4.6.7 first pr (#726)

This commit is contained in:
Archer
2024-01-10 23:35:04 +08:00
committed by GitHub
parent 414b693303
commit 006ad17c6a
186 changed files with 2996 additions and 1838 deletions

View File

@@ -0,0 +1,6 @@
import path from 'path';
export const tmpFileDirPath =
process.env.NODE_ENV === 'production' ? '/app/tmp' : path.join(process.cwd(), 'tmp');
export const previewMaxCharCount = 3000;

View File

@@ -1 +0,0 @@
export const imageBaseUrl = '/api/system/img/';

View File

@@ -1,5 +1,5 @@
import { UploadImgProps } from '@fastgpt/global/common/file/api';
import { imageBaseUrl } from './constant';
import { imageBaseUrl } from '@fastgpt/global/common/file/image/constants';
import { MongoImage } from './schema';
export function getMongoImgUrl(id: string) {
@@ -8,10 +8,13 @@ export function getMongoImgUrl(id: string) {
export const maxImgSize = 1024 * 1024 * 12;
export async function uploadMongoImg({
type,
base64Img,
teamId,
expiredTime,
metadata
metadata,
shareId
}: UploadImgProps & {
teamId: string;
}) {
@@ -20,12 +23,16 @@ export async function uploadMongoImg({
}
const base64Data = base64Img.split(',')[1];
const binary = Buffer.from(base64Data, 'base64');
const { _id } = await MongoImage.create({
type,
teamId,
binary: Buffer.from(base64Data, 'base64'),
binary,
expiredTime: expiredTime,
metadata
metadata,
shareId
});
return getMongoImgUrl(String(_id));

View File

@@ -1,5 +1,7 @@
import { TeamCollectionName } from '@fastgpt/global/support/user/team/constant';
import { connectionMongo, type Model } from '../../mongo';
import { MongoImageSchemaType } from '@fastgpt/global/common/file/image/type.d';
import { mongoImageTypeMap } from '@fastgpt/global/common/file/image/constants';
const { Schema, model, models } = connectionMongo;
const ImageSchema = new Schema({
@@ -12,12 +14,18 @@ const ImageSchema = new Schema({
type: Date,
default: () => new Date()
},
binary: {
type: Buffer
},
expiredTime: {
type: Date
},
binary: {
type: Buffer
},
type: {
type: String,
enum: Object.keys(mongoImageTypeMap),
required: true
},
metadata: {
type: Object
}
@@ -25,14 +33,13 @@ const ImageSchema = new Schema({
try {
ImageSchema.index({ expiredTime: 1 }, { expireAfterSeconds: 60 });
ImageSchema.index({ type: 1 });
ImageSchema.index({ teamId: 1 });
} catch (error) {
console.log(error);
}
export const MongoImage: Model<{
teamId: string;
binary: Buffer;
metadata?: { fileId?: string };
}> = models['image'] || model('image', ImageSchema);
export const MongoImage: Model<MongoImageSchemaType> =
models['image'] || model('image', ImageSchema);
MongoImage.syncIndexes();

View File

@@ -0,0 +1,68 @@
import * as pdfjs from 'pdfjs-dist/legacy/build/pdf.mjs';
// @ts-ignore
import('pdfjs-dist/legacy/build/pdf.worker.min.mjs');
import { ReadFileParams } from './type';
type TokenType = {
str: string;
dir: string;
width: number;
height: number;
transform: number[];
fontName: string;
hasEOL: boolean;
};
export const readPdfFile = async ({ path }: ReadFileParams) => {
const readPDFPage = async (doc: any, pageNo: number) => {
const page = await doc.getPage(pageNo);
const tokenizedText = await page.getTextContent();
const viewport = page.getViewport({ scale: 1 });
const pageHeight = viewport.height;
const headerThreshold = pageHeight * 0.95;
const footerThreshold = pageHeight * 0.05;
const pageTexts: TokenType[] = tokenizedText.items.filter((token: TokenType) => {
return (
!token.transform ||
(token.transform[5] < headerThreshold && token.transform[5] > footerThreshold)
);
});
// concat empty string 'hasEOL'
for (let i = 0; i < pageTexts.length; i++) {
const item = pageTexts[i];
if (item.str === '' && pageTexts[i - 1]) {
pageTexts[i - 1].hasEOL = item.hasEOL;
pageTexts.splice(i, 1);
i--;
}
}
page.cleanup();
return pageTexts
.map((token) => {
const paragraphEnd = token.hasEOL && /([。?!.?!\n\r]|(\r\n))$/.test(token.str);
return paragraphEnd ? `${token.str}\n` : token.str;
})
.join('');
};
const loadingTask = pdfjs.getDocument(path);
const doc = await loadingTask.promise;
const pageTextPromises = [];
for (let pageNo = 1; pageNo <= doc.numPages; pageNo++) {
pageTextPromises.push(readPDFPage(doc, pageNo));
}
const pageTexts = await Promise.all(pageTextPromises);
loadingTask.destroy();
return {
rawText: pageTexts.join('')
};
};

