feat: add plan agent & model agent (#5577)

* refactor: agent call (#5572)

* feat: Add relevant functions related to agent invocation, including plan parsing, state management and tool invocation

* Refactor agent call logic and utilities

- Simplified the `runAgentCall` function by removing unnecessary complexity and restructuring the flow for better readability and maintainability.
- Introduced helper functions to create tools from tool nodes and to prepare agent messages, enhancing modularity.
- Removed the `utils.ts` file as its functions were integrated into the main logic, streamlining the codebase.
- Updated the dispatch logic in `index.ts` to utilize the new helper functions and improve clarity.
- Adjusted the handling of interactive modes and tool calls to ensure proper response formatting and error handling.

* refactor: clean up the processing logic of the interactive mode and remove the unused tool creation functions

* feat: add relevant constants for proxy configuration and update the proxy call logic

* refactor: remove unused configuration variables from workflow properties

* refactor: remove unused configuration variables from dispatchRunAgents props

* fix: build error

* refactor: update FlowNodeTypeEnum values and consolidate utility functions

* refactor: simplify conditional checks in tool call and reasoning handlers

* feat: add default agent prompt for improved response handling

* refactor: rename directory with agent->tool, agentCall->agnet

* refactor: rename dispatchRunAgents to dispatchRunAgent for consistency

* refactor: rename toolCall to tools for consistency in FlowNodeTypeEnum

* refactor: rename agents to toolCall for consistency in nodeTypes mapping

* refactor: remove unused runtimeEdges parameter from dispatchRunAgent

* refactor: update runAgentCall and dispatchRunAgent to use structured requestProps and workflowProps

* refactor: streamline requestProps and handleToolResponse in runAgentCall and dispatchRunAgent

* refactor: restructure RunAgentCallProps and update requestProps to requestParams for clarity

* refactor: enhance interactiveEntryToolParams handling in runAgentCall for improved response management

* refactor: flatten RunAgentCallProps structure and update dispatchRunAgent to use direct properties

* fix: correct initialization of interactiveResponse in runAgentCall

* agent call code

* fix: agent call stop sign

* feat: add plan agent tools and default generated prompts

* feat: add model agent tools and related functions

* chore: rename enum value

* fix: optimize isEndSign assignment and update default plan prompt format

* fix: update transferPlanAgent to use histories instead of sharedContext and rename default prompt variable

* fix: update transferPlanAgent to use ChatItemType and adapt message structure

* feat: add ModelAgentTool and PlanAgentTool with detailed descriptions and parameters
fix: update error handling in transferModelAgent and transferPlanAgent to return error messages
refactor: simplify isEndSign assignment in runAgentCall

* feat: enhance agent call handling and response processing with context support

* feat: refactor agent prompts and add utility functions for system prompt parsing

* feat: add plan agent tools and default generated prompts

* feat: add model agent tools and related functions

* chore: rename enum value

* fix: optimize isEndSign assignment and update default plan prompt format

* fix: update transferPlanAgent to use histories instead of sharedContext and rename default prompt variable

* fix: update transferPlanAgent to use ChatItemType and adapt message structure

* feat: add ModelAgentTool and PlanAgentTool with detailed descriptions and parameters
fix: update error handling in transferModelAgent and transferPlanAgent to return error messages
refactor: simplify isEndSign assignment in runAgentCall

* feat: enhance agent call handling and response processing with context support

* feat: refactor agent prompts and add utility functions for system prompt parsing

* feat: add AskAgentTool to support the interactive questioning function

* Update request.ts

---------

Co-authored-by: archer <545436317@qq.com>
This commit is contained in:
francis
2025-09-08 10:55:18 +08:00
committed by archer
parent 868db4ef1a
commit 32ea07cb9c
12 changed files with 700 additions and 67 deletions

View File

@@ -32,7 +32,10 @@ type RunAgentCallProps = {
name: string;
avatar: string;
};
handleToolResponse: (e: ChatCompletionMessageToolCall) => Promise<{
handleToolResponse: (e: {
call: ChatCompletionMessageToolCall;
context: ChatCompletionMessageParam[];
}) => Promise<{
response: string;
usages: ChatNodeUsageType[];
isEnd: boolean;
@@ -124,7 +127,10 @@ export const runAgentCall = async ({
let isEndSign = false;
for await (const tool of toolCalls) {
// TODO: 加入交互节点处理
const { response, usages, isEnd } = await handleToolResponse(tool);
const { response, usages, isEnd } = await handleToolResponse({
call: tool,
context: requestMessages
});
if (isEnd) {
isEndSign = true;

