mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 13:03:50 +00:00
V4.9.12 feature (#5022)
* New chatinput (#4995) * feat: Change border style * refactor: Improve layout and styling of ChatInput component * style: Update ChatInput component styling and mobile layout * fix: update key detection for Enter key in ChatInput component * feat: 添加 WelcomePage 组件,支持变量输入和欢迎信息展示 * style: Updated the PC voice input interface of the VoiceInput component and optimized the layout and style * style: Optimize the layout and style of the WelcomePage component, and adjust the responsive design * feat: Dynamically load the WelcomePage component and optimize the welcome information display logic * refactor: Adjust the style and behavior of the ChatInput component and delete the WelcomePage component * style: Modify the minimum height setting of the ChatInput component to simplify responsive design * style: Optimize the layout and style of PC voice input components, and enhance the processing and drawing logic of waveform data * style: Adjust ChatInput component's margin and textarea height logic for improved layout and responsiveness; refine PCVoiceInput component's positioning and display elements * style: Enhance PCVoiceInput component's time display styling with custom font properties * feat: Change border style * refactor: Improve layout and styling of ChatInput component * style: Update ChatInput component styling and mobile layout * fix: update key detection for Enter key in ChatInput component * feat: 添加 WelcomePage 组件,支持变量输入和欢迎信息展示 * style: Updated the PC voice input interface of the VoiceInput component and optimized the layout and style * style: Optimize the layout and style of the WelcomePage component, and adjust the responsive design * feat: Dynamically load the WelcomePage component and optimize the welcome information display logic * refactor: Adjust the style and behavior of the ChatInput component and delete the WelcomePage component * style: Modify the minimum height setting of the ChatInput component to simplify responsive design * style: Optimize the layout and style of PC voice input components, and enhance the processing and drawing logic of waveform data * style: Adjust ChatInput component's margin and textarea height logic for improved layout and responsiveness; refine PCVoiceInput component's positioning and display elements * style: Enhance PCVoiceInput component's time display styling with custom font properties * style: Add new 'xxl' size to theme spacing for improved layout options * style: Update close icon fill color to use currentColor for better theming support * style: Enhance voice input functionality and UI responsiveness; improve waveform sensitivity and amplitude * style: Conditionally render file preview based on voice input state * style: 优化移动端音频波形渲染,增强清晰度和敏感度 * style: Update comments to English to enhance code readability and consistency * style: Adjust the mobile audio waveform update frequency and optimize rendering performance * style: Optimize the file preview rendering logic in voice input mode to enhance user experience * style: Optimize the file preview rendering logic in voice input mode to enhance user experience * style: Adjust the chat input box placeholder color and border color to enhance visual effects * fix: pg test * Test secret (#5011) * add http header auth config (#4982) * add http header auth config * optimize code * add mcp tools header auth * fix build * fix ui * fix * teamid * secret value encrypt (#5002) * perf: secret code * header auth ui (#5012) * header auth ui * fix i18n * doc * perf: type * header secret ui * reset ui * perf: check secret invalid --------- Co-authored-by: heheer <heheer@sealos.io> * feat: cq and extrat AI memory (#5013) * fix: login xss * feat: Users can download the invoice by self (#5015) * Users can download the invoice by themselves * Direct file stream implementation for transmission presentation * i18n * Chatbox-fix (#5018) * feat: Change border style * refactor: Improve layout and styling of ChatInput component * style: Update ChatInput component styling and mobile layout * fix: update key detection for Enter key in ChatInput component * feat: 添加 WelcomePage 组件,支持变量输入和欢迎信息展示 * style: Updated the PC voice input interface of the VoiceInput component and optimized the layout and style * style: Optimize the layout and style of the WelcomePage component, and adjust the responsive design * feat: Dynamically load the WelcomePage component and optimize the welcome information display logic * refactor: Adjust the style and behavior of the ChatInput component and delete the WelcomePage component * style: Modify the minimum height setting of the ChatInput component to simplify responsive design * style: Optimize the layout and style of PC voice input components, and enhance the processing and drawing logic of waveform data * style: Adjust ChatInput component's margin and textarea height logic for improved layout and responsiveness; refine PCVoiceInput component's positioning and display elements * style: Enhance PCVoiceInput component's time display styling with custom font properties * feat: Change border style * refactor: Improve layout and styling of ChatInput component * style: Update ChatInput component styling and mobile layout * fix: update key detection for Enter key in ChatInput component * feat: 添加 WelcomePage 组件,支持变量输入和欢迎信息展示 * style: Updated the PC voice input interface of the VoiceInput component and optimized the layout and style * style: Optimize the layout and style of the WelcomePage component, and adjust the responsive design * feat: Dynamically load the WelcomePage component and optimize the welcome information display logic * refactor: Adjust the style and behavior of the ChatInput component and delete the WelcomePage component * style: Modify the minimum height setting of the ChatInput component to simplify responsive design * style: Optimize the layout and style of PC voice input components, and enhance the processing and drawing logic of waveform data * style: Adjust ChatInput component's margin and textarea height logic for improved layout and responsiveness; refine PCVoiceInput component's positioning and display elements * style: Enhance PCVoiceInput component's time display styling with custom font properties * style: Add new 'xxl' size to theme spacing for improved layout options * style: Update close icon fill color to use currentColor for better theming support * style: Enhance voice input functionality and UI responsiveness; improve waveform sensitivity and amplitude * style: Conditionally render file preview based on voice input state * style: 优化移动端音频波形渲染,增强清晰度和敏感度 * style: Update comments to English to enhance code readability and consistency * style: Adjust the mobile audio waveform update frequency and optimize rendering performance * style: Optimize the file preview rendering logic in voice input mode to enhance user experience * style: Optimize the file preview rendering logic in voice input mode to enhance user experience * style: Adjust the chat input box placeholder color and border color to enhance visual effects * New chatinput (#4995) * feat: Change border style * refactor: Improve layout and styling of ChatInput component * style: Update ChatInput component styling and mobile layout * fix: update key detection for Enter key in ChatInput component * feat: 添加 WelcomePage 组件,支持变量输入和欢迎信息展示 * style: Updated the PC voice input interface of the VoiceInput component and optimized the layout and style * style: Optimize the layout and style of the WelcomePage component, and adjust the responsive design * feat: Dynamically load the WelcomePage component and optimize the welcome information display logic * refactor: Adjust the style and behavior of the ChatInput component and delete the WelcomePage component * style: Modify the minimum height setting of the ChatInput component to simplify responsive design * style: Optimize the layout and style of PC voice input components, and enhance the processing and drawing logic of waveform data * style: Adjust ChatInput component's margin and textarea height logic for improved layout and responsiveness; refine PCVoiceInput component's positioning and display elements * style: Enhance PCVoiceInput component's time display styling with custom font properties * feat: Change border style * refactor: Improve layout and styling of ChatInput component * style: Update ChatInput component styling and mobile layout * fix: update key detection for Enter key in ChatInput component * feat: 添加 WelcomePage 组件,支持变量输入和欢迎信息展示 * style: