Files
FastGPT/packages/service/core/dataset/training/controller.ts
Archer 01ff56b42b perf: password special chars;feat: llm paragraph;perf: chunk setting params;perf: text splitter worker (#4984)
* perf: password special chars

* feat: llm paragraph;perf: chunk setting params

* perf: text splitter worker

* perf: get rawtext buffer

* fix: test

* fix: test

* doc

* min chunk size
2025-06-10 00:05:54 +08:00

224 lines
5.8 KiB
TypeScript

import { MongoDatasetTraining } from './schema';
import type {
PushDatasetDataChunkProps,
PushDatasetDataResponse
} from '@fastgpt/global/core/dataset/api.d';
import { TrainingModeEnum } from '@fastgpt/global/core/dataset/constants';
import { simpleText } from '@fastgpt/global/common/string/tools';
import { type ClientSession } from '../../../common/mongo';
import { getLLMModel, getEmbeddingModel, getVlmModel } from '../../ai/model';
import { addLog } from '../../../common/system/log';
import { getCollectionWithDataset } from '../controller';
import { mongoSessionRun } from '../../../common/mongo/sessionRun';
import { type PushDataToTrainingQueueProps } from '@fastgpt/global/core/dataset/training/type';
import { i18nT } from '../../../../web/i18n/utils';
import { getLLMMaxChunkSize } from '../../../../global/core/dataset/training/utils';
export const lockTrainingDataByTeamId = async (teamId: string): Promise<any> => {
try {
await MongoDatasetTraining.updateMany(
{
teamId
},
{
lockTime: new Date('2999/5/5')
}
);
} catch (error) {}
};
export const pushDataListToTrainingQueueByCollectionId = async ({
collectionId,
...props
}: Omit<PushDataToTrainingQueueProps, 'datasetId' | 'agentModel' | 'vectorModel' | 'vlmModel'>) => {
const {
dataset: { _id: datasetId, agentModel, vectorModel, vlmModel }
} = await getCollectionWithDataset(collectionId);
return pushDataListToTrainingQueue({
...props,
datasetId,
collectionId,
vectorModel,
agentModel,
vlmModel
});
};
export async function pushDataListToTrainingQueue({
teamId,
tmbId,
datasetId,
collectionId,
agentModel,
vectorModel,
vlmModel,
data,
prompt,
billId,
mode = TrainingModeEnum.chunk,
indexSize,
session
}: PushDataToTrainingQueueProps): Promise<PushDatasetDataResponse> {
const formatTrainingMode = (data: PushDatasetDataChunkProps, mode: TrainingModeEnum) => {
if (mode !== TrainingModeEnum.image) return mode;
// 检查内容中,是否包含 ![](xxx) 的图片格式
const text = (data.q || '') + (data.a || '');
const regex = /!\[\]\((.*?)\)/g;
const match = text.match(regex);
if (match) {
return TrainingModeEnum.image;
}
return mode;
};
const vectorModelData = getEmbeddingModel(vectorModel);
if (!vectorModelData) {
return Promise.reject(i18nT('common:error_embedding_not_config'));
}
const agentModelData = getLLMModel(agentModel);
if (!agentModelData) {
return Promise.reject(i18nT('common:error_llm_not_config'));
}
const { model, maxToken, weight } = await (async () => {
if (mode === TrainingModeEnum.chunk) {
return {
maxToken: getLLMMaxChunkSize(agentModelData),
model: vectorModelData.model,
weight: vectorModelData.weight
};
}
if (mode === TrainingModeEnum.qa || mode === TrainingModeEnum.auto) {
return {
maxToken: getLLMMaxChunkSize(agentModelData),
model: agentModelData.model,
weight: 0
};
}
if (mode === TrainingModeEnum.image || mode === TrainingModeEnum.imageParse) {
const vllmModelData = getVlmModel(vlmModel);
if (!vllmModelData) {
return Promise.reject(i18nT('common:error_vlm_not_config'));
}
return {
maxToken: getLLMMaxChunkSize(vllmModelData),
model: vllmModelData.model,
weight: 0
};
}
return Promise.reject(`Training mode "${mode}" is inValid`);
})();
// format q and a, remove empty char
data = data.filter((item) => {
const q = item.q || '';
const a = item.a || '';
// filter repeat content
if (!item.imageId && !q) {
return;
}
const text = q + a;
// Oversize llm tokens
if (text.length > maxToken) {
return;
}
return true;
});
// insert data to db
const insertLen = data.length;
// 使用 insertMany 批量插入
const batchSize = 500;
const insertData = async (startIndex: number, session: ClientSession) => {
const list = data.slice(startIndex, startIndex + batchSize);
if (list.length === 0) return;
try {
const result = await MongoDatasetTraining.insertMany(
list.map((item) => ({
teamId,
tmbId,
datasetId: datasetId,
collectionId: collectionId,
billId,
mode: formatTrainingMode(item, mode),
prompt,
model,
...(item.q && { q: item.q }),
...(item.a && { a: item.a }),
...(item.imageId && { imageId: item.imageId }),
chunkIndex: item.chunkIndex ?? 0,
indexSize,
weight: weight ?? 0,
indexes: item.indexes,
retryCount: 5
})),
{
session,
ordered: false,
rawResult: true,
includeResultMetadata: false // 进一步减少返回数据
}
);
if (result.insertedCount !== list.length) {
return Promise.reject(`Insert data error, ${JSON.stringify(result)}`);
}
} catch (error: any) {
addLog.error(`Insert error`, error);
return Promise.reject(error);
}
return insertData(startIndex + batchSize, session);
};
if (session) {
await insertData(0, session);
} else {
await mongoSessionRun(async (session) => {
await insertData(0, session);
});
}
return {
insertLen
};
}
export const pushDatasetToParseQueue = async ({
teamId,
tmbId,
datasetId,
collectionId,
billId,
session
}: {
teamId: string;
tmbId: string;
datasetId: string;
collectionId: string;
billId: string;
session: ClientSession;
}) => {
await MongoDatasetTraining.create(
[
{
teamId,
tmbId,
datasetId,
collectionId,
billId,
mode: TrainingModeEnum.parse
}
],
{ session, ordered: true }
);
};