View File

@@ -1,50 +1,30 @@
import type { ChatCompletionTool } from '@fastgpt/global/core/ai/type';
export const getTopAgentDefaultPrompt = () => {
return `你是一位Supervisor Agent具备以下核心能力
export enum SubAppIds {
plan = 'plan_agent',
stop = 'stop_agent',
model = 'model_agent',
fileRead = 'file_read'
}
## 核心能力
1. **计划制定与管理**:根据用户需求制定详细的执行计划,并实时跟踪和调整计划进度
2. **工具调用编排**:可以调用各种工具来完成特定任务,支持并行和串行工具调用
3. **上下文理解**:能够理解对话历史、文档内容和当前状态
4. **自主决策**:根据当前情况和计划进度做出最优决策
## 工作流程
1. **需求分析**:深入理解用户需求,识别关键目标和约束条件
2. **计划制定**:使用 plan_agent 工具制定详细的执行计划
3. **工具编排**:根据计划选择和调用合适的工具
4. **结果处理**:分析工具返回结果,判断是否满足预期
5. **计划调整**:根据执行结果动态调整计划
6. **最终输出**:给出完整、准确的回答
## 特殊指令
export const getTopAgentConstantPrompt = () => {
return `## 特殊指令
- 对于复杂任务,必须先使用 plan_agent 制定计划
- 在执行过程中如需调整计划,再次调用 plan_agent
- 始终保持计划的可见性和可追踪性
- 遇到错误时要有容错和重试机制
请始终保持专业、准确、有条理的回答风格,确保用户能够清楚了解执行进度和结果。`;
- 每次有新的进度完成时,都要调用 plan_agent 更新计划
- 遇到错误时要有容错和重试机制`;
};
export const PlanAgentTool: ChatCompletionTool = {
type: 'function',
function: {
name: 'plan_agent',
description:
'如果用户的任务非常复杂,可以先使用 plan_agent 制定计划,然后根据计划使用其他工具来完成任务。'
}
};
export const StopAgentId = 'stop_agent';
export const StopAgentTool: ChatCompletionTool = {
type: 'function',
function: {
name: StopAgentId,
description: '如果完成了所有的任务,可调用工具。'
name: SubAppIds.stop,
description: '如果完成了所有的任务,可调用工具。'
}
};
/*
/*
结构:
[url1,url2,url2]
[
@@ -52,7 +32,7 @@ export const StopAgentTool: ChatCompletionTool = {
{id:2,url: url2}
]
*/
export const getFileReadTool = (urls: string[]): ChatCompletionTool => {
export const getFileReadTool = (urls?: string[]): ChatCompletionTool => {
return {
type: 'function',
function: {
@@ -64,7 +44,7 @@ export const getFileReadTool = (urls: string[]): ChatCompletionTool => {
file_path: {
type: 'string',
description: '文件ID',
enum: urls.map((url, index) => `${index + 1}`)
enum: urls?.map((_, index) => `${index + 1}`)
}
},
required: ['file_path']

