mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-24 22:03:54 +00:00
添加ChatGLM2教程 (#125)
* Create GLM2对接教程.md * 添加GLM2接入教程 * Delete GLM2对接教程.md * Delete image.png * Delete openai_api.py * Delete openai_api_int4.py * Delete openai_api_int8.py * Create GLM2对接教程.md * 添加ChatGLM2接口 * Delete openai_api_int4.py * Delete openai_api_int8.py * Update openai_api.py * Update GLM2对接教程.md
This commit is contained in:
36
docs/zh/examples/ChatGLM2/GLM2对接教程.md
Normal file
36
docs/zh/examples/ChatGLM2/GLM2对接教程.md
Normal file
@@ -0,0 +1,36 @@
|
||||
# 3分钟在Fastgpt上用上GLM
|
||||
## 前言
|
||||
Fast GPT 允许你使用自己的 openai API KEY 来快速的调用 openai 接口,目前集成了 Gpt35, Gpt4 和 embedding. 可构建自己的知识库。但考虑到数据安全的问题,我们并不能将所有的数据都交付给云端大模型。那如何在fastgpt上接入私有化模型呢,本文就以清华的ChatGLM2为例,为各位讲解如何在fastgpt中接入私有化模型。
|
||||
## ChatGLM2简介
|
||||
ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,具体介绍请看项目:https://github.com/THUDM/ChatGLM2-6B
|
||||
注意,ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。本教程只是介绍了一种用法,并不会给予任何授权。
|
||||
## 推荐配置
|
||||
依据官方数据,同样是生成 8192 长度,量化等级为FP16要占用12.8GB 显存、INT8为8.1GB显存、INT4为5.1GB显存,量化后会稍微影响性能,但不多。
|
||||
因此推荐配置如下:
|
||||
fp16:内存>=16GB,显存>=16GB,硬盘空间>=25GB,启动时使用命令python openai_api.py 16
|
||||
int8:内存>=16GB,显存>=9GB,硬盘空间>=25GB,启动时选择python openai_api.py 8
|
||||
int4:内存>=16GB,显存>=6GB,硬盘空间>=25GB,启动时选择python openai_api.py 4
|
||||
## 环境配置
|
||||
Python 3.8.10
|
||||
CUDA 11.8
|
||||
科学上网环境
|
||||
## 简单的步骤
|
||||
1. 根据上面的环境配置配置好环境,具体教程自行GPT;
|
||||
1. 在命令行输入pip install -r requirments.txt
|
||||
2. 打开你需要启动的py文件,在代码的第76行配置token,这里的token只是加一层验证,防止接口被人盗用
|
||||
2. python openai_api.py 16//这里的数字根据上面的配置进行选择
|
||||
|
||||
然后等待模型下载,直到模型加载完毕,出现报错先问GPT
|
||||
上面两个文件在本文档的同目录
|
||||
|
||||
启动成功后应该会显示如下地址:
|
||||

|
||||
这里的http://0.0.0.0:6006就是连接地址
|
||||
|
||||
然后现在回到.env.local文件,依照以下方式配置地址:
|
||||
|
||||
OPENAI_BASE_URL=http://127.0.0.1:6006/v1
|
||||
OPENAIKEY=sk-aaabbbcccdddeeefffggghhhiiijjjkkk //这里是你在代码中配置的token
|
||||
这里的OPENAIKEY可以任意填写
|
||||
|
||||
这样就成功接入ChatGLM2了
|
BIN
docs/zh/examples/ChatGLM2/image.png
Normal file
BIN
docs/zh/examples/ChatGLM2/image.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 100 KiB |
174
docs/zh/examples/ChatGLM2/openai_api.py
Normal file
174
docs/zh/examples/ChatGLM2/openai_api.py
Normal file
@@ -0,0 +1,174 @@
|
||||
# coding=utf-8
|
||||
import time
|
||||
import torch
|
||||
import uvicorn
|
||||
from pydantic import BaseModel, Field
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from contextlib import asynccontextmanager
|
||||
from typing import Any, Dict, List, Literal, Optional, Union
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
from sse_starlette.sse import ServerSentEvent, EventSourceResponse
|
||||
from fastapi import Depends, HTTPException, Request
|
||||
from starlette.status import HTTP_401_UNAUTHORIZED
|
||||
import argparse
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI): # collects GPU memory
|
||||
yield
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
|
||||
class ChatMessage(BaseModel):
|
||||
role: Literal["user", "assistant", "system"]
|
||||
content: str
|
||||
|
||||
|
||||
class DeltaMessage(BaseModel):
|
||||
role: Optional[Literal["user", "assistant", "system"]] = None
|
||||
content: Optional[str] = None
|
||||
|
||||
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str
|
||||
messages: List[ChatMessage]
|
||||
temperature: Optional[float] = None
|
||||
top_p: Optional[float] = None
|
||||
max_length: Optional[int] = None
|
||||
stream: Optional[bool] = False
|
||||
|
||||
|
||||
class ChatCompletionResponseChoice(BaseModel):
|
||||
index: int
|
||||
message: ChatMessage
|
||||
finish_reason: Literal["stop", "length"]
|
||||
|
