perf: password special chars;feat: llm paragraph;perf: chunk setting params;perf: text splitter worker (#4984)

* perf: password special chars

* feat: llm paragraph;perf: chunk setting params

* perf: text splitter worker

* perf: get rawtext buffer

* fix: test

* fix: test

* doc

* min chunk size
This commit is contained in:
Archer
2025-06-10 00:05:54 +08:00
committed by GitHub
parent 068918a9ee
commit 01ff56b42b
41 changed files with 546 additions and 448 deletions

View File

@@ -32,10 +32,7 @@ import { MongoDatasetDataText } from '../data/dataTextSchema';
import { retryFn } from '@fastgpt/global/common/system/utils';
import { getTrainingModeByCollection } from './utils';
import {
computeChunkSize,
computeChunkSplitter,
computeParagraphChunkDeep,
getAutoIndexSize,
computedCollectionChunkSettings,
getLLMMaxChunkSize
} from '@fastgpt/global/core/dataset/training/utils';
import { DatasetDataIndexTypeEnum } from '@fastgpt/global/core/dataset/data/constants';
@@ -68,31 +65,50 @@ export const createCollectionAndInsertData = async ({
createCollectionParams.autoIndexes = true;
}
const teamId = createCollectionParams.teamId;
const tmbId = createCollectionParams.tmbId;
const formatCreateCollectionParams = computedCollectionChunkSettings({
...createCollectionParams,
llmModel: getLLMModel(dataset.agentModel),
vectorModel: getEmbeddingModel(dataset.vectorModel)
});
const teamId = formatCreateCollectionParams.teamId;
const tmbId = formatCreateCollectionParams.tmbId;
// Set default params
const trainingType =
createCollectionParams.trainingType || DatasetCollectionDataProcessModeEnum.chunk;
const chunkSplitter = computeChunkSplitter(createCollectionParams);
const paragraphChunkDeep = computeParagraphChunkDeep(createCollectionParams);
formatCreateCollectionParams.trainingType || DatasetCollectionDataProcessModeEnum.chunk;
const trainingMode = getTrainingModeByCollection({
trainingType: trainingType,
autoIndexes: createCollectionParams.autoIndexes,
imageIndex: createCollectionParams.imageIndex
autoIndexes: formatCreateCollectionParams.autoIndexes,
imageIndex: formatCreateCollectionParams.imageIndex
});
if (
trainingType === DatasetCollectionDataProcessModeEnum.qa ||
trainingType === DatasetCollectionDataProcessModeEnum.backup
trainingType === DatasetCollectionDataProcessModeEnum.backup ||
trainingType === DatasetCollectionDataProcessModeEnum.template
) {
delete createCollectionParams.chunkTriggerType;
delete createCollectionParams.chunkTriggerMinSize;
delete createCollectionParams.dataEnhanceCollectionName;
delete createCollectionParams.imageIndex;
delete createCollectionParams.autoIndexes;
delete createCollectionParams.indexSize;
delete createCollectionParams.qaPrompt;
delete formatCreateCollectionParams.chunkTriggerType;
delete formatCreateCollectionParams.chunkTriggerMinSize;
delete formatCreateCollectionParams.dataEnhanceCollectionName;
delete formatCreateCollectionParams.imageIndex;
delete formatCreateCollectionParams.autoIndexes;
if (
trainingType === DatasetCollectionDataProcessModeEnum.backup ||
trainingType === DatasetCollectionDataProcessModeEnum.template
) {
delete formatCreateCollectionParams.paragraphChunkAIMode;
delete formatCreateCollectionParams.paragraphChunkDeep;
delete formatCreateCollectionParams.paragraphChunkMinSize;
delete formatCreateCollectionParams.chunkSplitMode;
delete formatCreateCollectionParams.chunkSize;
delete formatCreateCollectionParams.chunkSplitter;
delete formatCreateCollectionParams.indexSize;
}
}
if (trainingType !== DatasetCollectionDataProcessModeEnum.qa) {
delete formatCreateCollectionParams.qaPrompt;
}
// 1. split chunks or create image chunks
@@ -109,30 +125,27 @@ export const createCollectionAndInsertData = async ({
}>;
chunkSize?: number;
indexSize?: number;
} = (() => {
} = await (async () => {
if (rawText) {
const chunkSize = computeChunkSize({
...createCollectionParams,
trainingType,
llmModel: getLLMModel(dataset.agentModel)
});
// Process text chunks
const chunks = rawText2Chunks({
const chunks = await rawText2Chunks({
rawText,
chunkTriggerType: createCollectionParams.chunkTriggerType,
chunkTriggerMinSize: createCollectionParams.chunkTriggerMinSize,
chunkSize,
paragraphChunkDeep,
paragraphChunkMinSize: createCollectionParams.paragraphChunkMinSize,
chunkTriggerType: formatCreateCollectionParams.chunkTriggerType,
chunkTriggerMinSize: formatCreateCollectionParams.chunkTriggerMinSize,
chunkSize: formatCreateCollectionParams.chunkSize,
paragraphChunkDeep: formatCreateCollectionParams.paragraphChunkDeep,
paragraphChunkMinSize: formatCreateCollectionParams.paragraphChunkMinSize,
maxSize: getLLMMaxChunkSize(getLLMModel(dataset.agentModel)),
overlapRatio: trainingType === DatasetCollectionDataProcessModeEnum.chunk ? 0.2 : 0,
customReg: chunkSplitter ? [chunkSplitter] : [],
customReg: formatCreateCollectionParams.chunkSplitter
? [formatCreateCollectionParams.chunkSplitter]
: [],
backupParse
});
return {
chunks,
chunkSize,
indexSize: createCollectionParams.indexSize ?? getAutoIndexSize(dataset.vectorModel)
chunkSize: formatCreateCollectionParams.chunkSize,
indexSize: formatCreateCollectionParams.indexSize
};
}
@@ -147,12 +160,8 @@ export const createCollectionAndInsertData = async ({
return {
chunks: [],
chunkSize: computeChunkSize({
...createCollectionParams,
trainingType,
llmModel: getLLMModel(dataset.agentModel)
}),
indexSize: createCollectionParams.indexSize ?? getAutoIndexSize(dataset.vectorModel)
chunkSize: formatCreateCollectionParams.chunkSize,
indexSize: formatCreateCollectionParams.indexSize
};
})();
@@ -165,11 +174,9 @@ export const createCollectionAndInsertData = async ({
const fn = async (session: ClientSession) => {
// 3. Create collection
const { _id: collectionId } = await createOneCollection({
...createCollectionParams,
...formatCreateCollectionParams,
trainingType,
paragraphChunkDeep,
chunkSize,
chunkSplitter,
indexSize,
hashRawText: rawText ? hashStr(rawText) : undefined,
@@ -179,7 +186,7 @@ export const createCollectionAndInsertData = async ({
if (!dataset.autoSync && dataset.type === DatasetTypeEnum.websiteDataset) return undefined;
if (
[DatasetCollectionTypeEnum.link, DatasetCollectionTypeEnum.apiFile].includes(
createCollectionParams.type
formatCreateCollectionParams.type
)
) {
return addDays(new Date(), 1);
@@ -195,7 +202,7 @@ export const createCollectionAndInsertData = async ({
const { billId: newBillId } = await createTrainingUsage({
teamId,
tmbId,
appName: createCollectionParams.name,
appName: formatCreateCollectionParams.name,
billSource: UsageSourceEnum.training,
vectorModel: getEmbeddingModel(dataset.vectorModel)?.name,
agentModel: getLLMModel(dataset.agentModel)?.name,
@@ -218,7 +225,7 @@ export const createCollectionAndInsertData = async ({
vlmModel: dataset.vlmModel,
indexSize,
mode: trainingMode,
prompt: createCollectionParams.qaPrompt,
prompt: formatCreateCollectionParams.qaPrompt,
billId: traingBillId,
data: chunks.map((item, index) => ({
...item,

