Files
FastGPT/packages/service/core/dataset/collection/utils.ts
2024-01-10 23:35:04 +08:00

197 lines
4.8 KiB
TypeScript

import type { CollectionWithDatasetType } from '@fastgpt/global/core/dataset/type.d';
import { MongoDatasetCollection } from './schema';
import type { ParentTreePathItemType } from '@fastgpt/global/common/parentFolder/type.d';
import { splitText2Chunks } from '@fastgpt/global/common/string/textSplitter';
import { MongoDatasetTraining } from '../training/schema';
import { urlsFetch } from '../../../common/string/cheerio';
import { DatasetCollectionTypeEnum, TrainingModeEnum } from '@fastgpt/global/core/dataset/constant';
import { hashStr } from '@fastgpt/global/common/string/tools';
/**
* get all collection by top collectionId
*/
export async function findCollectionAndChild(id: string, fields = '_id parentId name metadata') {
async function find(id: string) {
// find children
const children = await MongoDatasetCollection.find({ parentId: id }, fields);
let collections = children;
for (const child of children) {
const grandChildrenIds = await find(child._id);
collections = collections.concat(grandChildrenIds);
}
return collections;
}
const [collection, childCollections] = await Promise.all([
MongoDatasetCollection.findById(id, fields),
find(id)
]);
if (!collection) {
return Promise.reject('Collection not found');
}
return [collection, ...childCollections];
}
export async function getDatasetCollectionPaths({
parentId = ''
}: {
parentId?: string;
}): Promise<ParentTreePathItemType[]> {
async function find(parentId?: string): Promise<ParentTreePathItemType[]> {
if (!parentId) {
return [];
}
const parent = await MongoDatasetCollection.findOne({ _id: parentId }, 'name parentId');
if (!parent) return [];
const paths = await find(parent.parentId);
paths.push({ parentId, parentName: parent.name });
return paths;
}
return await find(parentId);
}
export function getCollectionUpdateTime({ name, time }: { time?: Date; name: string }) {
if (time) return time;
if (name.startsWith('手动') || ['manual', 'mark'].includes(name)) return new Date('2999/9/9');
return new Date();
}
/**
* Get collection raw text by Collection or collectionId
*/
export const getCollectionAndRawText = async ({
collectionId,
collection,
newRawText
}: {
collectionId?: string;
collection?: CollectionWithDatasetType;
newRawText?: string;
}) => {
const col = await (async () => {
if (collection) return collection;
if (collectionId) {
return (await MongoDatasetCollection.findById(collectionId).populate(
'datasetId'
)) as CollectionWithDatasetType;
}
return null;
})();
if (!col) {
return Promise.reject('Collection not found');
}
const { title, rawText } = await (async () => {
if (newRawText)
return {
title: '',
rawText: newRawText
};
// link
if (col.type === DatasetCollectionTypeEnum.link && col.rawLink) {
// crawl new data
const result = await urlsFetch({
urlList: [col.rawLink],
selector: col.datasetId?.websiteConfig?.selector || col?.metadata?.webPageSelector
});
return {
title: result[0].title,
rawText: result[0].content
};
}
// file
return {
title: '',
rawText: ''
};
})();
const hashRawText = hashStr(rawText);
const isSameRawText = col.hashRawText === hashRawText;
return {
collection: col,
title,
rawText,
isSameRawText
};
};
/* link collection start load data */
export const reloadCollectionChunks = async ({
collectionId,
collection,
tmbId,
billId,
rawText
}: {
collectionId?: string;
collection?: CollectionWithDatasetType;
tmbId: string;
billId?: string;
rawText?: string;
}) => {
const {
title,
rawText: newRawText,
collection: col,
isSameRawText
} = await getCollectionAndRawText({
collection,
collectionId,
newRawText: rawText
});
if (isSameRawText) return;
// split data
const { chunks } = splitText2Chunks({
text: newRawText,
chunkLen: col.chunkSize || 512,
countTokens: false
});
// insert to training queue
const model = await (() => {
if (col.trainingType === TrainingModeEnum.chunk) return col.datasetId.vectorModel;
if (col.trainingType === TrainingModeEnum.qa) return col.datasetId.agentModel;
return Promise.reject('Training model error');
})();
await MongoDatasetTraining.insertMany(
chunks.map((item, i) => ({
teamId: col.teamId,
tmbId,
datasetId: col.datasetId._id,
collectionId: col._id,
billId,
mode: col.trainingType,
prompt: '',
model,
q: item,
a: '',
chunkIndex: i
}))
);
// update raw text
await MongoDatasetCollection.findByIdAndUpdate(col._id, {
...(title && { name: title }),
rawTextLength: newRawText.length,
hashRawText: hashStr(newRawText)
});
};