Updated the PC voice input interface of the VoiceInput component and optimized the layout and style * style: Optimize the layout and style of the WelcomePage component, and adjust the responsive design * feat: Dynamically load the WelcomePage component and optimize the welcome information display logic * refactor: Adjust the style and behavior of the ChatInput component and delete the WelcomePage component * style: Modify the minimum height setting of the ChatInput component to simplify responsive design * style: Optimize the layout and style of PC voice input components, and enhance the processing and drawing logic of waveform data * style: Adjust ChatInput component's margin and textarea height logic for improved layout and responsiveness; refine PCVoiceInput component's positioning and display elements * style: Enhance PCVoiceInput component's time display styling with custom font properties * style: Add new 'xxl' size to theme spacing for improved layout options * style: Update close icon fill color to use currentColor for better theming support * style: Enhance voice input functionality and UI responsiveness; improve waveform sensitivity and amplitude * style: Conditionally render file preview based on voice input state * style: 优化移动端音频波形渲染,增强清晰度和敏感度 * style: Update comments to English to enhance code readability and consistency * style: Adjust the mobile audio waveform update frequency and optimize rendering performance * style: Optimize the file preview rendering logic in voice input mode to enhance user experience * style: Optimize the file preview rendering logic in voice input mode to enhance user experience * style: Adjust the chat input box placeholder color and border color to enhance visual effects * fix: pg test * Test secret (#5011) * add http header auth config (#4982) * add http header auth config * optimize code * add mcp tools header auth * fix build * fix ui * fix * teamid * secret value encrypt (#5002) * perf: secret code * header auth ui (#5012) * header auth ui * fix i18n * doc * perf: type * header secret ui * reset ui * perf: check secret invalid --------- Co-authored-by: heheer <heheer@sealos.io> * feat: cq and extrat AI memory (#5013) * refactor: Refactored the ChatInput component, optimized the layout of the text area and button group, and improved the user experience * refactor: Updated ChatInput component, optimized layout and style, and enhanced user experience * feat: update docs --------- Co-authored-by: archer <545436317@qq.com> Co-authored-by: heheer <heheer@sealos.io> * input ui * fix: chat input ux * Return in JSON format to handle checkres (#5019) * Users can download the invoice by themselves * Direct file stream implementation for transmission presentation * Return in JSON format to handle checkres * fix: invoice * fix: ui * doc * update package * fix: ts * fix: login checker * fix: team plan * perf: aiproxy ux --------- Co-authored-by: Theresa <63280168+sd0ric4@users.noreply.github.com> Co-authored-by: heheer <heheer@sealos.io> Co-authored-by: Zhuangzai fa <143257420+ctrlz526@users.noreply.github.com>
This commit is contained in:
@@ -146,8 +146,6 @@ curl --location --request POST 'https://<oneapi_url>/v1/chat/completions' \
|
||||
"usedInToolCall": true, // 是否用于工具调用(务必保证至少有一个为true)
|
||||
"toolChoice": true, // 是否支持工具选择(分类,内容提取,工具调用会用到。)
|
||||
"functionCall": false, // 是否支持函数调用(分类,内容提取,工具调用会用到。会优先使用 toolChoice,如果为false,则使用 functionCall,如果仍为 false,则使用提示词模式)
|
||||
"customCQPrompt": "", // 自定义文本分类提示词(不支持工具和函数调用的模型
|
||||
"customExtractPrompt": "", // 自定义内容提取提示词
|
||||
"defaultSystemChatPrompt": "", // 对话默认携带的系统提示词
|
||||
"defaultConfig": {} // 请求API时,挟带一些默认配置(比如 GLM4 的 top_p)
|
||||
}
|
||||
|
@@ -59,11 +59,10 @@ images: []
|
||||
|
||||
可以。需要准备好向量模型和LLM模型。
|
||||
|
||||
### 其他模型没法进行问题分类/内容提取
|
||||
### 其他模型没法进行内容提取
|
||||
|
||||
看日志。如果提示 JSON invalid,not support tool 之类的,说明该模型不支持工具调用或函数调用,需要设置`toolChoice=false`和`functionCall=false`,就会默认走提示词模式。目前内置提示词仅针对了商业模型API进行测试。问题分类基本可用,内容提取不太行。
|
||||
|
||||
1. 看日志。如果提示 JSON invalid,not support tool 之类的,说明该模型不支持工具调用或函数调用,需要设置`toolChoice=false`和`functionCall=false`,就会默认走提示词模式。目前内置提示词仅针对了商业模型API进行测试。问题分类基本可用,内容提取不太行。
|
||||
2. 如果已经配置正常,并且没有错误日志,则说明可能提示词不太适合该模型,可以通过修改`customCQPrompt`来自定义提示词。
|
||||
|
||||
### 页面崩溃
|
||||
|
||||
1. 关闭翻译
|
||||
|
@@ -111,8 +111,6 @@ weight: 744
|
||||
"usedInToolCall": true, // 是否用于工具调用(务必保证至少有一个为true)
|
||||
"toolChoice": true, // 是否支持工具选择(分类,内容提取,工具调用会用到。)
|
||||
"functionCall": false, // 是否支持函数调用(分类,内容提取,工具调用会用到。会优先使用 toolChoice,如果为false,则使用 functionCall,如果仍为 false,则使用提示词模式)
|
||||
"customCQPrompt": "", // 自定义文本分类提示词(不支持工具和函数调用的模型
|
||||
"customExtractPrompt": "", // 自定义内容提取提示词
|
||||
"defaultSystemChatPrompt": "", // 对话默认携带的系统提示词
|
||||
"defaultConfig": {}, // 请求API时,挟带一些默认配置(比如 GLM4 的 top_p)
|
||||
"fieldMap": {} // 字段映射(o1 模型需要把 max_tokens 映射为 max_completion_tokens)
|
||||
@@ -322,8 +320,6 @@ OneAPI 的语言识别接口,无法正确的识别其他模型(会始终识
|
||||
"usedInToolCall": true, // 是否用于工具调用(务必保证至少有一个为true)
|
||||
"toolChoice": true, // 是否支持工具选择(分类,内容提取,工具调用会用到。)
|
||||
"functionCall": false, // 是否支持函数调用(分类,内容提取,工具调用会用到。会优先使用 toolChoice,如果为false,则使用 functionCall,如果仍为 false,则使用提示词模式)
|
||||
"customCQPrompt": "", // 自定义文本分类提示词(不支持工具和函数调用的模型
|
||||
"customExtractPrompt": "", // 自定义内容提取提示词
|
||||
"defaultSystemChatPrompt": "", // 对话默认携带的系统提示词
|
||||
"defaultConfig": {}, // 请求API时,挟带一些默认配置(比如 GLM4 的 top_p)
|
||||
"fieldMap": {} // 字段映射(o1 模型需要把 max_tokens 映射为 max_completion_tokens)
|
||||
@@ -345,8 +341,6 @@ OneAPI 的语言识别接口,无法正确的识别其他模型(会始终识
|
||||
"usedInToolCall": true,
|
||||
"toolChoice": true,
|
||||
"functionCall": false,
|
||||
"customCQPrompt": "",
|
||||
"customExtractPrompt": "",
|
||||
"defaultSystemChatPrompt": "",
|
||||
"defaultConfig": {},
|
||||
"fieldMap": {}
|
||||
@@ -368,8 +362,6 @@ OneAPI 的语言识别接口,无法正确的识别其他模型(会始终识
|
||||
"usedInToolCall": true,
|
||||
"toolChoice": false,
|
||||
"functionCall": false,
|
||||
"customCQPrompt": "",
|
||||
"customExtractPrompt": "",
|
||||
"defaultSystemChatPrompt": "",
|
||||
"defaultConfig": {
|
||||
"temperature": 1,
|
||||
@@ -394,8 +386,6 @@ OneAPI 的语言识别接口,无法正确的识别其他模型(会始终识
|
||||
"usedInToolCall": true,
|
||||
"toolChoice": false,
|
||||
"functionCall": false,
|
||||
"customCQPrompt": "",
|
||||
"customExtractPrompt": "",
|
||||
"defaultSystemChatPrompt": "",
|
||||
"defaultConfig": {
|
||||
"temperature": 1,
|
||||
|
@@ -33,7 +33,6 @@ weight: 813
|
||||
"usedInToolCall": true,
|
||||
"toolChoice": false,
|
||||
"functionCall": false,
|
||||
"customCQPrompt": "",
|
||||
"customExtractPrompt": "",
|
||||
"defaultSystemChatPrompt": "",
|
||||
"defaultConfig": {
|
||||
@@ -57,7 +56,6 @@ weight: 813
|
||||
"usedInToolCall": true,
|
||||
"toolChoice": false,
|
||||
"functionCall": false,
|
||||
"customCQPrompt": "",
|
||||
"customExtractPrompt": "",
|
||||
"defaultSystemChatPrompt": "",
|
||||
"defaultConfig": {
|
||||
|
@@ -38,7 +38,6 @@ weight: 808
|
||||
"usedInQueryExtension": true,
|
||||
"toolChoice": true,
|
||||
"functionCall": false,
|
||||
"customCQPrompt": "",
|
||||
"customExtractPrompt": "",
|
||||
"defaultSystemChatPrompt": "",
|
||||
"defaultConfig": {},
|
||||
|
@@ -10,7 +10,9 @@ weight: 788
|
||||
## 🚀 新增内容
|
||||
|
||||
1. AI proxy 监控完善,支持以图表/表格形式查看模型调用和性能情况。
|
||||
2. 商业版支持知识库分块时,LLM 进行自动分段识别。
|
||||
2. HTTP 节点和 MCP 支持单独“鉴权配置”,鉴权配置明文不会二次返回客户端,以保障数据安全。
|
||||
3. 问题分类和内容提取,提示词中自动加入上一轮结果进行额外引导。
|
||||
4. 商业版支持知识库分块时,LLM 进行自动分段识别。
|
||||
|
||||
## ⚙️ 优化
|
||||
|
||||
@@ -18,8 +20,12 @@ weight: 788
|
||||
2. 后端全量计算知识库 chunk 参数,避免自动模式下部分参数未正确使用默认值。
|
||||
3. 将文本分块移至 worker 线程,避免阻塞。
|
||||
4. 展示更多套餐用量信息。
|
||||
5. 优化输入框样式,桌面和移动端的语音输入样式更新。
|
||||
|
||||
## 🐛 修复
|
||||
|
||||
1. 自定义问答提取提示词被覆盖。
|
||||
2. 模板导入时,存在空 indexes 时,导致数据插入失败。
|
||||
2. 模板导入时,存在空 indexes 时,导致数据插入失败。
|
||||
3. 登录页可能存在的 XSS 攻击。
|
||||
4. 输入框语音输入时候会丢失文件列表的问题。
|
||||
5. 知识库文档中图片 TTL 字段未清除,导致图片过期。
|
@@ -372,113 +372,113 @@ services:
|
||||
# 接入 ChatGLM2-m3e 模型
|
||||
## 将 FastGPT 接入私有化模型 ChatGLM2和m3e-large
|
||||
|
||||
## 前言
|
||||
|
||||
FastGPT 默认使用了 OpenAI 的 LLM 模型和向量模型,如果想要私有化部署的话,可以使用 ChatGLM2 和 m3e-large 模型。以下是由用户@不做了睡大觉 提供的接入方法。该镜像直接集成了 M3E-Large 和 ChatGLM2-6B 模型,可以直接使用。
|
||||
|
||||
## 部署镜像
|
||||
|
||||
+ 镜像名: `stawky/chatglm2-m3e:latest`
|
||||
+ 国内镜像名: `registry.cn-hangzhou.aliyuncs.com/fastgpt_docker/chatglm2-m3e:latest`
|
||||
+ 端口号: 6006
|
||||
|
||||
```
|
||||
# 设置安全凭证(即oneapi中的渠道密钥)
|
||||
默认值:sk-aaabbbcccdddeeefffggghhhiiijjjkkk
|
||||
也可以通过环境变量引入:sk-key。有关docker环境变量引入的方法请自寻教程,此处不再赘述。
|
||||
```
|
||||
|
||||
## 接入 [One API](/docs/development/modelconfig/one-api/)
|
||||
|
||||
为 chatglm2 和 m3e-large 各添加一个渠道,参数如下:
|
||||
|
||||