View File

@@ -0,0 +1,18 @@
export type ReadFileParams = {
preview: boolean;
teamId: string;
path: string;
metadata?: Record<string, any>;
};
export type ReadFileResponse = {
rawText: string;
};
export type ReadFileBufferItemType = ReadFileParams & {
rawText: string;
};
declare global {
var readFileBuffers: ReadFileBufferItemType[];
}

View File

@@ -0,0 +1,50 @@
import { readPdfFile } from './pdf';
import { readDocFle } from './word';
import { ReadFileBufferItemType, ReadFileParams } from './type';
global.readFileBuffers = global.readFileBuffers || [];
const bufferMaxSize = 200;
export const pushFileReadBuffer = (params: ReadFileBufferItemType) => {
global.readFileBuffers.push(params);
if (global.readFileBuffers.length > bufferMaxSize) {
global.readFileBuffers.shift();
}
};
export const getReadFileBuffer = ({ path, teamId }: ReadFileParams) =>
global.readFileBuffers.find((item) => item.path === path && item.teamId === teamId);
export const readFileContent = async (params: ReadFileParams) => {
const { path } = params;
const buffer = getReadFileBuffer(params);
if (buffer) {
return buffer;
}
const extension = path?.split('.')?.pop()?.toLowerCase() || '';
const { rawText } = await (async () => {
switch (extension) {
case 'pdf':
return readPdfFile(params);
case 'docx':
return readDocFle(params);
default:
return Promise.reject('Only support .pdf, .docx');
}
})();
pushFileReadBuffer({
...params,
rawText
});
return {
...params,
rawText
};
};

View File

@@ -0,0 +1,22 @@
import mammoth from 'mammoth';
import { htmlToMarkdown } from '../../string/markdown';
import { ReadFileParams } from './type';
/**
* read docx to markdown
*/
export const readDocFle = async ({ path, metadata = {} }: ReadFileParams) => {
try {
const { value: html } = await mammoth.convertToHtml({
path
});
const md = await htmlToMarkdown(html);
return {
rawText: md
};
} catch (error) {
console.log('error doc read:', error);
return Promise.reject('Can not read doc file, please convert to PDF');
}
};

View File

@@ -1,11 +1,9 @@
import type { NextApiRequest, NextApiResponse } from 'next';
import { customAlphabet } from 'nanoid';
import multer from 'multer';
import path from 'path';
import { BucketNameEnum, bucketNameMap } from '@fastgpt/global/common/file/constants';
import fs from 'fs';
const nanoid = customAlphabet('1234567890abcdef', 12);
import { getNanoid } from '@fastgpt/global/common/string/tools';
import { tmpFileDirPath } from './constants';
type FileType = {
fieldname: string;
@@ -17,7 +15,9 @@ type FileType = {
size: number;
};
export function getUploadModel({ maxSize = 500 }: { maxSize?: number }) {
const expiredTime = 30 * 60 * 1000;
export const getUploadModel = ({ maxSize = 500 }: { maxSize?: number }) => {
maxSize *= 1024 * 1024;
class UploadModel {
uploader = multer({
@@ -26,9 +26,12 @@ export function getUploadModel({ maxSize = 500 }: { maxSize?: number }) {
},
preservePath: true,
storage: multer.diskStorage({
filename: (_req, file, cb) => {
// destination: (_req, _file, cb) => {
// cb(null, tmpFileDirPath);
// },
filename: async (req, file, cb) => {
const { ext } = path.parse(decodeURIComponent(file.originalname));
cb(null, nanoid() + ext);
cb(null, `${Date.now() + expiredTime}-${getNanoid(32)}${ext}`);
}
})
}).any();
@@ -75,14 +78,4 @@ export function getUploadModel({ maxSize = 500 }: { maxSize?: number }) {
}
return new UploadModel();
}
export const removeFilesByPaths = (paths: string[]) => {
paths.forEach((path) => {
fs.unlink(path, (err) => {
if (err) {
console.error(err);
}
});
});
};

