Files
FastGPT/client/src/pages/api/openapi/plugin/vector.ts
2023-07-25 13:24:57 +08:00

86 lines
1.9 KiB
TypeScript

import type { NextApiRequest, NextApiResponse } from 'next';
import { jsonRes } from '@/service/response';
import { authBalanceByUid, authUser } from '@/service/utils/auth';
import { withNextCors } from '@/service/utils/tools';
import { getOpenAIApi, axiosConfig } from '@/service/ai/openai';
import { pushGenerateVectorBill } from '@/service/events/pushBill';
type Props = {
model: string;
input: string[];
};
type Response = {
tokenLen: number;
vectors: number[][];
};
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
try {
const { userId } = await authUser({ req });
let { input, model } = req.query as Props;
if (!Array.isArray(input)) {
throw new Error('缺少参数');
}
jsonRes<Response>(res, {
data: await getVector({ userId, input, model })
});
} catch (err) {
console.log(err);
jsonRes(res, {
code: 500,
error: err
});
}
});
export async function getVector({
model = 'text-embedding-ada-002',
userId,
input
}: { userId?: string } & Props) {
userId && (await authBalanceByUid(userId));
for (let i = 0; i < input.length; i++) {
if (!input[i]) {
return Promise.reject('向量生成模块输入内容为空');
}
}
// 获取 chatAPI
const chatAPI = getOpenAIApi();
// 把输入的内容转成向量
const result = await chatAPI
.createEmbedding(
{
model,
input
},
{
timeout: 60000,
...axiosConfig()
}
)
.then((res) => {
if (!res.data?.usage?.total_tokens) {
// @ts-ignore
return Promise.reject(res.data?.error?.message || 'Embedding Error');
}
return {
tokenLen: res.data.usage.total_tokens || 0,
vectors: res.data.data.map((item) => item.embedding)
};
});
userId &&
pushGenerateVectorBill({
userId,
tokenLen: result.tokenLen,
model
});
return result;
}