|
||||
|
||||
这里我填入 m3e 作为向量模型,chatglm2 作为语言模型
|
||||
|
||||
## 测试
|
||||
|
||||
curl 例子:
|
||||
|
||||
```bash
|
||||
curl --location --request POST 'https://domain/v1/embeddings' \
|
||||
--header 'Authorization: Bearer sk-aaabbbcccdddeeefffggghhhiiijjjkkk' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data-raw '{
|
||||
"model": "m3e",
|
||||
"input": ["laf是什么"]
|
||||
}'
|
||||
```
|
||||
|
||||
```bash
|
||||
curl --location --request POST 'https://domain/v1/chat/completions' \
|
||||
--header 'Authorization: Bearer sk-aaabbbcccdddeeefffggghhhiiijjjkkk' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data-raw '{
|
||||
"model": "chatglm2",
|
||||
"messages": [{"role": "user", "content": "Hello!"}]
|
||||
}'
|
||||
```
|
||||
|
||||
Authorization 为 sk-aaabbbcccdddeeefffggghhhiiijjjkkk。model 为刚刚在 One API 填写的自定义模型。
|
||||
|
||||
## 接入 FastGPT
|
||||
|
||||
修改 config.json 配置文件,在 llmModels 中加入 chatglm2, 在 vectorModels 中加入 M3E 模型:
|
||||
|
||||
```json
|
||||
"llmModels": [
|
||||
//其他对话模型
|
||||
{
|
||||
"model": "chatglm2",
|
||||
"name": "chatglm2",
|
||||
"maxToken": 8000,
|
||||
"price": 0,
|
||||
"quoteMaxToken": 4000,
|
||||
"maxTemperature": 1.2,
|
||||
"defaultSystemChatPrompt": ""
|
||||
}
|
||||
],
|
||||
"vectorModels": [
|
||||
{
|
||||
"model": "text-embedding-ada-002",
|
||||
"name": "Embedding-2",
|
||||
"price": 0.2,
|
||||
"defaultToken": 500,
|
||||
"maxToken": 3000
|
||||
},
|
||||
{
|
||||
"model": "m3e",
|
||||
"name": "M3E(测试使用)",
|
||||
"price": 0.1,
|
||||
"defaultToken": 500,
|
||||
"maxToken": 1800
|
||||
}
|
||||
],
|
||||
```
|
||||
|
||||
## 测试使用
|
||||
|
||||
M3E 模型的使用方法如下:
|
||||
|
||||
1. 创建知识库时候选择 M3E 模型。
|
||||
|
||||
注意,一旦选择后,知识库将无法修改向量模型。
|
||||
|
||||

