mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 13:03:50 +00:00
perf: kb-add last question to search
This commit is contained in:
@@ -1,5 +1,6 @@
|
||||
### Fast GPT V3.1
|
||||
|
||||
- 优化 - 知识库搜索,会将上一个问题并入搜索范围。
|
||||
- 优化 - 模型结构设计,不再区分知识库和对话模型,而是通过开关的形式,手动选择手否需要进行知识库搜索。
|
||||
- 新增 - 模型共享市场,可以使用其他用户分享的模型。
|
||||
- 新增 - 邀请好友注册功能。
|
||||
|
@@ -58,7 +58,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
const { code, searchPrompt } = await searchKb({
|
||||
userApiKey,
|
||||
systemApiKey,
|
||||
text: prompt.value,
|
||||
prompts,
|
||||
similarity: ModelVectorSearchModeMap[model.chat.searchMode]?.similarity,
|
||||
model,
|
||||
userId
|
||||
|
@@ -66,7 +66,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
|
||||
const { code, searchPrompt } = await searchKb({
|
||||
systemApiKey: apiKey,
|
||||
text: prompts[prompts.length - 1].value,
|
||||
prompts,
|
||||
similarity,
|
||||
model,
|
||||
userId
|
||||
|
@@ -118,7 +118,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
const { searchPrompt } = await searchKb({
|
||||
systemApiKey: apiKey,
|
||||
similarity: ModelVectorSearchModeMap[model.chat.searchMode]?.similarity,
|
||||
text: prompt.value,
|
||||
prompts,
|
||||
model,
|
||||
userId
|
||||
});
|
||||
|
@@ -60,8 +60,8 @@ export async function generateVector(next = false): Promise<any> {
|
||||
}
|
||||
|
||||
// 生成词向量
|
||||
const { vector } = await openaiCreateEmbedding({
|
||||
text: dataItem.q,
|
||||
const { vectors } = await openaiCreateEmbedding({
|
||||
textArr: [dataItem.q],
|
||||
userId: dataItem.userId,
|
||||
userApiKey,
|
||||
systemApiKey
|
||||
@@ -70,7 +70,7 @@ export async function generateVector(next = false): Promise<any> {
|
||||
// 更新 pg 向量和状态数据
|
||||
await PgClient.update('modelData', {
|
||||
values: [
|
||||
{ key: 'vector', value: `[${vector}]` },
|
||||
{ key: 'vector', value: `[${vectors[0]}]` },
|
||||
{ key: 'status', value: `ready` }
|
||||
],
|
||||
where: [['id', dataId]]
|
||||
|
@@ -4,6 +4,7 @@ import { ModelSchema } from '@/types/mongoSchema';
|
||||
import { openaiCreateEmbedding } from '../utils/chat/openai';
|
||||
import { ChatRoleEnum } from '@/constants/chat';
|
||||
import { sliceTextByToken } from '@/utils/chat';
|
||||
import { ChatItemSimpleType } from '@/types/chat';
|
||||
|
||||
/**
|
||||
* use openai embedding search kb
|
||||
@@ -11,14 +12,14 @@ import { sliceTextByToken } from '@/utils/chat';
|
||||
export const searchKb = async ({
|
||||
userApiKey,
|
||||
systemApiKey,
|
||||
text,
|
||||
prompts,
|
||||
similarity = 0.2,
|
||||
model,
|
||||
userId
|
||||
}: {
|
||||
userApiKey?: string;
|
||||
systemApiKey: string;
|
||||
text: string;
|
||||
prompts: ChatItemSimpleType[];
|
||||
model: ModelSchema;
|
||||
userId: string;
|
||||
similarity?: number;
|
||||
@@ -29,30 +30,56 @@ export const searchKb = async ({
|
||||
value: string;
|
||||
};
|
||||
}> => {
|
||||
async function search(textArr: string[] = []) {
|
||||
// 获取提示词的向量
|
||||
const { vectors: promptVectors } = await openaiCreateEmbedding({
|
||||
userApiKey,
|
||||
systemApiKey,
|
||||
userId,
|
||||
textArr
|
||||
});
|
||||
|
||||
const searchRes = await Promise.all(
|
||||
promptVectors.map((promptVector) =>
|
||||
PgClient.select<{ id: string; q: string; a: string }>('modelData', {
|
||||
fields: ['id', 'q', 'a'],
|
||||
where: [
|
||||
['status', ModelDataStatusEnum.ready],
|
||||
'AND',
|
||||
['model_id', model._id],
|
||||
'AND',
|
||||
`vector <=> '[${promptVector}]' < ${similarity}`
|
||||
],
|
||||
order: [{ field: 'vector', mode: `<=> '[${promptVector}]'` }],
|
||||
limit: 20
|
||||
}).then((res) => res.rows)
|
||||
)
|
||||
);
|
||||
|
||||
// Remove repeat record
