replaceVariable(cqModel.functionPrompt || Prompt_CQJson, {
systemPrompt,
typeList: agents.map((item) => `ID: "${item.key}", 问题类型:${item.value}`).join('\n'),
text: `${history.map((item) => `${item.obj}:${item.value}`).join('\n')}
@@ -153,7 +160,7 @@ Human:${userChatInput}`
const ai = getAIApi(user.openaiAccount, 480000);
const data = await ai.chat.completions.create({
model: extractModel.model,
model: cqModel.model,
temperature: 0.01,
messages: adaptChat2GptMessages({ messages, reserveId: false }),
stream: false

View File

@@ -9,7 +9,7 @@ import { FlowModuleTypeEnum } from '@/constants/flow';
import type { ModuleDispatchProps } from '@/types/core/chat/type';
import { Prompt_ExtractJson } from '@/global/core/prompt/agent';
import { replaceVariable } from '@/utils/common/tools/text';
import { defaultExtractModel } from '@/pages/api/system/getInitData';
import { FunctionModelItemType } from '@/types/model';
type Props = ModuleDispatchProps<{
history?: ChatItemType[];
@@ -37,13 +37,19 @@ export async function dispatchContentExtract(props: Props): Promise<Response> {
return Promise.reject('Input is empty');
}
const extractModel = global.extractModel || defaultExtractModel;
const extractModel = global.extractModels[0];
const { arg, tokens } = await (async () => {
if (extractModel.functionCall) {
return functionCall(props);
return functionCall({
...props,
extractModel
});
}
return completions(props);
return completions({
...props,
extractModel
});
})();
// remove invalid key
@@ -83,11 +89,10 @@ export async function dispatchContentExtract(props: Props): Promise<Response> {
}
async function functionCall({
extractModel,
user,
inputs: { history = [], content, extractKeys, description }
}: Props) {
const extractModel = global.extractModel;
}: Props & { extractModel: FunctionModelItemType }) {
const messages: ChatItemType[] = [
...history,
{
@@ -152,15 +157,14 @@ async function functionCall({
}
async function completions({
extractModel,
user,
inputs: { history = [], content, extractKeys, description }
}: Props) {
const extractModel = global.extractModel;
}: Props & { extractModel: FunctionModelItemType }) {
const messages: ChatItemType[] = [
{
obj: ChatRoleEnum.Human,
value: replaceVariable(extractModel.prompt || Prompt_ExtractJson, {
value: replaceVariable(extractModel.functionPrompt || Prompt_ExtractJson, {
description,
json: extractKeys
.map(