View File

@@ -27,18 +27,25 @@ import {
import { formatModelChars2Points } from '../../../../../support/wallet/usage/utils';
import { getHistoryPreview } from '@fastgpt/global/core/chat/utils';
import {
applyDiff,
filterToolResponseToPreview,
formatToolResponse,
getToolNodesByIds,
initToolNodes
initToolNodes,
parseToolArgs
} from '../utils';
import { getTopAgentDefaultPrompt, StopAgentId, StopAgentTool } from './constants';
import { getFileReadTool, getTopAgentConstantPrompt, StopAgentTool, SubAppIds } from './constants';
import { runWorkflow } from '../..';
import json5 from 'json5';
import type { ChatCompletionTool } from '@fastgpt/global/core/ai/type';
import type { ToolNodeItemType } from './type';
import { textAdaptGptResponse } from '@fastgpt/global/core/workflow/runtime/utils';
import { sliceStrStartEnd } from '@fastgpt/global/common/string/tools';
import { transferPlanAgent } from '../sub/plan';
import { transferModelAgent } from '../sub/model';
import { PlanAgentTool } from '../sub/plan/constants';
import { ModelAgentTool } from '../sub/model/constants';
import { getSubIdsByAgentSystem, parseAgentSystem } from './utils';
import { getChildAppPreviewNode } from '../../../../../core/app/plugin/controller';
export type DispatchAgentModuleProps = ModuleDispatchProps<{
[NodeInputKeyEnum.history]?: ChatItemType[];
@@ -82,7 +89,8 @@ export const dispatchRunAgent = async (props: DispatchAgentModuleProps): Promise
history = 6,
fileUrlList: fileLinks,
temperature,
aiChatTopP
aiChatTopP,
planConfig
}
} = props;
@@ -96,7 +104,8 @@ export const dispatchRunAgent = async (props: DispatchAgentModuleProps): Promise
}
// Init tool params
const toolNodeIds = filterToolNodeIdByEdges({ nodeId, edges: runtimeEdges });
// const toolNodeIds = filterToolNodeIdByEdges({ nodeId, edges: runtimeEdges });
const toolNodeIds = getSubIdsByAgentSystem(systemPrompt);
const toolNodes = getToolNodesByIds({ toolNodeIds, runtimeNodes });
// TODO: 补充系统 agent
const toolNodesMap = new Map<string, ToolNodeItemType>();
@@ -111,12 +120,14 @@ export const dispatchRunAgent = async (props: DispatchAgentModuleProps): Promise
};
};
const subApps = getSubApps({ toolNodes });
const subApps = getSubApps({ toolNodes, urls: fileLinks });
const combinedSystemPrompt = `${parseAgentSystem({ systemPrompt, toolNodesMap })}\n\n${getTopAgentConstantPrompt()}`;
// TODO: 把 files 加入 query 中。
const messages: ChatItemType[] = (() => {
const value: ChatItemType[] = [
...getSystemPrompt_ChatItemType(systemPrompt || getTopAgentDefaultPrompt()),
...getSystemPrompt_ChatItemType(combinedSystemPrompt),
// Add file input prompt to histories
...chatHistories,
{
@@ -160,15 +171,107 @@ export const dispatchRunAgent = async (props: DispatchAgentModuleProps): Promise
isAborted: res ? () => res.closed : undefined,
getToolInfo,
handleToolResponse: async (call) => {
handleToolResponse: async ({ call, context }) => {
const toolId = call.function.name;
if (toolId === StopAgentId) {
if (toolId === SubAppIds.stop) {
return {
response: '',
usages: [],
isEnd: true
};
} else if (toolId === SubAppIds.plan) {
const planModel = planConfig?.model ?? model;
const { instruction } = parseToolArgs<{ instruction: string }>(call.function.arguments);
const { content, inputTokens, outputTokens } = await transferPlanAgent({
model: planModel,
instruction,
histories: GPTMessages2Chats({
messages: context.slice(1, -1),
getToolInfo
}),
onStreaming({ text, fullText }) {
//TODO: 需要一个新的 plan sse event
if (!fullText) return;
workflowStreamResponse?.({
event: SseResponseEventEnum.toolResponse,
data: {
tool: {
id: call.id,
toolName: '',
toolAvatar: '',
params: '',
response: sliceStrStartEnd(fullText, 5000, 5000)
}
}
});
}
});
const lastPlanCallIndex = context
.slice(0, -1)
.findLastIndex(
(c) =>
c.role === 'assistant' &&
c.tool_calls?.some((tc) => tc.function?.name === SubAppIds.plan)
);
const originalContent =
lastPlanCallIndex !== -1 ? (context[lastPlanCallIndex + 1].content as string) : '';
const applyedContent = applyDiff({
original: originalContent,
patch: content
});
// workflowStreamResponse?.({
// event: SseResponseEventEnum.toolResponse,
// data: {
// tool: {
// id: call.id,
// toolName: '',
// toolAvatar: '',
// params: '',
// response: sliceStrStartEnd(applyedContent, 5000, 5000)
// }
// }
// });
return {
response: content,
usages: [],
isEnd: false
};
} else if (toolId === SubAppIds.model) {
const { systemPrompt, task } = parseToolArgs<{ systemPrompt: string; task: string }>(
call.function.arguments
);
const { content, inputTokens, outputTokens } = await transferModelAgent({
model,
systemPrompt,
task,
onStreaming({ text, fullText }) {
if (!fullText) return;
workflowStreamResponse?.({
event: SseResponseEventEnum.toolResponse,
data: {
tool: {
id: call.id,
toolName: '',
toolAvatar: '',
params: '',
response: sliceStrStartEnd(fullText, 5000, 5000)
}
}
});
}
});
return {
response: content,
usages: [],
isEnd: false
};
}
const node = toolNodesMap.get(toolId);
@@ -180,14 +283,7 @@ export const dispatchRunAgent = async (props: DispatchAgentModuleProps): Promise
};
}
const startParams = (() => {
try {
return json5.parse(call.function.arguments);
} catch {
return {};
}
})();
const startParams = parseToolArgs(call.function.arguments);
initToolNodes(runtimeNodes, [node.nodeId], startParams);
const { toolResponses, flowUsages, flowResponses } = await runWorkflow({
...props,
@@ -324,9 +420,20 @@ export const dispatchRunAgent = async (props: DispatchAgentModuleProps): Promise
}
};
const getSubApps = ({ toolNodes }: { toolNodes: ToolNodeItemType[] }): ChatCompletionTool[] => {
const getSubApps = ({
toolNodes,
urls
}: {
toolNodes: ToolNodeItemType[];
urls?: string[];
}): ChatCompletionTool[] => {
// System Tools: Plan Agent, stop sign, model agent.
const systemTools: ChatCompletionTool[] = [];
const systemTools: ChatCompletionTool[] = [
PlanAgentTool,
StopAgentTool,
ModelAgentTool,
getFileReadTool(urls)
];
// Node Tools
const nodeTools = toolNodes.map<ChatCompletionTool>((item: ToolNodeItemType) => {
@@ -335,7 +442,7 @@ const getSubApps = ({ toolNodes }: { toolNodes: ToolNodeItemType[] }): ChatCompl
type: 'function',
function: {
name: item.nodeId,
description: item.intro || item.name,
description: `调用${item.flowNodeType}:${item.name || item.intro}完成任务`,
parameters: item.jsonSchema
}
};
@@ -358,7 +465,7 @@ const getSubApps = ({ toolNodes }: { toolNodes: ToolNodeItemType[] }): ChatCompl
type: 'function',
function: {
name: item.nodeId,
description: item.toolDescription || item.intro || item.name,
description: `调用${item.flowNodeType}:${item.name || item.toolDescription || item.intro}完成任务`,
parameters: {
type: 'object',
properties,
@@ -367,6 +474,7 @@ const getSubApps = ({ toolNodes }: { toolNodes: ToolNodeItemType[] }): ChatCompl
}
};
});
console.dir(nodeTools, { depth: null });
return [...systemTools, ...nodeTools];
};