|
||||
const idSet = new Set<string>();
|
||||
const filterSearch = searchRes.map((search) =>
|
||||
search.filter((item) => {
|
||||
if (idSet.has(item.id)) {
|
||||
return false;
|
||||
}
|
||||
idSet.add(item.id);
|
||||
return true;
|
||||
})
|
||||
);
|
||||
|
||||
return filterSearch.map((item) => item.map((item) => `${item.q}\n${item.a}`).join('\n'));
|
||||
}
|
||||
const modelConstantsData = ChatModelMap[model.chat.chatModel];
|
||||
|
||||
// 获取提示词的向量
|
||||
const { vector: promptVector } = await openaiCreateEmbedding({
|
||||
userApiKey,
|
||||
systemApiKey,
|
||||
userId,
|
||||
text
|
||||
});
|
||||
// search three times
|
||||
const userPrompts = prompts.filter((item) => item.obj === 'Human');
|
||||
|
||||
const vectorSearch = await PgClient.select<{ q: string; a: string }>('modelData', {
|
||||
fields: ['q', 'a'],
|
||||
where: [
|
||||
['status', ModelDataStatusEnum.ready],
|
||||
'AND',
|
||||
['model_id', model._id],
|
||||
'AND',
|
||||
`vector <=> '[${promptVector}]' < ${similarity}`
|
||||
],
|
||||
order: [{ field: 'vector', mode: `<=> '[${promptVector}]'` }],
|
||||
limit: 20
|
||||
});
|
||||
|
||||
const systemPrompts: string[] = vectorSearch.rows.map((item) => `${item.q}\n${item.a}`);
|
||||
const searchArr: string[] = [
|
||||
userPrompts[userPrompts.length - 1].value,
|
||||
userPrompts[userPrompts.length - 2]?.value
|
||||
].filter((item) => item);
|
||||
const systemPrompts = await search(searchArr);
|
||||
|
||||
// filter system prompt
|
||||
if (
|
||||
@@ -80,13 +107,24 @@ export const searchKb = async ({
|
||||
};
|
||||
}
|
||||
|
||||
// 有匹配情况下,system 添加知识库内容。
|
||||
// 系统提示词过滤,最多 65% tokens
|
||||
const filterSystemPrompt = sliceTextByToken({
|
||||
model: model.chat.chatModel,
|
||||
text: systemPrompts.join('\n'),
|
||||
length: Math.floor(modelConstantsData.contextMaxToken * 0.65)
|
||||
});
|
||||
/* 有匹配情况下,system 添加知识库内容。 */
|
||||
|
||||
// filter system prompts. max 70% tokens
|
||||
const filterRateMap: Record<number, number[]> = {
|
||||
1: [0.7],
|
||||
2: [0.5, 0.2]
|
||||
};
|
||||
const filterRate = filterRateMap[systemPrompts.length] || filterRateMap[0];
|
||||
|
||||
const filterSystemPrompt = filterRate
|
||||
.map((rate, i) =>
|
||||
sliceTextByToken({
|
||||
model: model.chat.chatModel,
|
||||
text: systemPrompts[i],
|
||||
length: Math.floor(modelConstantsData.contextMaxToken * rate)
|
||||
})
|
||||
)
|
||||
.join('\n');
|
||||
|
||||
return {
|
||||
code: 200,
|
||||
|
@@ -22,12 +22,12 @@ export const openaiCreateEmbedding = async ({
|
||||
userApiKey,
|
||||
systemApiKey,
|
||||
userId,
|
||||
text
|
||||
textArr
|
||||
}: {
|
||||
userApiKey?: string;
|
||||
systemApiKey: string;
|
||||
userId: string;
|
||||
text: string;
|
||||
textArr: string[];
|
||||
}) => {
|
||||
// 获取 chatAPI
|
||||
const chatAPI = getOpenAIApi(userApiKey || systemApiKey);
|
||||
@@ -37,7 +37,7 @@ export const openaiCreateEmbedding = async ({
|
||||
.createEmbedding(
|
||||
{
|
||||
model: embeddingModel,
|
||||
input: text
|
||||
input: textArr
|
||||
},
|
||||
{
|
||||
timeout: 60000,
|
||||
@@ -46,18 +46,18 @@ export const openaiCreateEmbedding = async ({
|
||||
)
|
||||
.then((res) => ({
|
||||
tokenLen: res.data.usage.total_tokens || 0,
|
||||
vector: res.data.data?.[0]?.embedding || []
|
||||
vectors: res.data.data.map((item) => item.embedding)
|
||||
}));
|
||||
|
||||
pushGenerateVectorBill({
|
||||
isPay: !userApiKey,
|
||||
userId,
|
||||
text,
|
||||
text: textArr.join(''),
|
||||
tokenLen: res.tokenLen
|
||||
});
|
||||
|
||||
return {
|
||||
vector: res.vector,
|
||||
vectors: res.vectors,
|
||||
chatAPI
|
||||
};
|
||||
};
|
||||
|
Reference in New Issue
Block a user