View File

@@ -0,0 +1,33 @@
import fs from 'fs';
import { tmpFileDirPath } from './constants';
export const removeFilesByPaths = (paths: string[]) => {
paths.forEach((path) => {
fs.unlink(path, (err) => {
if (err) {
console.error(err);
}
});
});
};
/* cron job. check expired tmp files */
export const checkExpiredTmpFiles = () => {
// get all file name
const files = fs.readdirSync(tmpFileDirPath).map((name) => {
const timestampStr = name.split('-')[0];
const expiredTimestamp = timestampStr ? Number(timestampStr) : 0;
return {
filename: name,
expiredTimestamp,
path: `${tmpFileDirPath}/${name}`
};
});
// count expiredFiles
const expiredFiles = files.filter((item) => item.expiredTimestamp < Date.now());
// remove expiredFiles
removeFilesByPaths(expiredFiles.map((item) => item.path));
};

View File

@@ -50,8 +50,11 @@ export const cheerioToHtml = ({
.get()
.join('\n');
const title = $('head title').text() || $('h1:first').text() || fetchUrl;
return {
html,
title,
usedSelector
};
};
@@ -70,7 +73,7 @@ export const urlsFetch = async ({
});
const $ = cheerio.load(fetchRes.data);
const { html, usedSelector } = cheerioToHtml({
const { title, html, usedSelector } = cheerioToHtml({
fetchUrl: url,
$,
selector
@@ -79,6 +82,7 @@ export const urlsFetch = async ({
return {
url,
title,
content: md,
selector: usedSelector
};
@@ -87,6 +91,7 @@ export const urlsFetch = async ({
return {
url,
title: '',
content: '',
selector: ''
};

View File

@@ -15,7 +15,9 @@ export const htmlToMarkdown = (html?: string | null) =>
worker.on('message', (md: string) => {
worker.terminate();
resolve(simpleMarkdownText(md));
let rawText = simpleMarkdownText(md);
resolve(rawText);
});
worker.on('error', (err) => {
worker.terminate();

View File

@@ -0,0 +1,6 @@
import nodeCron from 'node-cron';
export const setCron = (time: string, cb: () => void) => {
// second minute hour day month week
return nodeCron.schedule(time, cb);
};

View File

@@ -49,6 +49,7 @@ export const addLog = {
},
error(msg: string, error?: any) {
this.log('error', msg, {
message: error?.message,
stack: error?.stack,
...(error?.config && {
config: {

View File

@@ -2,6 +2,8 @@ export type DeleteDatasetVectorProps = {
id?: string;
datasetIds?: string[];
collectionIds?: string[];
collectionId?: string;
dataIds?: string[];
};

View File

@@ -101,14 +101,19 @@ export const deleteDatasetDataVector = async (
retry?: number;
}
): Promise<any> => {
const { id, datasetIds, collectionIds, dataIds, retry = 2 } = props;
const { id, datasetIds, collectionIds, collectionId, dataIds, retry = 2 } = props;
const where = await (() => {
if (id) return `id=${id}`;
if (datasetIds) return `dataset_id IN (${datasetIds.map((id) => `'${String(id)}'`).join(',')})`;
if (collectionIds)
if (collectionIds) {
return `collection_id IN (${collectionIds.map((id) => `'${String(id)}'`).join(',')})`;
if (dataIds) return `data_id IN (${dataIds.map((id) => `'${String(id)}'`).join(',')})`;
}
if (collectionId && dataIds) {
return `collection_id='${String(collectionId)}' and data_id IN (${dataIds
.map((id) => `'${String(id)}'`)
.join(',')})`;
}
return Promise.reject('deleteDatasetData: no where');
})();