View File

@@ -0,0 +1,61 @@
import type { ToolNodeItemType } from './type';
const namespaceMap = new Map<string, string>([
['a', '子应用'],
['t', '工具'],
['d', '知识库'],
['m', '模型']
]);
// e.g: {{@a.appId@}} -> a.appId
const buildPattern = (options?: { prefix?: string }): RegExp => {
const config = {
prefix: '@',
...options
};
const escapedPrefix = config.prefix.replace(/[.*+?^${}()|[\]\\]/g, '\\$&');
return new RegExp(`\\{\\{${escapedPrefix}([^${escapedPrefix}]+)${escapedPrefix}\\}\\}`, 'g');
};
export const getSubIdsByAgentSystem = (
systemPrompt: string,
options?: { prefix?: string }
): string[] => {
const pattern = buildPattern(options);
const ids: string[] = [];
let match;
while ((match = pattern.exec(systemPrompt)) !== null) {
const fullName = match[1];
const [, id] = fullName.split('.');
if (id) {
ids.push(id);
}
}
return ids;
};
export const parseAgentSystem = ({
systemPrompt,
toolNodesMap,
options
}: {
systemPrompt: string;
toolNodesMap: Map<string, ToolNodeItemType>;
options?: { prefix?: string };
}): string => {
const pattern = buildPattern(options);
const processedPrompt = systemPrompt.replace(pattern, (_, toolName) => {
const [namespace, id] = toolName.split('.');
const toolNode = toolNodesMap.get(id);
const name = toolNode?.name || toolNode?.toolDescription || toolNode?.intro || 'unknown';
const prefix = namespaceMap.get(namespace) ?? 'unknown';
return `${prefix}:${name}`;
});
return processedPrompt;
};

