mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-27 08:25:07 +00:00

* Update sse.ts 解决chatglm2控制台输出一半不输出的问题 * 解决知识库相似度搜索结果超过1 * Update sse.ts --------- Co-authored-by: Archer <545436317@qq.com>
261 lines
8.4 KiB
Python
261 lines
8.4 KiB
Python
# coding=utf-8
|
||
import argparse
|
||
import time
|
||
from contextlib import asynccontextmanager
|
||
from typing import List, Literal, Optional, Union
|
||
|
||
import numpy as np
|
||
import tiktoken
|
||
import torch
|
||
import uvicorn
|
||
from fastapi import Depends, FastAPI, HTTPException, Request
|
||
from fastapi.middleware.cors import CORSMiddleware
|
||
from pydantic import BaseModel, Field
|
||
from sentence_transformers import SentenceTransformer
|
||
from sklearn.preprocessing import PolynomialFeatures
|
||
from sse_starlette.sse import EventSourceResponse
|
||
from starlette.status import HTTP_401_UNAUTHORIZED
|
||
from transformers import AutoModel, AutoTokenizer
|
||
|
||
|
||
@asynccontextmanager
|
||
async def lifespan(app: FastAPI): # collects GPU memory
|
||
yield
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
torch.cuda.ipc_collect()
|
||
|
||
|
||
app = FastAPI(lifespan=lifespan)
|
||
|
||
app.add_middleware(
|
||
CORSMiddleware,
|
||
allow_origins=["*"],
|
||
allow_credentials=True,
|
||
allow_methods=["*"],
|
||
allow_headers=["*"],
|
||
)
|
||
|
||
|
||
class ChatMessage(BaseModel):
|
||
role: Literal["user", "assistant", "system"]
|
||
content: str
|
||
|
||
|
||
class DeltaMessage(BaseModel):
|
||
role: Optional[Literal["user", "assistant", "system"]] = None
|
||
content: Optional[str] = None
|
||
|
||
|
||
class ChatCompletionRequest(BaseModel):
|
||
model: str
|
||
messages: List[ChatMessage]
|
||
temperature: Optional[float] = None
|
||
top_p: Optional[float] = None
|
||
max_length: Optional[int] = None
|
||
stream: Optional[bool] = False
|
||
|
||
|
||
class ChatCompletionResponseChoice(BaseModel):
|
||
index: int
|
||
message: ChatMessage
|
||
finish_reason: Literal["stop", "length"]
|
||
|
||
|
||
class ChatCompletionResponseStreamChoice(BaseModel):
|
||
index: int
|
||
delta: DeltaMessage
|
||
finish_reason: Optional[Literal["stop", "length"]]
|
||
|
||
|
||
class ChatCompletionResponse(BaseModel):
|
||
model: str
|
||
object: Literal["chat.completion", "chat.completion.chunk"]
|
||
choices: List[
|
||
Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]
|
||
]
|
||
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
|
||
|
||
|
||
async def verify_token(request: Request):
|
||
auth_header = request.headers.get('Authorization')
|
||
if auth_header:
|
||
token_type, _, token = auth_header.partition(' ')
|
||
if (
|
||
token_type.lower() == "bearer"
|
||
and token == "sk-aaabbbcccdddeeefffggghhhiiijjjkkk"
|
||
): # 这里配置你的token
|
||
return True
|
||
raise HTTPException(
|
||
status_code=HTTP_401_UNAUTHORIZED,
|
||
detail="Invalid authorization credentials",
|
||
)
|
||
|
||
|
||
class EmbeddingRequest(BaseModel):
|
||
input: List[str]
|
||
model: str
|
||
|
||
|
||
class EmbeddingResponse(BaseModel):
|
||
data: list
|
||
model: str
|
||
object: str
|
||
usage: dict
|
||
|
||
|
||
def num_tokens_from_string(string: str) -> int:
|
||
"""Returns the number of tokens in a text string."""
