mirror of
https://github.com/labring/FastGPT.git
synced 2025-10-14 23:22:22 +00:00
perf: password special chars;feat: llm paragraph;perf: chunk setting params;perf: text splitter worker (#4984)
* perf: password special chars * feat: llm paragraph;perf: chunk setting params * perf: text splitter worker * perf: get rawtext buffer * fix: test * fix: test * doc * min chunk size
This commit is contained in:
@@ -32,10 +32,7 @@ import { MongoDatasetDataText } from '../data/dataTextSchema';
|
||||
import { retryFn } from '@fastgpt/global/common/system/utils';
|
||||
import { getTrainingModeByCollection } from './utils';
|
||||
import {
|
||||
computeChunkSize,
|
||||
computeChunkSplitter,
|
||||
computeParagraphChunkDeep,
|
||||
getAutoIndexSize,
|
||||
computedCollectionChunkSettings,
|
||||
getLLMMaxChunkSize
|
||||
} from '@fastgpt/global/core/dataset/training/utils';
|
||||
import { DatasetDataIndexTypeEnum } from '@fastgpt/global/core/dataset/data/constants';
|
||||
@@ -68,31 +65,50 @@ export const createCollectionAndInsertData = async ({
|
||||
createCollectionParams.autoIndexes = true;
|
||||
}
|
||||
|
||||
const teamId = createCollectionParams.teamId;
|
||||
const tmbId = createCollectionParams.tmbId;
|
||||
const formatCreateCollectionParams = computedCollectionChunkSettings({
|
||||
...createCollectionParams,
|
||||
llmModel: getLLMModel(dataset.agentModel),
|
||||
vectorModel: getEmbeddingModel(dataset.vectorModel)
|
||||
});
|
||||
|
||||
const teamId = formatCreateCollectionParams.teamId;
|
||||
const tmbId = formatCreateCollectionParams.tmbId;
|
||||
|
||||
// Set default params
|
||||
const trainingType =
|
||||
createCollectionParams.trainingType || DatasetCollectionDataProcessModeEnum.chunk;
|
||||
const chunkSplitter = computeChunkSplitter(createCollectionParams);
|
||||
const paragraphChunkDeep = computeParagraphChunkDeep(createCollectionParams);
|
||||
formatCreateCollectionParams.trainingType || DatasetCollectionDataProcessModeEnum.chunk;
|
||||
const trainingMode = getTrainingModeByCollection({
|
||||
trainingType: trainingType,
|
||||
autoIndexes: createCollectionParams.autoIndexes,
|
||||
imageIndex: createCollectionParams.imageIndex
|
||||
autoIndexes: formatCreateCollectionParams.autoIndexes,
|
||||
imageIndex: formatCreateCollectionParams.imageIndex
|
||||
});
|
||||
|
||||
if (
|
||||
trainingType === DatasetCollectionDataProcessModeEnum.qa ||
|
||||
trainingType === DatasetCollectionDataProcessModeEnum.backup
|
||||
trainingType === DatasetCollectionDataProcessModeEnum.backup ||
|
||||
trainingType === DatasetCollectionDataProcessModeEnum.template
|
||||
) {
|
||||
delete createCollectionParams.chunkTriggerType;
|
||||
delete createCollectionParams.chunkTriggerMinSize;
|
||||
delete createCollectionParams.dataEnhanceCollectionName;
|
||||
delete createCollectionParams.imageIndex;
|
||||
delete createCollectionParams.autoIndexes;
|
||||
delete createCollectionParams.indexSize;
|
||||
delete createCollectionParams.qaPrompt;
|
||||
delete formatCreateCollectionParams.chunkTriggerType;
|
||||
delete formatCreateCollectionParams.chunkTriggerMinSize;
|
||||
delete formatCreateCollectionParams.dataEnhanceCollectionName;
|
||||
delete formatCreateCollectionParams.imageIndex;
|
||||
delete formatCreateCollectionParams.autoIndexes;
|
||||
|
||||
if (
|
||||
trainingType === DatasetCollectionDataProcessModeEnum.backup ||
|
||||
trainingType === DatasetCollectionDataProcessModeEnum.template
|
||||
) {
|
||||
delete formatCreateCollectionParams.paragraphChunkAIMode;
|
||||
delete formatCreateCollectionParams.paragraphChunkDeep;
|
||||
delete formatCreateCollectionParams.paragraphChunkMinSize;