View File

@@ -32,7 +32,7 @@ export async function getVectorsByText({
return Promise.reject('Embedding API 404');
}
if (!res?.data?.[0]?.embedding) {
console.log(res?.data);
console.log(res);
// @ts-ignore
return Promise.reject(res.data?.err?.message || 'Embedding API Error');
}

View File

@@ -2,8 +2,7 @@ import { connectionMongo, type Model } from '../../common/mongo';
const { Schema, model, models } = connectionMongo;
import { ChatItemSchema as ChatItemType } from '@fastgpt/global/core/chat/type';
import { ChatRoleMap } from '@fastgpt/global/core/chat/constants';
import { customAlphabet } from 'nanoid';
const nanoid = customAlphabet('abcdefghijklmnopqrstuvwxyz1234567890', 24);
import { getNanoid } from '@fastgpt/global/common/string/tools';
import {
TeamCollectionName,
TeamMemberCollectionName
@@ -13,24 +12,6 @@ import { userCollectionName } from '../../support/user/schema';
import { ModuleOutputKeyEnum } from '@fastgpt/global/core/module/constants';
const ChatItemSchema = new Schema({
dataId: {
type: String,
require: true,
default: () => nanoid()
},
appId: {
type: Schema.Types.ObjectId,
ref: appCollectionName,
required: true
},
chatId: {
type: String,
require: true
},
userId: {
type: Schema.Types.ObjectId,
ref: userCollectionName
},
teamId: {
type: Schema.Types.ObjectId,
ref: TeamCollectionName,
@@ -41,6 +22,24 @@ const ChatItemSchema = new Schema({
ref: TeamMemberCollectionName,
required: true
},
userId: {
type: Schema.Types.ObjectId,
ref: userCollectionName
},
chatId: {
type: String,
require: true
},
dataId: {
type: String,
require: true,
default: () => getNanoid(22)
},
appId: {
type: Schema.Types.ObjectId,
ref: appCollectionName,
required: true
},
time: {
type: Date,
default: () => new Date()
@@ -80,10 +79,11 @@ const ChatItemSchema = new Schema({
});
try {
ChatItemSchema.index({ dataId: -1 });
ChatItemSchema.index({ teamId: 1 });
ChatItemSchema.index({ time: -1 });
ChatItemSchema.index({ appId: 1 });
ChatItemSchema.index({ chatId: 1 });
ChatItemSchema.index({ obj: 1 });
ChatItemSchema.index({ userGoodFeedback: 1 });
ChatItemSchema.index({ userBadFeedback: 1 });
ChatItemSchema.index({ customFeedbacks: 1 });

View File

@@ -1,7 +1,4 @@
import {
DatasetCollectionTrainingModeEnum,
DatasetCollectionTypeEnum
} from '@fastgpt/global/core/dataset/constant';
import { TrainingModeEnum, DatasetCollectionTypeEnum } from '@fastgpt/global/core/dataset/constant';
import type { CreateDatasetCollectionParams } from '@fastgpt/global/core/dataset/api.d';
import { MongoDatasetCollection } from './schema';
@@ -12,11 +9,15 @@ export async function createOneCollection({
parentId,
datasetId,
type,
trainingType = DatasetCollectionTrainingModeEnum.manual,
trainingType = TrainingModeEnum.chunk,
chunkSize = 0,
chunkSplitter,
qaPrompt,
fileId,
rawLink,
qaPrompt,
hashRawText,
rawTextLength,
metadata = {},
@@ -30,11 +31,15 @@ export async function createOneCollection({
datasetId,
name,
type,
trainingType,
chunkSize,
chunkSplitter,
qaPrompt,
fileId,
rawLink,
qaPrompt,
rawTextLength,
hashRawText,
metadata
@@ -74,7 +79,7 @@ export function createDefaultCollection({
datasetId,
parentId,
type: DatasetCollectionTypeEnum.virtual,
trainingType: DatasetCollectionTrainingModeEnum.manual,
trainingType: TrainingModeEnum.chunk,
chunkSize: 0,
updateTime: new Date('2099')
});