View File

@@ -0,0 +1,61 @@
import type { ChatCompletionTool } from '@fastgpt/global/core/ai/type';
import { SubAppIds } from '../../agent/constants';
export const AskAgentTool: ChatCompletionTool = {
type: 'function',
function: {
name: SubAppIds.ask,
description: '调用此工具,向用户发起交互式提问',
parameters: {
type: 'object',
properties: {
mode: {
type: 'string',
enum: ['userSelect', 'formInput', 'userInput'],
description: '交互模式'
},
prompt: {
type: 'string',
description: '向用户展示的提示信息'
},
options: {
type: 'array',
description: '当 mode=userSelect 时可供选择的选项',
items: {
type: 'string'
}
},
form: {
type: 'array',
description: '当 mode=formInput 时需要填写的表单字段列表',
items: {
type: 'object',
properties: {
field: {
type: 'string',
description: '字段名,如 name, age, 同时会展示给用户一样的label'
},
type: {
type: 'string',
enum: ['textInput', 'numberInput', 'singleSelect', 'multiSelect'],
description: '字段输入类型'
},
required: { type: 'boolean', description: '该字段是否必填', default: false },
options: {
type: 'array',
description: '当 type 为 singleSelect 或 multiSelect 时的可选项',
items: { type: 'string' }
}
},
required: ['field', 'type']
}
},
userInput: {
type: 'string',
description: '当 mode=userInput 时用户自由输入的内容'
}
},
required: ['mode', 'prompt']
}
}
};

View File

@@ -0,0 +1,24 @@
import type { ChatCompletionTool } from '@fastgpt/global/core/ai/type';
import { SubAppIds } from '../../agent/constants';
export const ModelAgentTool: ChatCompletionTool = {
type: 'function',
function: {
name: SubAppIds.model,
description: '完成一些简单通用型任务, 可以调用此工具。',
parameters: {
type: 'object',
properties: {
systemPrompt: {
type: 'string',
description: '注入给此 agent 的系统提示词'
},
task: {
type: 'string',
description: '此 agent 本轮需要完成的任务'
}
},
required: ['systemPrompt', 'task']
}
}
};

View File

@@ -0,0 +1,87 @@
import type { ChatCompletionMessageParam } from '@fastgpt/global/core/ai/type.d';
import { addLog } from '../../../../../../common/system/log';
import { createLLMResponse, type ResponseEvents } from '../../../../../ai/llm/request';
import type { ChatItemType } from '@fastgpt/global/core/chat/type';
import { chats2GPTMessages, getSystemPrompt_ChatItemType } from '@fastgpt/global/core/chat/adapt';
import { ChatItemValueTypeEnum, ChatRoleEnum } from '@fastgpt/global/core/chat/constants';
import { getErrText } from '@fastgpt/global/common/error/utils';
type ModelAgentConfig = {
model: string;
temperature?: number;
top_p?: number;
stream?: boolean;
};
type transferModelAgentProps = {
systemPrompt?: string;
task?: string;
} & ModelAgentConfig &
Pick<ResponseEvents, 'onStreaming' | 'onReasoning'>;
export async function transferModelAgent({
systemPrompt = '',
task = '',
onStreaming,
onReasoning,
model,
temperature = 0.7,
top_p,
stream = true
}: transferModelAgentProps): Promise<{
content: string;
inputTokens: number;
outputTokens: number;
}> {
try {
const messages: ChatItemType[] = [
...getSystemPrompt_ChatItemType(systemPrompt),
{
obj: ChatRoleEnum.Human,
value: [
{
type: ChatItemValueTypeEnum.text,
text: {
content: task
}
}
]
}
];
const adaptedMessages: ChatCompletionMessageParam[] = chats2GPTMessages({
messages,
reserveId: false
});
const {
answerText,
usage: { inputTokens, outputTokens }
} = await createLLMResponse({
body: {
model,
temperature,
messages: adaptedMessages,
top_p,
stream
},
onStreaming,
onReasoning
});
return {
content: answerText,
inputTokens,
outputTokens
};
} catch (error) {
const err = getErrText(error);
addLog.warn('call model_agent failed');
return {
content: err,
inputTokens: 0,
outputTokens: 0
};
}
}

View File

@@ -0,0 +1,22 @@
import type { ChatCompletionTool } from '@fastgpt/global/core/ai/type';
import { SubAppIds } from '../../agent/constants';
export const PlanAgentTool: ChatCompletionTool = {
type: 'function',
function: {
name: SubAppIds.plan,
description:
'如果用户的任务非常复杂,可以先使用 plan_agent 制定计划然后根据计划使用其他工具来完成任务。同时plan_agent 负责维护整个任务的上下文和状态。可以更新或修改计划中的内容. 但是 plan_agent 不能直接执行任务。',
parameters: {
type: 'object',
properties: {
instruction: {
type: 'string',
description:
'给 plan_agent 的指令, 例如: "制定一个包含以下步骤的计划:xxx", "将 xxx 待办事项标记为已完成"'
}
},
required: ['instruction']
}
}
};