|
||||
delete formatCreateCollectionParams.chunkSplitMode;
|
||||
delete formatCreateCollectionParams.chunkSize;
|
||||
delete formatCreateCollectionParams.chunkSplitter;
|
||||
delete formatCreateCollectionParams.indexSize;
|
||||
}
|
||||
}
|
||||
if (trainingType !== DatasetCollectionDataProcessModeEnum.qa) {
|
||||
delete formatCreateCollectionParams.qaPrompt;
|
||||
}
|
||||
|
||||
// 1. split chunks or create image chunks
|
||||
@@ -109,30 +125,27 @@ export const createCollectionAndInsertData = async ({
|
||||
}>;
|
||||
chunkSize?: number;
|
||||
indexSize?: number;
|
||||
} = (() => {
|
||||
} = await (async () => {
|
||||
if (rawText) {
|
||||
const chunkSize = computeChunkSize({
|
||||
...createCollectionParams,
|
||||
trainingType,
|
||||
llmModel: getLLMModel(dataset.agentModel)
|
||||
});
|
||||
// Process text chunks
|
||||
const chunks = rawText2Chunks({
|
||||
const chunks = await rawText2Chunks({
|
||||
rawText,
|
||||
chunkTriggerType: createCollectionParams.chunkTriggerType,
|
||||
chunkTriggerMinSize: createCollectionParams.chunkTriggerMinSize,
|
||||
chunkSize,
|
||||
paragraphChunkDeep,
|
||||
paragraphChunkMinSize: createCollectionParams.paragraphChunkMinSize,
|
||||
chunkTriggerType: formatCreateCollectionParams.chunkTriggerType,
|
||||
chunkTriggerMinSize: formatCreateCollectionParams.chunkTriggerMinSize,
|
||||
chunkSize: formatCreateCollectionParams.chunkSize,
|
||||
paragraphChunkDeep: formatCreateCollectionParams.paragraphChunkDeep,
|
||||
paragraphChunkMinSize: formatCreateCollectionParams.paragraphChunkMinSize,
|
||||
maxSize: getLLMMaxChunkSize(getLLMModel(dataset.agentModel)),
|
||||
overlapRatio: trainingType === DatasetCollectionDataProcessModeEnum.chunk ? 0.2 : 0,
|
||||
customReg: chunkSplitter ? [chunkSplitter] : [],
|
||||
customReg: formatCreateCollectionParams.chunkSplitter
|
||||
? [formatCreateCollectionParams.chunkSplitter]
|
||||
: [],
|
||||
backupParse
|
||||
});
|
||||
return {
|
||||
chunks,
|
||||
chunkSize,
|
||||
indexSize: createCollectionParams.indexSize ?? getAutoIndexSize(dataset.vectorModel)
|
||||
chunkSize: formatCreateCollectionParams.chunkSize,
|
||||
indexSize: formatCreateCollectionParams.indexSize
|
||||
};
|
||||
}
|
||||
|
||||
@@ -147,12 +160,8 @@ export const createCollectionAndInsertData = async ({
|
||||
|
||||
return {
|
||||
chunks: [],
|
||||
chunkSize: computeChunkSize({
|
||||
...createCollectionParams,
|
||||
trainingType,
|
||||
llmModel: getLLMModel(dataset.agentModel)
|
||||
}),
|
||||
indexSize: createCollectionParams.indexSize ?? getAutoIndexSize(dataset.vectorModel)
|
||||
chunkSize: formatCreateCollectionParams.chunkSize,
|
||||
indexSize: formatCreateCollectionParams.indexSize
|
||||
};
|
||||
})();
|
||||
|
||||
@@ -165,11 +174,9 @@ export const createCollectionAndInsertData = async ({
|
||||
const fn = async (session: ClientSession) => {
|
||||
// 3. Create collection
|
||||
const { _id: collectionId } = await createOneCollection({
|
||||
...createCollectionParams,
|
||||
...formatCreateCollectionParams,
|
||||
trainingType,
|
||||
paragraphChunkDeep,
|
||||
chunkSize,
|
||||
chunkSplitter,
|
||||
indexSize,
|
||||
|
||||
hashRawText: rawText ? hashStr(rawText) : undefined,
|
||||
@@ -179,7 +186,7 @@ export const createCollectionAndInsertData = async ({
|
||||
if (!dataset.autoSync && dataset.type === DatasetTypeEnum.websiteDataset) return undefined;
|
||||
if (
|
||||
[DatasetCollectionTypeEnum.link, DatasetCollectionTypeEnum.apiFile].includes(
|
||||
createCollectionParams.type
|
||||
formatCreateCollectionParams.type
|
||||
)
|
||||
) {
|
||||
return addDays(new Date(), 1);
|
||||