View File

@@ -5,13 +5,14 @@ import {
} from '@fastgpt/global/core/dataset/constants';
import { readFileContentFromMongo } from '../../common/file/gridfs/controller';
import { urlsFetch } from '../../common/string/cheerio';
import { type TextSplitProps, splitText2Chunks } from '@fastgpt/global/common/string/textSplitter';
import { type TextSplitProps } from '@fastgpt/global/common/string/textSplitter';
import axios from 'axios';
import { readRawContentByFileBuffer } from '../../common/file/read/utils';
import { parseFileExtensionFromUrl } from '@fastgpt/global/common/string/tools';
import { getApiDatasetRequest } from './apiDataset';
import Papa from 'papaparse';
import type { ApiDatasetServerType } from '@fastgpt/global/core/dataset/apiDataset/type';
import { text2Chunks } from '../../worker/function';
export const readFileRawTextByUrl = async ({
teamId,
@@ -165,7 +166,7 @@ export const readApiServerFileContent = async ({
});
};
export const rawText2Chunks = ({
export const rawText2Chunks = async ({
rawText,
chunkTriggerType = ChunkTriggerConfigTypeEnum.minSize,
chunkTriggerMinSize = 1000,
@@ -182,12 +183,14 @@ export const rawText2Chunks = ({
backupParse?: boolean;
tableParse?: boolean;
} & TextSplitProps): {
q: string;
a: string;
indexes?: string[];
imageIdList?: string[];
}[] => {
} & TextSplitProps): Promise<
{
q: string;
a: string;
indexes?: string[];
imageIdList?: string[];
}[]
> => {
const parseDatasetBackup2Chunks = (rawText: string) => {
const csvArr = Papa.parse(rawText).data as string[][];
@@ -233,7 +236,7 @@ export const rawText2Chunks = ({
}
}
const { chunks } = splitText2Chunks({
const { chunks } = await text2Chunks({
text: rawText,
chunkSize,
...splitProps

View File

@@ -112,24 +112,15 @@ export async function pushDataListToTrainingQueue({
// format q and a, remove empty char
data = data.filter((item) => {
item.q = simpleText(item.q);
item.a = simpleText(item.a);
item.indexes = item.indexes
?.map((index) => {
return {
...index,
text: simpleText(index.text)
};
})
.filter(Boolean);
const q = item.q || '';
const a = item.a || '';
// filter repeat content
if (!item.imageId && !item.q) {
if (!item.imageId && !q) {
return;
}
const text = item.q + item.a;
const text = q + a;
// Oversize llm tokens
if (text.length > maxToken) {