||||
|
||||
class ChatCompletionResponseStreamChoice(BaseModel):
|
||||
index: int
|
||||
delta: DeltaMessage
|
||||
finish_reason: Optional[Literal["stop", "length"]]
|
||||
|
||||
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
model: str
|
||||
object: Literal["chat.completion", "chat.completion.chunk"]
|
||||
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
|
||||
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
|
||||
|
||||
async def verify_token(request: Request):
|
||||
auth_header = request.headers.get('Authorization')
|
||||
if auth_header:
|
||||
token_type, _, token = auth_header.partition(' ')
|
||||
if token_type.lower() == "bearer" and token == "sk-aaabbbcccdddeeefffggghhhiiijjjkkk": # 这里配置你的token
|
||||
return True
|
||||
raise HTTPException(
|
||||
status_code=HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid authorization credentials",
|
||||
)
|
||||
|
||||
|
||||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||||
async def create_chat_completion(request: ChatCompletionRequest, token: bool = Depends(verify_token)):
|
||||
global model, tokenizer
|
||||
|
||||
if request.messages[-1].role != "user":
|
||||
raise HTTPException(status_code=400, detail="Invalid request")
|
||||
query = request.messages[-1].content
|
||||
|
||||
prev_messages = request.messages[:-1]
|
||||
if len(prev_messages) > 0 and prev_messages[0].role == "system":
|
||||
query = prev_messages.pop(0).content + query
|
||||
|
||||
history = []
|
||||
if len(prev_messages) % 2 == 0:
|
||||
for i in range(0, len(prev_messages), 2):
|
||||
if prev_messages[i].role == "user" and prev_messages[i+1].role == "assistant":
|
||||
history.append([prev_messages[i].content, prev_messages[i+1].content])
|
||||
|
||||
if request.stream:
|
||||
generate = predict(query, history, request.model)
|
||||
return EventSourceResponse(generate, media_type="text/event-stream")
|
||||
|
||||
response, _ = model.chat(tokenizer, query, history=history)
|
||||
choice_data = ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response),
|
||||
finish_reason="stop"
|
||||
)
|
||||
|
||||
return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion")
|
||||
|
||||
|
||||
async def predict(query: str, history: List[List[str]], model_id: str):
|
||||
global model, tokenizer
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=0,
|
||||
delta=DeltaMessage(role="assistant"),
|
||||
finish_reason=None
|
||||
)
|
||||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
|
||||
current_length = 0
|
||||
|
||||
for new_response, _ in model.stream_chat(tokenizer, query, history):
|
||||
if len(new_response) == current_length:
|
||||
continue
|
||||
|
||||
new_text = new_response[current_length:]
|
||||
current_length = len(new_response)
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=0,
|
||||
delta=DeltaMessage(content=new_text),
|
||||
finish_reason=None
|
||||
)
|
||||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=0,
|
||||
delta=DeltaMessage(),
|
||||
finish_reason="stop"
|
||||
)
|
||||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
yield '[DONE]'
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model_name", default="16", type=str, help="Model name")
|
||||
args = parser.parse_args()
|
||||
|
||||
model_dict = {
|
||||
"4": "THUDM/chatglm2-6b-int4",
|
||||
"8": "THUDM/chatglm2-6b-int8",
|
||||
"16": "THUDM/chatglm2-6b"
|
||||
}
|
||||
|
||||
model_name = model_dict.get(args.model_name, "THUDM/chatglm2-6b")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()
|
||||
model.eval()
|
||||
|
||||
uvicorn.run(app, host='0.0.0.0', port=6006, workers=1)
|
Reference in New Issue
Block a user