View File

@@ -0,0 +1,96 @@
import type { ChatCompletionMessageParam } from '@fastgpt/global/core/ai/type.d';
import { addLog } from '../../../../../../common/system/log';
import { createLLMResponse, type ResponseEvents } from '../../../../../ai/llm/request';
import { defaultPlanAgentPrompt } from './prompt';
import { replaceVariable } from '@fastgpt/global/common/string/tools';
import { chats2GPTMessages, getSystemPrompt_ChatItemType } from '@fastgpt/global/core/chat/adapt';
import type { ChatItemType } from '@fastgpt/global/core/chat/type';
import { ChatItemValueTypeEnum, ChatRoleEnum } from '@fastgpt/global/core/chat/constants';
import { getErrText } from '@fastgpt/global/common/error/utils';
type PlanAgentConfig = {
model: string;
customSystemPrompt?: string;
temperature?: number;
top_p?: number;
stream?: boolean;
};
type transferPlanAgentProps = {
histories: ChatItemType[];
instruction?: string;
} & PlanAgentConfig &
Pick<ResponseEvents, 'onStreaming' | 'onReasoning'>;
export async function transferPlanAgent({
instruction = '',
histories,
onStreaming,
onReasoning,
model,
customSystemPrompt,
temperature = 0,
top_p,
stream = true
}: transferPlanAgentProps): Promise<{
content: string;
inputTokens: number;
outputTokens: number;
}> {
try {
const messages: ChatItemType[] = [
...getSystemPrompt_ChatItemType(
replaceVariable(defaultPlanAgentPrompt, {
userRole: customSystemPrompt
})
),
...histories,
{
obj: ChatRoleEnum.Human,
value: [
{
type: ChatItemValueTypeEnum.text,
text: {
content: instruction
}
}
]
}
];
const adaptedMessages: ChatCompletionMessageParam[] = chats2GPTMessages({
messages,
reserveId: false
});
const {
answerText,
usage: { inputTokens, outputTokens }
} = await createLLMResponse({
body: {
model,
temperature,
messages: adaptedMessages,
top_p,
stream
},
onStreaming,
onReasoning
});
return {
content: answerText,
inputTokens,
outputTokens
};
} catch (error) {
const err = getErrText(error);
addLog.warn('call plan_agent failed');
return {
content: err,
inputTokens: 0,
outputTokens: 0
};
}
}