View File

@@ -1,10 +1,7 @@
import { connectionMongo, type Model } from '../../../common/mongo';
const { Schema, model, models } = connectionMongo;
import { DatasetCollectionSchemaType } from '@fastgpt/global/core/dataset/type.d';
import {
DatasetCollectionTrainingTypeMap,
DatasetCollectionTypeMap
} from '@fastgpt/global/core/dataset/constant';
import { TrainingTypeMap, DatasetCollectionTypeMap } from '@fastgpt/global/core/dataset/constant';
import { DatasetCollectionName } from '../schema';
import {
TeamCollectionName,
@@ -56,15 +53,23 @@ const DatasetCollectionSchema = new Schema({
type: Date,
default: () => new Date()
},
trainingType: {
type: String,
enum: Object.keys(DatasetCollectionTrainingTypeMap),
enum: Object.keys(TrainingTypeMap),
required: true
},
chunkSize: {
type: Number,
required: true
},
chunkSplitter: {
type: String
},
qaPrompt: {
type: String
},
fileId: {
type: Schema.Types.ObjectId,
ref: 'dataset.files'
@@ -72,9 +77,6 @@ const DatasetCollectionSchema = new Schema({
rawLink: {
type: String
},
qaPrompt: {
type: String
},
rawTextLength: {
type: Number
@@ -89,8 +91,9 @@ const DatasetCollectionSchema = new Schema({
});
try {
DatasetCollectionSchema.index({ teamId: 1 });
DatasetCollectionSchema.index({ datasetId: 1 });
DatasetCollectionSchema.index({ datasetId: 1, parentId: 1 });
DatasetCollectionSchema.index({ teamId: 1, datasetId: 1, parentId: 1 });
DatasetCollectionSchema.index({ updateTime: -1 });
DatasetCollectionSchema.index({ hashRawText: -1 });
} catch (error) {

View File

@@ -4,7 +4,7 @@ import type { ParentTreePathItemType } from '@fastgpt/global/common/parentFolder
import { splitText2Chunks } from '@fastgpt/global/common/string/textSplitter';
import { MongoDatasetTraining } from '../training/schema';
import { urlsFetch } from '../../../common/string/cheerio';
import { DatasetCollectionTypeEnum } from '@fastgpt/global/core/dataset/constant';
import { DatasetCollectionTypeEnum, TrainingModeEnum } from '@fastgpt/global/core/dataset/constant';
import { hashStr } from '@fastgpt/global/common/string/tools';
/**
@@ -92,8 +92,12 @@ export const getCollectionAndRawText = async ({
return Promise.reject('Collection not found');
}
const rawText = await (async () => {
if (newRawText) return newRawText;
const { title, rawText } = await (async () => {
if (newRawText)
return {
title: '',
rawText: newRawText
};
// link
if (col.type === DatasetCollectionTypeEnum.link && col.rawLink) {
// crawl new data
@@ -102,12 +106,18 @@ export const getCollectionAndRawText = async ({
selector: col.datasetId?.websiteConfig?.selector || col?.metadata?.webPageSelector
});
return result[0].content;
return {
title: result[0].title,
rawText: result[0].content
};
}
// file
return '';
return {
title: '',
rawText: ''
};
})();
const hashRawText = hashStr(rawText);
@@ -115,6 +125,7 @@ export const getCollectionAndRawText = async ({
return {
collection: col,
title,
rawText,
isSameRawText
};
@@ -135,6 +146,7 @@ export const reloadCollectionChunks = async ({
rawText?: string;
}) => {
const {
title,
rawText: newRawText,
collection: col,
isSameRawText
@@ -154,6 +166,11 @@ export const reloadCollectionChunks = async ({
});
// insert to training queue
const model = await (() => {
if (col.trainingType === TrainingModeEnum.chunk) return col.datasetId.vectorModel;
if (col.trainingType === TrainingModeEnum.qa) return col.datasetId.agentModel;
return Promise.reject('Training model error');
})();
await MongoDatasetTraining.insertMany(
chunks.map((item, i) => ({
teamId: col.teamId,
@@ -163,7 +180,7 @@ export const reloadCollectionChunks = async ({
billId,
mode: col.trainingType,
prompt: '',
model: col.datasetId.vectorModel,
model,
q: item,
a: '',
chunkIndex: i
@@ -172,6 +189,7 @@ export const reloadCollectionChunks = async ({
// update raw text
await MongoDatasetCollection.findByIdAndUpdate(col._id, {
...(title && { name: title }),
rawTextLength: newRawText.length,
hashRawText: hashStr(newRawText)
});