|
||||
|
||||
2. 导入数据
|
||||
3. 搜索测试
|
||||
|
||||

|
||||
|
||||
4. 应用绑定知识库
|
||||
|
||||
注意,应用只能绑定同一个向量模型的知识库,不能跨模型绑定。并且,需要注意调整相似度,不同向量模型的相似度(距离)会有所区别,需要自行测试实验。
|
||||
|
||||

|
||||
|
||||
chatglm2 模型的使用方法如下:
|
||||
## 前言
|
||||
|
||||
FastGPT 默认使用了 OpenAI 的 LLM 模型和向量模型,如果想要私有化部署的话,可以使用 ChatGLM2 和 m3e-large 模型。以下是由用户@不做了睡大觉 提供的接入方法。该镜像直接集成了 M3E-Large 和 ChatGLM2-6B 模型,可以直接使用。
|
||||
|
||||
## 部署镜像
|
||||
|
||||
+ 镜像名: `stawky/chatglm2-m3e:latest`
|
||||
+ 国内镜像名: `registry.cn-hangzhou.aliyuncs.com/fastgpt_docker/chatglm2-m3e:latest`
|
||||
+ 端口号: 6006
|
||||
|
||||
```
|
||||
# 设置安全凭证(即oneapi中的渠道密钥)
|
||||
默认值:sk-aaabbbcccdddeeefffggghhhiiijjjkkk
|
||||
也可以通过环境变量引入:sk-key。有关docker环境变量引入的方法请自寻教程,此处不再赘述。
|
||||
```
|
||||
|
||||
## 接入 [One API](/docs/development/modelconfig/one-api/)
|
||||
|
||||
为 chatglm2 和 m3e-large 各添加一个渠道,参数如下:
|
||||
|
||||

|
||||
|
||||
这里我填入 m3e 作为向量模型,chatglm2 作为语言模型
|
||||
|
||||
## 测试
|
||||
|
||||
curl 例子:
|
||||
|
||||
```bash
|
||||
curl --location --request POST 'https://domain/v1/embeddings' \
|
||||
--header 'Authorization: Bearer sk-aaabbbcccdddeeefffggghhhiiijjjkkk' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data-raw '{
|
||||
"model": "m3e",
|
||||
"input": ["laf是什么"]
|
||||
}'
|
||||
```
|
||||
|
||||
```bash
|
||||
curl --location --request POST 'https://domain/v1/chat/completions' \
|
||||
--header 'Authorization: Bearer sk-aaabbbcccdddeeefffggghhhiiijjjkkk' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data-raw '{
|
||||
"model": "chatglm2",
|
||||
"messages": [{"role": "user", "content": "Hello!"}]
|
||||
}'
|
||||
```
|
||||
|
||||
Authorization 为 sk-aaabbbcccdddeeefffggghhhiiijjjkkk。model 为刚刚在 One API 填写的自定义模型。
|
||||
|
||||
## 接入 FastGPT
|
||||
|
||||
修改 config.json 配置文件,在 llmModels 中加入 chatglm2, 在 vectorModels 中加入 M3E 模型:
|
||||
|
||||
```json
|
||||
"llmModels": [
|
||||
//其他对话模型
|
||||
{
|
||||
"model": "chatglm2",
|
||||
"name": "chatglm2",
|
||||
"maxToken": 8000,
|
||||
"price": 0,
|
||||
"quoteMaxToken": 4000,
|
||||
"maxTemperature": 1.2,
|
||||
"defaultSystemChatPrompt": ""
|
||||
}
|
||||
],
|
||||
"vectorModels": [
|
||||
{
|
||||
"model": "text-embedding-ada-002",
|
||||
"name": "Embedding-2",
|
||||
"price": 0.2,
|
||||
"defaultToken": 500,
|
||||
"maxToken": 3000
|
||||
},
|
||||
{
|
||||
"model": "m3e",
|
||||
"name": "M3E(测试使用)",
|
||||
"price": 0.1,
|
||||
"defaultToken": 500,
|
||||
"maxToken": 1800
|
||||
}
|
||||
],
|
||||
```
|
||||
|
||||
## 测试使用
|
||||
|
||||
M3E 模型的使用方法如下:
|
||||
|
||||
1. 创建知识库时候选择 M3E 模型。
|
||||
|
||||
注意,一旦选择后,知识库将无法修改向量模型。
|
||||
|
||||