View File

@@ -0,0 +1,145 @@
export const defaultPlanAgentPrompt = `<role>
你是一个专业的项目规划助手,擅长将复杂任务分解为结构化的执行计划;同时支持对既有计划进行“最小差异(+- Diff”式修改。你会严格遵循指定的注释标记格式并在修改模式下输出可直接应用的补丁patch
</role>
<user_role>
{{userRole}}
</user_role>
<modes>
- 自动识别两种模式:
1) 创建模式create用户未提供现有计划时生成全新的计划文档。
2) 修改模式patch用户提供现有计划或明确提出“增删改”需求时输出 Diff Patch。
- 若用户提供了现有计划文本(含注释标记),一律进入修改模式;否则进入创建模式。
</modes>
<task>
根据用户提供的主题或目标,生成或修改一份详细、可执行的项目计划文档,包含合理的阶段划分与具体待办事项;修改时以“补丁”为最小输出单元,确保变更可定位、可回放、可审计。
</task>
<inputs>
- 用户输入:一个需要制定或更新的主题、目标或任务描述;可选的现有计划文档;可选的变更请求(自然语言或指令式)。
- 输入格式:自然语言描述,可能包含背景、目标、约束、优先级、本地化偏好、以及现有计划全文。
</inputs>
<process>
通用步骤
1. 解析用户输入,提取核心目标、关键要素、约束与本地化偏好。
2. 评估任务复杂度简单2-3 步复杂4-7 步),据此确定阶段数量。
3. 各阶段生成 3-5 条可执行 Todo动词开头MECE 且无重叠。
4. 语言风格本地化(根据用户输入语言进行术语与语序调整)。
创建模式create
5. 产出完整计划,严格使用占位符 [主题] 与标记体系;确保编号连续、标签闭合、结构清晰。
修改模式patch
5. 解析“现有计划”(锚点优先级:\`<!--@step:N:start-->\`\`<!--@todo:N.X-->\`\`<!--@note:N-->\` 等)。
6. 将用户变更需求映射为原子操作(见 <diff_ops>),生成最小必要的行级 Diff
- 仅对变更涉及的行输出 \`+\`(新增)或 \`-\`(删除);未变更行不重复输出。
- 修改视为“-旧行”与“+新行”的并列呈现。
- 插入请贴靠最稳固的锚点(如 \`<!--@step:N:start-->\` 下的标题或 \`<!--@todos:N:start-->\` 前后)。
7. 自动重排:对步骤编号 N、待办编号 X 做连续性校正;若移动/插入造成编号漂移,补丁中体现校正后的行。
8. 校验:所有必须标签完整闭合;编号连续;每步 3-5 条待办MECE无空段落无悬挂标记。
9. 产出补丁;如 render=full则在补丁后附上“更新后的完整文档”。
<diff_ops>
支持的原子操作(内部推理用,输出仍为行级 Diff
- ADD_STEP(after N | before N | at end) 新增步骤含标题、描述、Todos、可选备注
- REMOVE_STEP(N) 删除步骤
- UPDATE_STEP(N, title/desc/note=…) 更新步骤标题/描述/备注
- MOVE_STEP(N -> M) 移动步骤至序号 M重排后编号连续
- ADD_TODO(N, at k) 在步骤 N 的第 k 个位置插入 Todo
- REMOVE_TODO(N.k) 删除 Todo
- UPDATE_TODO(N.k, text=…) 更新 Todo 文本
- MOVE_TODO(N.k -> M.t) 移动 Todo 到其他步骤/位置
- RENAME_THEME(text=…) 更新主标题或整体描述中的 [主题] 文本描述(占位仍用 [主题]
说明:若用户未显式给出操作,你需从自然语言中归纳为上述操作的序列并生成对应行级 Diff。
</diff_ops>
<diff_rules>
- 补丁仅包含变更行,以“前缀字符 +|-”表示新增/删除。
- 不在上述集合内的行(例如空行)若因结构需要调整,可一并纳入补丁。
- 修改必须保持“标记尾注不变更其语义角色”,即:当你替换内容时,保留原注释标签并只更改标签左侧的可读文本。
- 重排后编号以补丁中的最新数字为准;不要在同一补丁里出现对同一元素的多次相互抵消的改动。
- 若原文缺少稳固锚点,优先在最近的 \`<!--@step:*:start/end-->\`\`<!--@todos:*:start/end-->\` 相邻位置插入。
</diff_rules>
<requirements>
- 必须严格遵循以下注释标记格式:
* <!--@title--> 标记主标题
* <!--@desc--> 标记整体描述
* <!--@step:N:start--> 和 <!--@step:N:end--> 包裹步骤块
* <!--@step:N:title--> 标记步骤标题
* <!--@step:N:desc--> 标记步骤描述
* <!--@todos:N:start--> 和 <!--@todos:N:end--> 包裹待办列表
* <!--@todo:N.X--> 标记单个待办事项
* <!--@note:N--> 添加重要注释或备注
- 步骤数量随复杂度自动调整;每步 3-5 条 Todo。
- 编号N、X必须连续、准确修改模式下需自动校正。
- 描述语言简洁、专业、可操作各阶段逻辑递进、MECE。
- 进行本地化调整(术语、量词、表达习惯)。
</requirements>
<guardrails>
- 不生成违法、不道德或有害内容;敏感主题输出合规替代方案。
- 避免过于具体的时间/预算承诺与无法验证的保证。
- 保持中立、客观;必要时指出风险与依赖。
- 你拥有的记忆是通过别的 Agent 共享给你的, 你只需要专注于输出内容, 不必担心上下文的完整性。
</guardrails>
<output>
<format_create>
# [主题] 深度调研计划 <!--@title-->
全面了解 [主题] 的 [核心维度描述] <!--@desc-->
<!--@step:1:start-->
## Step 1: [阶段名称] <!--@step:1:title-->
[阶段目标描述] <!--@step:1:desc-->
### Todo List
<!--@todos:1:start-->
- [ ] [具体任务描述] <!--@todo:1.1-->
- [ ] [具体任务描述] <!--@todo:1.2-->
- [ ] [具体任务描述] <!--@todo:1.3-->
<!--@todos:1:end-->
<!--@note:1--> [可选备注]
<!--@step:1:end-->
<!--@step:2:start-->
## Step 2: [阶段名称] <!--@step:2:title-->
[阶段目标描述] <!--@step:2:desc-->
### Todo List
<!--@todos:2:start-->
- [ ] [具体任务描述] <!--@todo:2.1-->
- [ ] [具体任务描述] <!--@todo:2.2-->
- [ ] [具体任务描述] <!--@todo:2.3-->
<!--@todos:2:end-->
<!--@note:2--> [可选备注]
<!--@step:2:end-->
</format_create>
<format_patch>
# 仅输出变更行,以 +- 表示;无代码块围栏;保持原有缩进与空行风格。确保旧行的准确性和完整性
# 如果是 todo list 的变更,请确保 todo 前的 - [ ] 符号正确。删除或替换的行前用 - - [ ] 来表示 todo 的变更
# 禁止输出代码块标记\`\`\`
+ 新增或替换后的行
- 被删除或被替换的旧行
</format_patch>
<style>
- 标题简洁有力,突出核心主题
- 描述准确概括该阶段的核心目标
- 待办事项以动词开头,明确可执行
- 保持专业术语的准确性
- 语言流畅、逻辑清晰
</style>
</output>
<examples>
- 例:标记 todo 2.1 完成状态
<patch>
- - [ ] 完成数据采集与清洗 <!--@todo:2.1-->
+ - [x] 完成数据采集与清洗 <!--@todo:2.1-->
</patch>
</examples>
`;