View File

@@ -75,7 +75,13 @@ export async function delCollectionRelevantData({
/**
* delete one data by mongoDataId
*/
export async function delDatasetDataByDataId(mongoDataId: string) {
await deleteDatasetDataVector({ dataIds: [mongoDataId] });
export async function delDatasetDataByDataId({
collectionId,
mongoDataId
}: {
collectionId: string;
mongoDataId: string;
}) {
await deleteDatasetDataVector({ collectionId, dataIds: [mongoDataId] });
await MongoDatasetData.findByIdAndDelete(mongoDataId);
}

View File

@@ -85,12 +85,13 @@ const DatasetDataSchema = new Schema({
});
try {
DatasetDataSchema.index({ teamId: 1 });
DatasetDataSchema.index({ datasetId: 1 });
DatasetDataSchema.index({ collectionId: 1 });
DatasetDataSchema.index({ updateTime: -1 });
DatasetDataSchema.index({ collectionId: 1, q: 1, a: 1 });
// full text index
DatasetDataSchema.index({ datasetId: 1, fullTextToken: 'text' });
DatasetDataSchema.index({ inited: 1 });
} catch (error) {
console.log(error);
}

View File

@@ -92,7 +92,7 @@ const DatasetSchema = new Schema({
});
try {
DatasetSchema.index({ userId: 1 });
DatasetSchema.index({ teamId: 1 });
} catch (error) {
console.log(error);
}

View File

@@ -102,6 +102,7 @@ const TrainingDataSchema = new Schema({
});
try {
TrainingDataSchema.index({ teamId: 1 });
TrainingDataSchema.index({ weight: -1 });
TrainingDataSchema.index({ lockTime: 1 });
TrainingDataSchema.index({ datasetId: 1 });

View File

@@ -3,17 +3,19 @@
"version": "1.0.0",
"dependencies": {
"@fastgpt/global": "workspace:*",
"cookie": "^0.5.0",
"encoding": "^0.1.13",
"jsonwebtoken": "^9.0.2",
"mongoose": "^7.0.2",
"nanoid": "^4.0.1",
"dayjs": "^1.11.7",
"next": "13.5.2",
"multer": "1.4.5-lts.1",
"axios": "^1.5.1",
"cheerio": "1.0.0-rc.12",
"cookie": "^0.5.0",
"dayjs": "^1.11.7",
"encoding": "^0.1.13",
"jsonwebtoken": "^9.0.2",
"mammoth": "^1.6.0",
"mongoose": "^7.0.2",
"multer": "1.4.5-lts.1",
"next": "13.5.2",
"nextjs-cors": "^2.1.2",
"node-cron": "^3.0.3",
"pdfjs-dist": "^4.0.269",
"pg": "^8.10.0",
"tunnel": "^0.0.6"
},
@@ -21,6 +23,7 @@
"@types/cookie": "^0.5.2",
"@types/jsonwebtoken": "^9.0.3",
"@types/multer": "^1.4.10",
"@types/node-cron": "^3.0.11",
"@types/pg": "^8.6.6",
"@types/tunnel": "^0.0.4"
}

View File

@@ -1,18 +1,22 @@
import { MongoOpenApi } from './schema';
export async function updateApiKeyUsedTime(id: string) {
await MongoOpenApi.findByIdAndUpdate(id, {
export function updateApiKeyUsedTime(id: string) {
MongoOpenApi.findByIdAndUpdate(id, {
lastUsedTime: new Date()
}).catch((err) => {
console.log('update apiKey used time error', err);
});
}
export async function updateApiKeyUsage({ apikey, usage }: { apikey: string; usage: number }) {
await MongoOpenApi.findOneAndUpdate(
export function updateApiKeyUsage({ apikey, usage }: { apikey: string; usage: number }) {
MongoOpenApi.findOneAndUpdate(
{ apiKey: apikey },
{
$inc: {
usage
}
}
);
).catch((err) => {
console.log('update apiKey usage error', err);
});
}