View File

@@ -7,7 +7,6 @@ import { textAdaptGptResponse } from '@/utils/adapt';
import { getAIApi } from '@fastgpt/core/ai/config';
import type { ChatCompletion, StreamChatType } from '@fastgpt/core/ai/type';
import { TaskResponseKeyEnum } from '@/constants/chat';
import { getChatModel } from '@/service/utils/data';
import { countModelPrice } from '@/service/common/bill/push';
import { ChatModelItemType } from '@/types/model';
import { postTextCensor } from '@fastgpt/common/plusApi/censor';
@@ -15,12 +14,13 @@ import { ChatCompletionRequestMessageRoleEnum } from '@fastgpt/core/ai/constant'
import { AppModuleItemType } from '@/types/app';
import { countMessagesTokens, sliceMessagesTB } from '@/utils/common/tiktoken';
import { adaptChat2GptMessages } from '@/utils/common/adapt/message';
import { defaultQuotePrompt, defaultQuoteTemplate } from '@/global/core/prompt/AIChat';
import { Prompt_QuotePromptList, Prompt_QuoteTemplateList } from '@/global/core/prompt/AIChat';
import type { AIChatProps } from '@/types/core/aiChat';
import { replaceVariable } from '@/utils/common/tools/text';
import { FlowModuleTypeEnum } from '@/constants/flow';
import type { ModuleDispatchProps } from '@/types/core/chat/type';
import { responseWrite, responseWriteController } from '@/service/common/stream';
import { responseWrite, responseWriteController } from '@fastgpt/common/tools/stream';
import { getChatModel, ModelTypeEnum } from '@/service/core/ai/model';
export type ChatProps = ModuleDispatchProps<
AIChatProps & {
@@ -47,12 +47,13 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
user,
outputs,
inputs: {
model = global.chatModels[0]?.model,
model,
temperature = 0,
maxToken = 4000,
history = [],
quoteQA = [],
userChatInput,
isResponseAnswerText = true,
systemPrompt = '',
limitPrompt,
quoteTemplate,
@@ -63,6 +64,8 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
return Promise.reject('Question is empty');
}
stream = stream && isResponseAnswerText;
// temperature adapt
const modelConstantsData = getChatModel(model);
@@ -110,18 +113,18 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
model,
temperature,
max_tokens,
stream,
messages: [
...(modelConstantsData.defaultSystem
...(modelConstantsData.defaultSystemChatPrompt
? [
{
role: ChatCompletionRequestMessageRoleEnum.System,
content: modelConstantsData.defaultSystem
content: modelConstantsData.defaultSystemChatPrompt
}
]
: []),
...messages
],
stream
]
});
const { answerText, totalTokens, completeMessages } = await (async () => {
@@ -172,7 +175,9 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
[TaskResponseKeyEnum.responseData]: {
moduleType: FlowModuleTypeEnum.chatNode,
moduleName,
price: user.openaiAccount?.key ? 0 : countModelPrice({ model, tokens: totalTokens }),
price: user.openaiAccount?.key
? 0
: countModelPrice({ model, tokens: totalTokens, type: ModelTypeEnum.chat }),
model: modelConstantsData.name,
tokens: totalTokens,
question: userChatInput,
@@ -198,7 +203,7 @@ function filterQuote({
maxTokens: model.quoteMaxToken,
messages: quoteQA.map((item, index) => ({
obj: ChatRoleEnum.System,
value: replaceVariable(quoteTemplate || defaultQuoteTemplate, {
value: replaceVariable(quoteTemplate || Prompt_QuoteTemplateList[0].value, {
...item,
index: index + 1
})
@@ -212,7 +217,7 @@ function filterQuote({
filterQuoteQA.length > 0
? `${filterQuoteQA
.map((item, index) =>
replaceVariable(quoteTemplate || defaultQuoteTemplate, {
replaceVariable(quoteTemplate || Prompt_QuoteTemplateList[0].value, {
...item,
index: `${index + 1}`
})
@@ -243,7 +248,7 @@ function getChatMessages({
model: ChatModelItemType;
}) {
const question = quoteText
? replaceVariable(quotePrompt || defaultQuotePrompt, {
? replaceVariable(quotePrompt || Prompt_QuotePromptList[0].value, {
quote: quoteText,
question: userChatInput
})
@@ -275,7 +280,7 @@ function getChatMessages({
const filterMessages = ChatContextFilter({
messages,
maxTokens: Math.ceil(model.contextMaxToken - 300) // filter token. not response maxToken
maxTokens: Math.ceil(model.maxToken - 300) // filter token. not response maxToken
});
const adaptMessages = adaptChat2GptMessages({ messages: filterMessages, reserveId: false });
@@ -294,7 +299,7 @@ function getMaxTokens({
model: ChatModelItemType;
filterMessages: ChatProps['inputs']['history'];
}) {
const tokensLimit = model.contextMaxToken;
const tokensLimit = model.maxToken;
/* count response max token */
const promptsToken = countMessagesTokens({
@@ -349,7 +354,7 @@ async function streamResponse({
stream.controller?.abort();
break;
}
const content = part.choices[0]?.delta?.content || '';
const content = part.choices?.[0]?.delta?.content || '';
answer += content;
responseWrite({

View File

@@ -8,6 +8,7 @@ import type { QuoteItemType } from '@/types/chat';
import { PgDatasetTableName } from '@/constants/plugin';
import { FlowModuleTypeEnum } from '@/constants/flow';
import type { ModuleDispatchProps } from '@/types/core/chat/type';
import { ModelTypeEnum } from '@/service/core/ai/model';
type KBSearchProps = ModuleDispatchProps<{
kbList: SelectedDatasetType;
similarity: number;
@@ -66,7 +67,11 @@ export async function dispatchKBSearch(props: Record<string, any>): Promise<KBSe
responseData: {
moduleType: FlowModuleTypeEnum.kbSearchNode,
moduleName,
price: countModelPrice({ model: vectorModel.model, tokens: tokenLen }),
price: countModelPrice({
model: vectorModel.model,
tokens: tokenLen,
type: ModelTypeEnum.vector
}),
model: vectorModel.name,
tokens: tokenLen,
similarity,

View File

@@ -1,5 +1,5 @@
import { sseResponseEventEnum, TaskResponseKeyEnum } from '@/constants/chat';
import { sseResponse } from '@/service/utils/tools';
import { responseWrite } from '@fastgpt/common/tools/stream';
import { textAdaptGptResponse } from '@/utils/adapt';
import type { ModuleDispatchProps } from '@/types/core/chat/type';
export type AnswerProps = ModuleDispatchProps<{
@@ -21,7 +21,7 @@ export const dispatchAnswer = (props: Record<string, any>): AnswerResponse => {
const formatText = typeof text === 'string' ? text : JSON.stringify(text, null, 2);
if (stream) {
sseResponse({
responseWrite({
res,
event: detail ? sseResponseEventEnum.answer : undefined,
data: textAdaptGptResponse({