View File

@@ -13,7 +13,7 @@ import json5 from 'json5';
import type { DispatchFlowResponse } from '../../type';
import { GPTMessages2Chats } from '@fastgpt/global/core/chat/adapt';
import type { AIChatItemType } from '@fastgpt/global/core/chat/type';
import { formatToolResponse, initToolCallEdges, initToolNodes } from '../utils';
import { formatToolResponse, initToolCallEdges, initToolNodes, parseToolArgs } from '../utils';
import { computedMaxToken } from '../../../../ai/utils';
import { sliceStrStartEnd } from '@fastgpt/global/common/string/tools';
import type { WorkflowInteractiveResponseType } from '@fastgpt/global/core/workflow/template/system/interactive/type';
@@ -368,13 +368,7 @@ export const runToolCall = async (
if (!toolNode) continue;
const startParams = (() => {
try {
return json5.parse(tool.function.arguments);
} catch (error) {
return {};
}
})();
const startParams = parseToolArgs(tool.function.arguments);
initToolNodes(runtimeNodes, [toolNode.nodeId], startParams);
const toolRunResponse = await runWorkflow({
@@ -384,7 +378,6 @@ export const runToolCall = async (
});
const stringToolResponse = formatToolResponse(toolRunResponse.toolResponses);
const toolMsgParams: ChatCompletionToolMessageParam = {
tool_call_id: tool.id,
role: ChatCompletionRequestMessageRoleEnum.Tool,

View File

@@ -11,6 +11,7 @@ import { NodeInputKeyEnum } from '@fastgpt/global/core/workflow/constants';
import type { McpToolDataType } from '@fastgpt/global/core/app/mcpTools/type';
import type { JSONSchemaInputType } from '@fastgpt/global/core/app/jsonschema';
import type { ToolNodeItemType } from './tool/type';
import json5 from 'json5';
export const filterToolResponseToPreview = (response: AIChatItemValueItemType[]) => {
return response.map((item) => {
@@ -167,3 +168,52 @@ export const getToolNodesByIds = ({
};
});
};
export const parseToolArgs = <T = Record<string, any>>(toolArgs: string): T => {
try {
return json5.parse(toolArgs) as T;
} catch {
return {} as T;
}
};
/**
* 简单版 diff apply
* @param original 原始文本
* @param patch diff patch 文本(带 + 和 -
*/
export const applyDiff = ({ original, patch }: { original: string; patch: string }): string => {
if (!original) return patch;
let result = original.split('\n');
const patchLines = patch.split('\n');
for (let i = 0; i < patchLines.length; i++) {
const line = patchLines[i];
if (line.startsWith('-')) {
const oldContent = line.slice(1).trim();
const next = patchLines[i + 1];
// 下一个是对应的 + 行 → 替换
if (next && next.startsWith('+')) {
const newContent = next.slice(1).trim(); // 也要 trim
const idx = result.findIndex((l) => l.trim() === oldContent);
if (idx !== -1) {
// 保留原有的缩进
const indent = result[idx].match(/^(\s*)/)?.[1] || '';
result[idx] = indent + newContent; // 保留缩进
}
i++; // 跳过下一个 + 行
} else {
// 单独的删除行
const idx = result.findIndex((l) => l.trim() === oldContent);
if (idx !== -1) {
result.splice(idx, 1);
}
}
}
}
return result.join('\n');
};