View File

@@ -9,17 +9,15 @@ export const updateOutLinkUsage = async ({
shareId: string;
total: number;
}) => {
try {
await MongoOutLink.findOneAndUpdate(
{ shareId },
{
$inc: { total },
lastTime: new Date()
}
);
} catch (err) {
MongoOutLink.findOneAndUpdate(
{ shareId },
{
$inc: { total },
lastTime: new Date()
}
).catch((err) => {
console.log('update shareChat error', err);
}
});
};
export const pushResult2Remote = async ({

View File

@@ -0,0 +1,20 @@
import { getVectorCountByTeamId } from '../../../common/vectorStore/controller';
import { getTeamDatasetValidSub } from '../../wallet/sub/utils';
export const checkDatasetLimit = async ({
teamId,
freeSize = Infinity,
insertLen = 0
}: {
teamId: string;
freeSize?: number;
insertLen?: number;
}) => {
const { maxSize } = await getTeamDatasetValidSub({ teamId, freeSize });
const usedSize = await getVectorCountByTeamId(teamId);
if (usedSize + insertLen >= maxSize) {
return Promise.reject(`数据库容量已满,无法继续添加。可以在账号页面进行扩容。`);
}
return;
};

View File

@@ -30,9 +30,6 @@ const TeamSchema = new Schema({
type: Number,
default: 5
},
lastDatasetBillTime: {
type: Date
},
limit: {
lastExportDatasetTime: {
type: Date

View File

@@ -54,6 +54,7 @@ const BillSchema = new Schema({
try {
BillSchema.index({ teamId: 1 });
BillSchema.index({ tmbId: 1 });
BillSchema.index({ tmbId: 1, time: 1 });
BillSchema.index({ time: 1 }, { expireAfterSeconds: 90 * 24 * 60 * 60 });
} catch (error) {
console.log(error);

View File

@@ -0,0 +1,55 @@
import { connectionMongo, type Model } from '../../../common/mongo';
const { Schema, model, models } = connectionMongo;
import { TeamCollectionName } from '@fastgpt/global/support/user/team/constant';
import { subModeMap, subStatusMap, subTypeMap } from '@fastgpt/global/support/wallet/sub/constants';
import type { TeamSubSchema } from '@fastgpt/global/support/wallet/sub/type';
export const subCollectionName = 'team.subscription';
const SubSchema = new Schema({
teamId: {
type: Schema.Types.ObjectId,
ref: TeamCollectionName,
required: true
},
type: {
type: String,
enum: Object.keys(subTypeMap),
required: true
},
mode: {
type: String,
enum: Object.keys(subModeMap),
required: true
},
status: {
type: String,
enum: Object.keys(subStatusMap),
required: true
},
renew: {
type: Boolean,
default: true
},
startTime: {
type: Date
},
expiredTime: {
type: Date
},
datasetStoreAmount: {
type: Number
}
});
try {
SubSchema.index({ teamId: 1 });
SubSchema.index({ status: 1 });
SubSchema.index({ type: 1 });
SubSchema.index({ expiredTime: -1 });
} catch (error) {
console.log(error);
}
export const MongoTeamSub: Model<TeamSubSchema> =
models[subCollectionName] || model(subCollectionName, SubSchema);

View File

@@ -0,0 +1,31 @@
import { SubStatusEnum } from '@fastgpt/global/support/wallet/sub/constants';
import { MongoTeamSub } from './schema';
/* get team dataset size */
export const getTeamDatasetValidSub = async ({
teamId,
freeSize = Infinity
}: {
teamId: string;
freeSize?: number;
}) => {
const sub = await MongoTeamSub.findOne({
teamId,
status: SubStatusEnum.active
})
.sort({
expiredTime: -1
})
.lean();
const maxSize = (() => {
if (!sub || !sub.datasetStoreAmount) return freeSize;
return sub.datasetStoreAmount + freeSize;
})();
return {
maxSize,
sub
};
};

3
packages/service/type.d.ts vendored Normal file
View File

@@ -0,0 +1,3 @@
declare global {
var defaultTeamDatasetLimit: number;
}