@@ -195,7 +202,7 @@ export const createCollectionAndInsertData = async ({
|
||||
const { billId: newBillId } = await createTrainingUsage({
|
||||
teamId,
|
||||
tmbId,
|
||||
appName: createCollectionParams.name,
|
||||
appName: formatCreateCollectionParams.name,
|
||||
billSource: UsageSourceEnum.training,
|
||||
vectorModel: getEmbeddingModel(dataset.vectorModel)?.name,
|
||||
agentModel: getLLMModel(dataset.agentModel)?.name,
|
||||
@@ -218,7 +225,7 @@ export const createCollectionAndInsertData = async ({
|
||||
vlmModel: dataset.vlmModel,
|
||||
indexSize,
|
||||
mode: trainingMode,
|
||||
prompt: createCollectionParams.qaPrompt,
|
||||
prompt: formatCreateCollectionParams.qaPrompt,
|
||||
billId: traingBillId,
|
||||
data: chunks.map((item, index) => ({
|
||||
...item,
|
||||
|
@@ -5,13 +5,14 @@ import {
|
||||
} from '@fastgpt/global/core/dataset/constants';
|
||||
import { readFileContentFromMongo } from '../../common/file/gridfs/controller';
|
||||
import { urlsFetch } from '../../common/string/cheerio';
|
||||
import { type TextSplitProps, splitText2Chunks } from '@fastgpt/global/common/string/textSplitter';
|
||||
import { type TextSplitProps } from '@fastgpt/global/common/string/textSplitter';
|
||||
import axios from 'axios';
|
||||
import { readRawContentByFileBuffer } from '../../common/file/read/utils';
|
||||
import { parseFileExtensionFromUrl } from '@fastgpt/global/common/string/tools';
|
||||
import { getApiDatasetRequest } from './apiDataset';
|
||||
import Papa from 'papaparse';
|
||||
import type { ApiDatasetServerType } from '@fastgpt/global/core/dataset/apiDataset/type';
|
||||
import { text2Chunks } from '../../worker/function';
|
||||
|
||||
export const readFileRawTextByUrl = async ({
|
||||
teamId,
|
||||
@@ -165,7 +166,7 @@ export const readApiServerFileContent = async ({
|
||||
});
|
||||
};
|
||||
|
||||
export const rawText2Chunks = ({
|
||||
export const rawText2Chunks = async ({
|
||||
rawText,
|
||||
chunkTriggerType = ChunkTriggerConfigTypeEnum.minSize,
|
||||
chunkTriggerMinSize = 1000,
|
||||
@@ -182,12 +183,14 @@ export const rawText2Chunks = ({
|
||||
|
||||
backupParse?: boolean;
|
||||
tableParse?: boolean;
|
||||
} & TextSplitProps): {
|
||||
q: string;
|
||||
a: string;
|
||||
indexes?: string[];
|
||||
imageIdList?: string[];
|
||||
}[] => {
|
||||
} & TextSplitProps): Promise<
|
||||
{
|
||||
q: string;
|
||||
a: string;
|
||||
indexes?: string[];
|
||||
imageIdList?: string[];
|
||||
}[]
|
||||
> => {
|
||||
const parseDatasetBackup2Chunks = (rawText: string) => {
|
||||
const csvArr = Papa.parse(rawText).data as string[][];
|
||||
|
||||
@@ -233,7 +236,7 @@ export const rawText2Chunks = ({
|
||||
}
|
||||
}
|
||||
|
||||
const { chunks } = splitText2Chunks({
|
||||
const { chunks } = await text2Chunks({
|
||||
text: rawText,
|
||||
chunkSize,
|
||||
...splitProps
|
||||
|
@@ -112,24 +112,15 @@ export async function pushDataListToTrainingQueue({
|
||||
|
||||
// format q and a, remove empty char
|
||||
data = data.filter((item) => {
|
||||
item.q = simpleText(item.q);
|
||||
item.a = simpleText(item.a);
|
||||
|
||||
item.indexes = item.indexes
|
||||
?.map((index) => {
|
||||
return {
|
||||
...index,
|
||||
text: simpleText(index.text)
|
||||
};
|
||||
})
|
||||
.filter(Boolean);
|
||||
const q = item.q || '';
|
||||
const a = item.a || '';
|
||||
|
||||
// filter repeat content
|
||||
if (!item.imageId && !item.q) {
|
||||
if (!item.imageId && !q) {
|
||||
return;
|
||||
}
|
||||
|
||||
const text = item.q + item.a;
|
||||
const text = q + a;
|
||||
|
||||
// Oversize llm tokens
|
||||
if (text.length > maxToken) {
|
||||
|
Reference in New Issue
Block a user