|
||||
|
||||
2. 导入数据
|
||||
3. 搜索测试
|
||||
|
||||

|
||||
|
||||
4. 应用绑定知识库
|
||||
|
||||
注意,应用只能绑定同一个向量模型的知识库,不能跨模型绑定。并且,需要注意调整相似度,不同向量模型的相似度(距离)会有所区别,需要自行测试实验。
|
||||
|
||||

|
||||
|
||||
chatglm2 模型的使用方法如下:
|
||||
模型选择 chatglm2 即可
|
||||
|
||||
# 接入 ChatGLM2-6B
|
||||
@@ -785,180 +785,180 @@ CUSTOM_READ_FILE_EXTENSION=pdf
|
||||
# 使用 Ollama 接入本地模型
|
||||
## 采用 Ollama 部署自己的模型
|
||||
|
||||
[Ollama](https://ollama.com/) 是一个开源的AI大模型部署工具,专注于简化大语言模型的部署和使用,支持一键下载和运行各种大模型。
|
||||
|
||||
## 安装 Ollama
|
||||
|
||||
Ollama 本身支持多种安装方式,但是推荐使用 Docker 拉取镜像部署。如果是个人设备上安装了 Ollama 后续需要解决如何让 Docker 中 FastGPT 容器访问宿主机 Ollama的问题,较为麻烦。
|
||||
|
||||
### Docker 安装(推荐)
|
||||
|
||||
你可以使用 Ollama 官方的 Docker 镜像来一键安装和启动 Ollama 服务(确保你的机器上已经安装了 Docker),命令如下:
|
||||
|
||||
```bash
|
||||
docker pull ollama/ollama
|
||||
docker run --rm -d --name ollama -p 11434:11434 ollama/ollama
|
||||
```
|
||||
|
||||
如果你的 FastGPT 是在 Docker 中进行部署的,建议在拉取 Ollama 镜像时保证和 FastGPT 镜像处于同一网络,否则可能出现 FastGPT 无法访问的问题,命令如下:
|
||||
|
||||
```bash
|
||||
docker run --rm -d --name ollama --network (你的 Fastgpt 容器所在网络) -p 11434:11434 ollama/ollama
|
||||
```
|
||||
|
||||
### 主机安装
|
||||
|
||||
如果你不想使用 Docker ,也可以采用主机安装,以下是主机安装的一些方式。
|
||||
|
||||
#### MacOS
|
||||
|
||||
如果你使用的是 macOS,且系统中已经安装了 Homebrew 包管理器,可通过以下命令来安装 Ollama:
|
||||
|
||||
```bash
|
||||
brew install ollama
|
||||
ollama serve #安装完成后,使用该命令启动服务
|
||||
```
|
||||
|
||||
#### Linux
|
||||
|
||||
在 Linux 系统上,你可以借助包管理器来安装 Ollama。以 Ubuntu 为例,在终端执行以下命令:
|
||||
|
||||
```bash
|
||||
curl https://ollama.com/install.sh | sh #此命令会从官方网站下载并执行安装脚本。
|
||||
ollama serve #安装完成后,同样启动服务
|
||||
```
|
||||
|
||||
#### Windows
|
||||
|
||||
在 Windows 系统中,你可以从 Ollama 官方网站 下载 Windows 版本的安装程序。下载完成后,运行安装程序,按照安装向导的提示完成安装。安装完成后,在命令提示符或 PowerShell 中启动服务:
|
||||
|
||||
```bash
|
||||
ollama serve #安装完成并启动服务后,你可以在浏览器中访问 http://localhost:11434 来验证 Ollama 是否安装成功。
|
||||
```
|
||||
|
||||
#### 补充说明
|
||||
|
||||
如果你是采用的主机应用 Ollama 而不是镜像,需要确保你的 Ollama 可以监听0.0.0.0。
|
||||
|
||||
##### 1. Linxu 系统
|
||||
|
||||
如果 Ollama 作为 systemd 服务运行,打开终端,编辑 Ollama 的 systemd 服务文件,使用命令sudo systemctl edit ollama.service,在[Service]部分添加Environment="OLLAMA_HOST=0.0.0.0"。保存并退出编辑器,然后执行sudo systemctl daemon - reload和sudo systemctl restart ollama使配置生效。
|
||||
|
||||
##### 2. MacOS 系统
|
||||
|
||||
打开终端,使用launchctl setenv ollama_host "0.0.0.0"命令设置环境变量,然后重启 Ollama 应用程序以使更改生效。
|
||||
|
||||
##### 3. Windows 系统
|
||||
|
||||
通过 “开始” 菜单或搜索栏打开 “编辑系统环境变量”,在 “系统属性” 窗口中点击 “环境变量”,在 “系统变量” 部分点击 “新建”,创建一个名为OLLAMA_HOST的变量,变量值设置为0.0.0.0,点击 “确定” 保存更改,最后从 “开始” 菜单重启 Ollama 应用程序。
|
||||
|
||||
### Ollama 拉取模型镜像
|
||||
|
||||
在安装 Ollama 后,本地是没有模型镜像的,需要自己去拉取 Ollama 中的模型镜像。命令如下:
|
||||
|
||||
```bash
|
||||
# Docker 部署需要先进容器,命令为: docker exec -it < Ollama 容器名 > /bin/sh
|
||||
ollama pull <模型名>
|
||||
```
|
||||
|
||||

