Files
FastGPT/packages/service/support/wallet/usage/controller.ts
Archer 01ff56b42b perf: password special chars;feat: llm paragraph;perf: chunk setting params;perf: text splitter worker (#4984)
* perf: password special chars

* feat: llm paragraph;perf: chunk setting params

* perf: text splitter worker

* perf: get rawtext buffer

* fix: test

* fix: test

* doc

* min chunk size
2025-06-10 00:05:54 +08:00

238 lines
5.3 KiB
TypeScript

import { UsageSourceEnum } from '@fastgpt/global/support/wallet/usage/constants';
import { MongoUsage } from './schema';
import { type ClientSession } from '../../../common/mongo';
import { addLog } from '../../../common/system/log';
import { type ChatNodeUsageType } from '@fastgpt/global/support/wallet/bill/type';
import {
type ConcatUsageProps,
type CreateUsageProps
} from '@fastgpt/global/support/wallet/usage/api';
import { i18nT } from '../../../../web/i18n/utils';
import { formatModelChars2Points } from './utils';
import { ModelTypeEnum } from '@fastgpt/global/core/ai/model';
export async function createUsage(data: CreateUsageProps) {
try {
await global.createUsageHandler(data);
} catch (error) {
addLog.error('createUsage error', error);
}
}
export async function concatUsage(data: ConcatUsageProps) {
try {
await global.concatUsageHandler(data);
} catch (error) {
addLog.error('concatUsage error', error);
}
}
export const createChatUsage = ({
appName,
appId,
pluginId,
teamId,
tmbId,
source,
flowUsages
}: {
appName: string;
appId?: string;
pluginId?: string;
teamId: string;
tmbId: string;
source: UsageSourceEnum;
flowUsages: ChatNodeUsageType[];
}) => {
const totalPoints = flowUsages.reduce((sum, item) => sum + (item.totalPoints || 0), 0);
createUsage({
teamId,
tmbId,
appName,
appId,
pluginId,
totalPoints,
source,
list: flowUsages.map((item) => ({
moduleName: item.moduleName,
amount: item.totalPoints || 0,
model: item.model,
inputTokens: item.inputTokens,
outputTokens: item.outputTokens
}))
});
addLog.debug(`Create chat usage`, {
source,
teamId,
totalPoints
});
return { totalPoints };
};
export type DatasetTrainingMode = 'paragraph' | 'qa' | 'autoIndex' | 'imageIndex' | 'imageParse';
export const datasetTrainingUsageIndexMap: Record<DatasetTrainingMode, number> = {
paragraph: 1,
qa: 2,
autoIndex: 3,
imageIndex: 4,
imageParse: 5
};
export const createTrainingUsage = async ({
teamId,
tmbId,
appName,
billSource,
vectorModel,
agentModel,
vllmModel,
session
}: {
teamId: string;
tmbId: string;
appName: string;
billSource: UsageSourceEnum;
vectorModel?: string;
agentModel?: string;
vllmModel?: string;
session?: ClientSession;
}) => {
const [{ _id }] = await MongoUsage.create(
[
{
teamId,
tmbId,
appName,
source: billSource,
totalPoints: 0,
list: [
...(vectorModel
? [
{
moduleName: i18nT('account_usage:embedding_index'),
model: vectorModel,
amount: 0,
inputTokens: 0,
outputTokens: 0
}
]
: []),
...(agentModel
? [
{
moduleName: i18nT('account_usage:llm_paragraph'),
model: agentModel,
amount: 0,
inputTokens: 0,
outputTokens: 0
},
{
moduleName: i18nT('account_usage:qa'),
model: agentModel,
amount: 0,
inputTokens: 0,
outputTokens: 0
},
{
moduleName: i18nT('account_usage:auto_index'),
model: agentModel,
amount: 0,
inputTokens: 0,
outputTokens: 0
}
]
: []),
...(vllmModel
? [
{
moduleName: i18nT('account_usage:image_index'),
model: vllmModel,
amount: 0,
inputTokens: 0,
outputTokens: 0
},
{
moduleName: i18nT('account_usage:image_parse'),
model: vllmModel,
amount: 0,
inputTokens: 0,
outputTokens: 0
}
]
: [])
]
}
],
{ session, ordered: true }
);
return { billId: String(_id) };
};
export const createPdfParseUsage = async ({
teamId,
tmbId,
pages
}: {
teamId: string;
tmbId: string;
pages: number;
}) => {
const unitPrice = global.systemEnv?.customPdfParse?.price || 0;
const totalPoints = pages * unitPrice;
createUsage({
teamId,
tmbId,
appName: i18nT('account_usage:pdf_enhanced_parse'),
totalPoints,
source: UsageSourceEnum.pdfParse,
list: [
{
moduleName: i18nT('account_usage:pdf_enhanced_parse'),
amount: totalPoints,
pages
}
]
});
};
export const pushLLMTrainingUsage = async ({
teamId,
tmbId,
model,
inputTokens,
outputTokens,
billId,
mode
}: {
teamId: string;
tmbId: string;
model: string;
inputTokens: number;
outputTokens: number;
billId: string;
mode: DatasetTrainingMode;
}) => {
const index = datasetTrainingUsageIndexMap[mode];
// Compute points
const { totalPoints } = formatModelChars2Points({
model,
modelType: ModelTypeEnum.llm,
inputTokens,
outputTokens
});
concatUsage({
billId,
teamId,
tmbId,
totalPoints,
inputTokens,
outputTokens,
listIndex: index
});
return { totalPoints };
};