View File

@@ -3,7 +3,7 @@ import type { ModuleDispatchProps } from '@/types/core/chat/type';
import { SelectAppItemType } from '@/types/core/app/flow';
import { dispatchModules } from '@/pages/api/v1/chat/completions';
import { App } from '@/service/mongo';
import { responseWrite } from '@/service/common/stream';
import { responseWrite } from '@fastgpt/common/tools/stream';
import { ChatRoleEnum, TaskResponseKeyEnum, sseResponseEventEnum } from '@/constants/chat';
import { textAdaptGptResponse } from '@/utils/adapt';

View File

@@ -232,6 +232,6 @@ export async function initPg() {
`);
console.log('init pg successful');
} catch (error) {
addLog.error('init pg error', error);
console.log('init pg error', error);
}
}

View File

@@ -1,7 +1,9 @@
import { sseResponseEventEnum } from '@/constants/chat';
import { NextApiResponse } from 'next';
import { proxyError, ERROR_RESPONSE, ERROR_ENUM } from '@fastgpt/common/constant/errorCode';
import { clearCookie, sseResponse, addLog } from './utils/tools';
import { addLog } from './utils/tools';
import { clearCookie } from '@fastgpt/support/user/auth';
import { responseWrite } from '@fastgpt/common/tools/stream';
export interface ResponseType<T = any> {
code: number;
@@ -66,7 +68,7 @@ export const sseErrRes = (res: NextApiResponse, error: any) => {
clearCookie(res);
}
return sseResponse({
return responseWrite({
res,
event: sseResponseEventEnum.error,
data: JSON.stringify(ERROR_RESPONSE[errResponseKey])
@@ -86,7 +88,7 @@ export const sseErrRes = (res: NextApiResponse, error: any) => {
addLog.error(`sse error: ${msg}`, error);
sseResponse({
responseWrite({
res,
event: sseResponseEventEnum.error,
data: JSON.stringify({ message: msg })

View File

@@ -1,24 +0,0 @@
export const getChatModel = (model?: string) => {
return global.chatModels.find((item) => item.model === model);
};
export const getVectorModel = (model?: string) => {
return (
global.vectorModels.find((item) => item.model === model) || {
model: 'UnKnow',
name: 'UnKnow',
defaultToken: 500,
price: 0,
maxToken: 3000
}
);
};
export const getModel = (model?: string) => {
return [
...global.chatModels,
...global.vectorModels,
global.qaModel,
global.extractModel,
global.cqModel
].find((item) => item.model === model);
};

View File

@@ -1,37 +1,7 @@
import type { NextApiResponse, NextApiHandler, NextApiRequest } from 'next';
import NextCors from 'nextjs-cors';
import type { NextApiResponse } from 'next';
import { generateQA } from '../events/generateQA';
import { generateVector } from '../events/generateVector';
/* set cookie */
export const setCookie = (res: NextApiResponse, token: string) => {
res.setHeader(
'Set-Cookie',
`token=${token}; Path=/; HttpOnly; Max-Age=604800; Samesite=None; Secure;`
);
};
/* clear cookie */
export const clearCookie = (res: NextApiResponse) => {
res.setHeader('Set-Cookie', 'token=; Path=/; Max-Age=0');
};
export function withNextCors(handler: NextApiHandler): NextApiHandler {
return async function nextApiHandlerWrappedWithNextCors(
req: NextApiRequest,
res: NextApiResponse
) {
const methods = ['GET', 'eHEAD', 'PUT', 'PATCH', 'POST', 'DELETE'];
const origin = req.headers.origin;
await NextCors(req, res, {
methods,
origin: origin,
optionsSuccessStatus: 200
});
return handler(req, res);
};
}
/* start task */
export const startQueue = () => {
if (!global.systemEnv) return;
@@ -43,20 +13,6 @@ export const startQueue = () => {
}
};
export const sseResponse = ({
res,
event,
data
}: {
res: NextApiResponse;
event?: string;
data: string;
}) => {
if (res.closed) return;
event && res.write(`event: ${event}\n`);
res.write(`data: ${data}\n\n`);
};
/* add logger */
export const addLog = {
info: (msg: string, obj?: Record<string, any>) => {