|
||||
|
||||
|
||||
### 测试通信
|
||||
|
||||
在安装完成后,需要进行检测测试,首先进入 FastGPT 所在的容器,尝试访问自己的 Ollama ,命令如下:
|
||||
|
||||
```bash
|
||||
docker exec -it < FastGPT 所在的容器名 > /bin/sh
|
||||
curl http://XXX.XXX.XXX.XXX:11434 #容器部署地址为“http://<容器名>:<端口>”,主机安装地址为"http://<主机IP>:<端口>",主机IP不可为localhost
|
||||
```
|
||||
|
||||
看到访问显示自己的 Ollama 服务以及启动,说明可以正常通信。
|
||||
|
||||
## 将 Ollama 接入 FastGPT
|
||||
|
||||
### 1. 查看 Ollama 所拥有的模型
|
||||
|
||||
首先采用下述命令查看 Ollama 中所拥有的模型,
|
||||
|
||||
```bash
|
||||
# Docker 部署 Ollama,需要此命令 docker exec -it < Ollama 容器名 > /bin/sh
|
||||
ollama ls
|
||||
```
|
||||
|
||||

|
||||
|
||||
### 2. AI Proxy 接入
|
||||
|
||||
如果你采用的是 FastGPT 中的默认配置文件部署[这里](/docs/development/docker.md),即默认采用 AI Proxy 进行启动。
|
||||
|
||||

|
||||
|
||||
以及在确保你的 FastGPT 可以直接访问 Ollama 容器的情况下,无法访问,参考上文[点此跳转](#安装-ollama)的安装过程,检测是不是主机不能监测0.0.0.0,或者容器不在同一个网络。
|
||||
|
||||

|
||||
|
||||
在 FastGPT 中点击账号->模型提供商->模型配置->新增模型,添加自己的模型即可,添加模型时需要保证模型ID和 OneAPI 中的模型名称一致。详细参考[这里](/docs/development/modelConfig/intro.md)
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
运行 FastGPT ,在页面中选择账号->模型提供商->模型渠道->新增渠道。之后,在渠道选择中选择 Ollama ,然后加入自己拉取的模型,填入代理地址,如果是容器中安装 Ollama ,代理地址为http://地址:端口,补充:容器部署地址为“http://<容器名>:<端口>”,主机安装地址为"http://<主机IP>:<端口>",主机IP不可为localhost
|
||||
|
||||

|
||||
|
||||
在工作台中创建一个应用,选择自己之前添加的模型,此处模型名称为自己当时设置的别名。注:同一个模型无法多次添加,系统会采取最新添加时设置的别名。
|
||||
|
||||

|
||||
|
||||
### 3. OneAPI 接入
|
||||
|
||||
如果你想使用 OneAPI ,首先需要拉取 OneAPI 镜像,然后将其在 FastGPT 容器的网络中运行。具体命令如下:
|
||||
|
||||
```bash
|
||||
# 拉取 oneAPI 镜像
|
||||
docker pull intel/oneapi-hpckit
|
||||
|
||||
# 运行容器并指定自定义网络和容器名
|
||||
docker run -it --network < FastGPT 网络 > --name 容器名 intel/oneapi-hpckit /bin/bash
|
||||
```
|
||||
|
||||
进入 OneAPI 页面,添加新的渠道,类型选择 Ollama ,在模型中填入自己 Ollama 中的模型,需要保证添加的模型名称和 Ollama 中一致,再在下方填入自己的 Ollama 代理地址,默认http://地址:端口,不需要填写/v1。添加成功后在 OneAPI 进行渠道测试,测试成功则说明添加成功。此处演示采用的是 Docker 部署 Ollama 的效果,主机 Ollama需要修改代理地址为http://<主机IP>:<端口>
|
||||
|
||||

|
||||
|
||||
渠道添加成功后,点击令牌,点击添加令牌,填写名称,修改配置。
|
||||
|
||||

|
||||
|
||||
修改部署 FastGPT 的 docker-compose.yml 文件,在其中将 AI Proxy 的使用注释,在 OPENAI_BASE_URL 中加入自己的 OneAPI 开放地址,默认是http://地址:端口/v1,v1必须填写。KEY 中填写自己在 OneAPI 的令牌。
|
||||
|
||||

|
||||
|
||||
[直接跳转5](#5-模型添加和使用)添加模型,并使用。
|
||||
|
||||
### 4. 直接接入
|
||||
|
||||
如果你既不想使用 AI Proxy,也不想使用 OneAPI,也可以选择直接接入,修改部署 FastGPT 的 docker-compose.yml 文件,在其中将 AI Proxy 的使用注释,采用和 OneAPI 的类似配置。注释掉 AIProxy 相关代码,在OPENAI_BASE_URL中加入自己的 Ollama 开放地址,默认是http://地址:端口/v1,强调:v1必须填写。在KEY中随便填入,因为 Ollama 默认没有鉴权,如果开启鉴权,请自行填写。其他操作和在 OneAPI 中加入 Ollama 一致,只需在 FastGPT 中加入自己的模型即可使用。此处演示采用的是 Docker 部署 Ollama 的效果,主机 Ollama需要修改代理地址为http://<主机IP>:<端口>
|
||||
|
||||

|
||||
|
||||
完成后[点击这里](#5-模型添加和使用)进行模型添加并使用。
|
||||
|
||||
### 5. 模型添加和使用
|
||||
|
||||
在 FastGPT 中点击账号->模型提供商->模型配置->新增模型,添加自己的模型即可,添加模型时需要保证模型ID和 OneAPI 中的模型名称一致。
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
在工作台中创建一个应用,选择自己之前添加的模型,此处模型名称为自己当时设置的别名。注:同一个模型无法多次添加,系统会采取最新添加时设置的别名。
|
||||
|
||||

