mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-24 22:03:54 +00:00
131 lines
3.2 KiB
TypeScript
131 lines
3.2 KiB
TypeScript
// Next.js API route support: https://nextjs.org/docs/api-routes/introduction
|
|
import type { NextApiRequest, NextApiResponse } from 'next';
|
|
import { jsonRes } from '@/service/response';
|
|
import { adaptChatItem_openAI } from '@/utils/plugin/openai';
|
|
import { ChatContextFilter } from '@/service/utils/chat/index';
|
|
import type { ChatItemType } from '@/types/chat';
|
|
import { ChatRoleEnum } from '@/constants/chat';
|
|
import { getOpenAIApi, axiosConfig } from '@/service/ai/openai';
|
|
import type { RecognizeIntentionAgentItemType } from '@/types/app';
|
|
import { countModelPrice, pushTaskBillListItem } from '@/service/events/pushBill';
|
|
|
|
export type Props = {
|
|
systemPrompt?: string;
|
|
history?: ChatItemType[];
|
|
userChatInput: string;
|
|
agents: RecognizeIntentionAgentItemType[];
|
|
billId?: string;
|
|
};
|
|
export type Response = { history: ChatItemType[] };
|
|
|
|
const agentModel = 'gpt-3.5-turbo-16k';
|
|
const agentFunName = 'agent_user_question';
|
|
|
|
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
|
|
try {
|
|
let { userChatInput } = req.body as Props;
|
|
|
|
if (!userChatInput) {
|
|
throw new Error('userChatInput is empty');
|
|
}
|
|
|
|
const response = await classifyQuestion(req.body);
|
|
|
|
jsonRes(res, {
|
|
data: response
|
|
});
|
|
} catch (err) {
|
|
jsonRes(res, {
|
|
code: 500,
|
|
error: err
|
|
});
|
|
}
|
|
}
|
|
|
|
/* request openai chat */
|
|
export async function classifyQuestion({
|
|
agents,
|
|
systemPrompt,
|
|
history = [],
|
|
userChatInput,
|
|
billId
|
|
}: Props) {
|
|
const messages: ChatItemType[] = [
|
|
...(systemPrompt
|
|
? [
|
|
{
|
|
obj: ChatRoleEnum.System,
|
|
value: systemPrompt
|
|
}
|
|
]
|
|
: []),
|
|
{
|
|
obj: ChatRoleEnum.Human,
|
|
value: userChatInput
|
|
}
|
|
];
|
|
const filterMessages = ChatContextFilter({
|
|
// @ts-ignore
|
|
model: agentModel,
|
|
prompts: messages,
|
|
maxTokens: 1500
|
|
});
|
|
const adaptMessages = adaptChatItem_openAI({ messages: filterMessages, reserveId: false });
|
|
|
|
// function body
|
|
const agentFunction = {
|
|
name: agentFunName,
|
|
description: '判断用户问题的类型,并返回不同的值',
|
|
parameters: {
|
|
type: 'object',
|
|
properties: {
|
|
type: {
|
|
type: 'string',
|
|
description: agents.map((item) => `${item.value},返回: '${item.key}'`).join('\n'),
|
|
enum: agents.map((item) => item.key)
|
|
}
|
|
},
|
|
required: ['type']
|
|
}
|
|
};
|
|
const chatAPI = getOpenAIApi();
|
|
|
|
const response = await chatAPI.createChatCompletion(
|
|
{
|
|
model: agentModel,
|
|
temperature: 0,
|
|
messages: [...adaptMessages],
|
|
function_call: { name: agentFunName },
|
|
functions: [agentFunction]
|
|
},
|
|
{
|
|
...axiosConfig()
|
|
}
|
|
);
|
|
|
|
const arg = JSON.parse(response.data.choices?.[0]?.message?.function_call?.arguments || '');
|
|
|
|
if (!arg.type) {
|
|
throw new Error('');
|
|
}
|
|
|
|
const totalTokens = response.data.usage?.total_tokens || 0;
|
|
|
|
await pushTaskBillListItem({
|
|
billId,
|
|
moduleName: 'Recognize Intention',
|
|
amount: countModelPrice({ model: agentModel, tokens: totalTokens }),
|
|
model: agentModel,
|
|
tokenLen: totalTokens
|
|
});
|
|
|
|
console.log(
|
|
'CQ',
|
|
agents.findIndex((item) => item.key === arg.type)
|
|
);
|
|
|
|
return {
|
|
[arg.type]: 1
|
|
};
|
|
}
|