|
||||
|
||||
### 6. 补充
|
||||
[Ollama](https://ollama.com/) 是一个开源的AI大模型部署工具,专注于简化大语言模型的部署和使用,支持一键下载和运行各种大模型。
|
||||
|
||||
## 安装 Ollama
|
||||
|
||||
Ollama 本身支持多种安装方式,但是推荐使用 Docker 拉取镜像部署。如果是个人设备上安装了 Ollama 后续需要解决如何让 Docker 中 FastGPT 容器访问宿主机 Ollama的问题,较为麻烦。
|
||||
|
||||
### Docker 安装(推荐)
|
||||
|
||||
你可以使用 Ollama 官方的 Docker 镜像来一键安装和启动 Ollama 服务(确保你的机器上已经安装了 Docker),命令如下:
|
||||
|
||||
```bash
|
||||
docker pull ollama/ollama
|
||||
docker run --rm -d --name ollama -p 11434:11434 ollama/ollama
|
||||
```
|
||||
|
||||
如果你的 FastGPT 是在 Docker 中进行部署的,建议在拉取 Ollama 镜像时保证和 FastGPT 镜像处于同一网络,否则可能出现 FastGPT 无法访问的问题,命令如下:
|
||||
|
||||
```bash
|
||||
docker run --rm -d --name ollama --network (你的 Fastgpt 容器所在网络) -p 11434:11434 ollama/ollama
|
||||
```
|
||||
|
||||
### 主机安装
|
||||
|
||||
如果你不想使用 Docker ,也可以采用主机安装,以下是主机安装的一些方式。
|
||||
|
||||
#### MacOS
|
||||
|
||||
如果你使用的是 macOS,且系统中已经安装了 Homebrew 包管理器,可通过以下命令来安装 Ollama:
|
||||
|
||||
```bash
|
||||
brew install ollama
|
||||
ollama serve #安装完成后,使用该命令启动服务
|
||||
```
|
||||
|
||||
#### Linux
|
||||
|
||||
在 Linux 系统上,你可以借助包管理器来安装 Ollama。以 Ubuntu 为例,在终端执行以下命令:
|
||||
|
||||
```bash
|
||||
curl https://ollama.com/install.sh | sh #此命令会从官方网站下载并执行安装脚本。
|
||||
ollama serve #安装完成后,同样启动服务
|
||||
```
|
||||
|
||||
#### Windows
|
||||
|
||||
在 Windows 系统中,你可以从 Ollama 官方网站 下载 Windows 版本的安装程序。下载完成后,运行安装程序,按照安装向导的提示完成安装。安装完成后,在命令提示符或 PowerShell 中启动服务:
|
||||
|
||||
```bash
|
||||
ollama serve #安装完成并启动服务后,你可以在浏览器中访问 http://localhost:11434 来验证 Ollama 是否安装成功。
|
||||
```
|
||||
|
||||
#### 补充说明
|
||||
|
||||
如果你是采用的主机应用 Ollama 而不是镜像,需要确保你的 Ollama 可以监听0.0.0.0。
|
||||
|
||||
##### 1. Linxu 系统
|
||||
|
||||
如果 Ollama 作为 systemd 服务运行,打开终端,编辑 Ollama 的 systemd 服务文件,使用命令sudo systemctl edit ollama.service,在[Service]部分添加Environment="OLLAMA_HOST=0.0.0.0"。保存并退出编辑器,然后执行sudo systemctl daemon - reload和sudo systemctl restart ollama使配置生效。
|
||||
|
||||
##### 2. MacOS 系统
|
||||
|
||||
打开终端,使用launchctl setenv ollama_host "0.0.0.0"命令设置环境变量,然后重启 Ollama 应用程序以使更改生效。
|
||||
|
||||
##### 3. Windows 系统
|
||||
|
||||
通过 “开始” 菜单或搜索栏打开 “编辑系统环境变量”,在 “系统属性” 窗口中点击 “环境变量”,在 “系统变量” 部分点击 “新建”,创建一个名为OLLAMA_HOST的变量,变量值设置为0.0.0.0,点击 “确定” 保存更改,最后从 “开始” 菜单重启 Ollama 应用程序。
|
||||
|
||||
### Ollama 拉取模型镜像
|
||||
|
||||
在安装 Ollama 后,本地是没有模型镜像的,需要自己去拉取 Ollama 中的模型镜像。命令如下:
|
||||
|
||||
```bash
|
||||
# Docker 部署需要先进容器,命令为: docker exec -it < Ollama 容器名 > /bin/sh
|
||||
ollama pull <模型名>
|
||||
```
|
||||
|
||||

|
||||
|
||||
|
||||
### 测试通信
|
||||
|
||||
在安装完成后,需要进行检测测试,首先进入 FastGPT 所在的容器,尝试访问自己的 Ollama ,命令如下:
|
||||
|
||||
```bash
|
||||
docker exec -it < FastGPT 所在的容器名 > /bin/sh
|
||||
curl http://XXX.XXX.XXX.XXX:11434 #容器部署地址为“http://<容器名>:<端口>”,主机安装地址为"http://<主机IP>:<端口>",主机IP不可为localhost
|
||||
```
|
||||
|
||||
看到访问显示自己的 Ollama 服务以及启动,说明可以正常通信。
|
||||
|
||||
## 将 Ollama 接入 FastGPT
|
||||
|
||||
### 1. 查看 Ollama 所拥有的模型
|
||||
|
||||
首先采用下述命令查看 Ollama 中所拥有的模型,
|
||||
|
||||
```bash
|
||||
# Docker 部署 Ollama,需要此命令 docker exec -it < Ollama 容器名 > /bin/sh
|
||||
ollama ls
|
||||
```
|
||||
|
||||

|
||||
|
||||
### 2. AI Proxy 接入
|
||||
|
||||
如果你采用的是 FastGPT 中的默认配置文件部署[这里](/docs/development/docker.md),即默认采用 AI Proxy 进行启动。
|
||||
|
||||

|
||||
|
||||
以及在确保你的 FastGPT 可以直接访问 Ollama 容器的情况下,无法访问,参考上文[点此跳转](#安装-ollama)的安装过程,检测是不是主机不能监测0.0.0.0,或者容器不在同一个网络。
|
||||
|
||||

|
||||
|
||||
在 FastGPT 中点击账号->模型提供商->模型配置->新增模型,添加自己的模型即可,添加模型时需要保证模型ID和 OneAPI 中的模型名称一致。详细参考[这里](/docs/development/modelConfig/intro.md)
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
运行 FastGPT ,在页面中选择账号->模型提供商->模型渠道->新增渠道。之后,在渠道选择中选择 Ollama ,然后加入自己拉取的模型,填入代理地址,如果是容器中安装 Ollama ,代理地址为http://地址:端口,补充:容器部署地址为“http://<容器名>:<端口>”,主机安装地址为"http://<主机IP>:<端口>",主机IP不可为localhost
|
||||
|
||||

|
||||
|
||||
在工作台中创建一个应用,选择自己之前添加的模型,此处模型名称为自己当时设置的别名。注:同一个模型无法多次添加,系统会采取最新添加时设置的别名。
|
||||
|
||||

|
||||
|
||||
### 3. OneAPI 接入
|
||||
|
||||
如果你想使用 OneAPI ,首先需要拉取 OneAPI 镜像,然后将其在 FastGPT 容器的网络中运行。具体命令如下:
|
||||
|
||||
```bash
|
||||
# 拉取 oneAPI 镜像
|
||||
docker pull intel/oneapi-hpckit
|
||||
|
||||
# 运行容器并指定自定义网络和容器名
|
||||
docker run -it --network < FastGPT 网络 > --name 容器名 intel/oneapi-hpckit /bin/bash
|
||||
```
|
||||
|
||||
进入 OneAPI 页面,添加新的渠道,类型选择 Ollama ,在模型中填入自己 Ollama 中的模型,需要保证添加的模型名称和 Ollama 中一致,再在下方填入自己的 Ollama 代理地址,默认http://地址:端口,不需要填写/v1。添加成功后在 OneAPI 进行渠道测试,测试成功则说明添加成功。此处演示采用的是 Docker 部署 Ollama 的效果,主机 Ollama需要修改代理地址为http://<主机IP>:<端口>
|
||||
|
||||

|
||||
|
||||
渠道添加成功后,点击令牌,点击添加令牌,填写名称,修改配置。
|
||||
|
||||

|
||||
|
||||
修改部署 FastGPT 的 docker-compose.yml 文件,在其中将 AI Proxy 的使用注释,在 OPENAI_BASE_URL 中加入自己的 OneAPI 开放地址,默认是http://地址:端口/v1,v1必须填写。KEY 中填写自己在 OneAPI 的令牌。
|
||||
|
||||

|
||||
|
||||
[直接跳转5](#5-模型添加和使用)添加模型,并使用。
|
||||
|
||||
### 4. 直接接入
|
||||
|
||||
如果你既不想使用 AI Proxy,也不想使用 OneAPI,也可以选择直接接入,修改部署 FastGPT 的 docker-compose.yml 文件,在其中将 AI Proxy 的使用注释,采用和 OneAPI 的类似配置。注释掉 AIProxy 相关代码,在OPENAI_BASE_URL中加入自己的 Ollama 开放地址,默认是http://地址:端口/v1,强调:v1必须填写。在KEY中随便填入,因为 Ollama 默认没有鉴权,如果开启鉴权,请自行填写。其他操作和在 OneAPI 中加入 Ollama 一致,只需在 FastGPT 中加入自己的模型即可使用。此处演示采用的是 Docker 部署 Ollama 的效果,主机 Ollama需要修改代理地址为http://<主机IP>:<端口>
|
||||
|
||||

|
||||
|
||||
完成后[点击这里](#5-模型添加和使用)进行模型添加并使用。
|
||||
|
||||
### 5. 模型添加和使用
|
||||
|
||||
在 FastGPT 中点击账号->模型提供商->模型配置->新增模型,添加自己的模型即可,添加模型时需要保证模型ID和 OneAPI 中的模型名称一致。
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
在工作台中创建一个应用,选择自己之前添加的模型,此处模型名称为自己当时设置的别名。注:同一个模型无法多次添加,系统会采取最新添加时设置的别名。
|
||||
|
||||

|
||||
|
||||
### 6. 补充
|
||||
上述接入 Ollama 的代理地址中,主机安装 Ollama 的地址为“http://<主机IP>:<端口>”,容器部署 Ollama 地址为“http://<容器名>:<端口>”
|
||||
|
||||
# 使用 Xinference 接入本地模型
|
||||
@@ -1103,7 +1103,6 @@ curl --location --request POST 'https://<oneapi_url>/v1/chat/completions' \
|
||||
"usedInToolCall": true, // 是否用于工具调用(务必保证至少有一个为true)
|
||||
"toolChoice": true, // 是否支持工具选择(分类,内容提取,工具调用会用到。)
|
||||
"functionCall": false, // 是否支持函数调用(分类,内容提取,工具调用会用到。会优先使用 toolChoice,如果为false,则使用 functionCall,如果仍为 false,则使用提示词模式)
|
||||
"customCQPrompt": "", // 自定义文本分类提示词(不支持工具和函数调用的模型
|
||||
"customExtractPrompt": "", // 自定义内容提取提示词
|
||||
"defaultSystemChatPrompt": "", // 对话默认携带的系统提示词
|
||||
"defaultConfig": {} // 请求API时,挟带一些默认配置(比如 GLM4 的 top_p)
|
||||
@@ -2815,8 +2814,6 @@ OneAPI 的语言识别接口,无法正确的识别其他模型(会始终识
|
||||
"usedInToolCall": true,
|
||||
"toolChoice": true,
|
||||
"functionCall": false,
|
||||
"customCQPrompt": "",
|
||||
"customExtractPrompt": "",
|
||||
"defaultSystemChatPrompt": "",
|
||||
"defaultConfig": {},
|
||||
"fieldMap": {}
|
||||
@@ -2838,8 +2835,6 @@ OneAPI 的语言识别接口,无法正确的识别其他模型(会始终识
|
||||
"usedInToolCall": true,
|
||||
"toolChoice": false,
|
||||
"functionCall": false,
|
||||
"customCQPrompt": "",
|
||||
"customExtractPrompt": "",
|
||||
"defaultSystemChatPrompt": "",
|
||||
"defaultConfig": {
|
||||
"temperature": 1,
|
||||
@@ -2864,8 +2859,6 @@ OneAPI 的语言识别接口,无法正确的识别其他模型(会始终识
|
||||
"usedInToolCall": true,
|
||||
"toolChoice": false,
|
||||
"functionCall": false,
|
||||
"customCQPrompt": "",
|
||||
"customExtractPrompt": "",
|
||||
"defaultSystemChatPrompt": "",
|
||||
"defaultConfig": {
|
||||
"temperature": 1,
|
||||
|
Reference in New Issue
Block a user