|
||
encoding = tiktoken.get_encoding('cl100k_base')
|
||
num_tokens = len(encoding.encode(string))
|
||
return num_tokens
|
||
|
||
|
||
def expand_features(embedding, target_length):
|
||
poly = PolynomialFeatures(degree=2)
|
||
expanded_embedding = poly.fit_transform(embedding.reshape(1, -1))
|
||
expanded_embedding = expanded_embedding.flatten()
|
||
if len(expanded_embedding) > target_length:
|
||
# 如果扩展后的特征超过目标长度,可以通过截断或其他方法来减少维度
|
||
expanded_embedding = expanded_embedding[:target_length]
|
||
elif len(expanded_embedding) < target_length:
|
||
# 如果扩展后的特征少于目标长度,可以通过填充或其他方法来增加维度
|
||
expanded_embedding = np.pad(
|
||
expanded_embedding, (0, target_length - len(expanded_embedding))
|
||
)
|
||
return expanded_embedding
|
||
|
||
|
||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||
async def create_chat_completion(
|
||
request: ChatCompletionRequest, token: bool = Depends(verify_token)
|
||
):
|
||
global model, tokenizer
|
||
|
||
if request.messages[-1].role != "user":
|
||
raise HTTPException(status_code=400, detail="Invalid request")
|
||
query = request.messages[-1].content
|
||
|
||
prev_messages = request.messages[:-1]
|
||
if len(prev_messages) > 0 and prev_messages[0].role == "system":
|
||
query = prev_messages.pop(0).content + query
|
||
|
||
history = []
|
||
if len(prev_messages) % 2 == 0:
|
||
for i in range(0, len(prev_messages), 2):
|
||
if (
|
||
prev_messages[i].role == "user"
|
||
and prev_messages[i + 1].role == "assistant"
|
||
):
|
||
history.append([prev_messages[i].content, prev_messages[i + 1].content])
|
||
|
||
if request.stream:
|
||
generate = predict(query, history, request.model)
|
||
return EventSourceResponse(generate, media_type="text/event-stream")
|
||
|
||
response, _ = model.chat(tokenizer, query, history=history)
|
||
choice_data = ChatCompletionResponseChoice(
|
||
index=0,
|
||
message=ChatMessage(role="assistant", content=response),
|
||
finish_reason="stop",
|
||
)
|
||
|
||
return ChatCompletionResponse(
|
||
model=request.model, choices=[choice_data], object="chat.completion"
|
||
)
|
||
|
||
|
||
async def predict(query: str, history: List[List[str]], model_id: str):
|
||
global model, tokenizer
|
||
|
||
choice_data = ChatCompletionResponseStreamChoice(
|
||
index=0, delta=DeltaMessage(role="assistant"), finish_reason=None
|
||
)
|
||
chunk = ChatCompletionResponse(
|
||
model=model_id, choices=[choice_data], object="chat.completion.chunk"
|
||
)
|
||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||
|
||
current_length = 0
|
||
|
||
for new_response, _ in model.stream_chat(tokenizer, query, history):
|
||
if len(new_response) == current_length:
|
||
continue
|
||
|
||
new_text = new_response[current_length:]
|
||
current_length = len(new_response)
|
||
|
||
choice_data = ChatCompletionResponseStreamChoice(
|
||
index=0, delta=DeltaMessage(content=new_text), finish_reason=None
|
||
)
|
||
chunk = ChatCompletionResponse(
|
||
model=model_id, choices=[choice_data], object="chat.completion.chunk"
|
||
)
|
||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||
|
||
choice_data = ChatCompletionResponseStreamChoice(
|
||
index=0, delta=DeltaMessage(), finish_reason="stop"
|
||
)
|
||
chunk = ChatCompletionResponse(
|
||
model=model_id, choices=[choice_data], object="chat.completion.chunk"
|
||
)
|
||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||
yield '[DONE]'
|
||
|
||
|
||
@app.post("/v1/embeddings", response_model=EmbeddingResponse)
|
||
async def get_embeddings(
|
||
request: EmbeddingRequest, token: bool = Depends(verify_token)
|
||
):
|
||
# 计算嵌入向量和tokens数量
|
||
embeddings = [embeddings_model.encode(text) for text in request.input]
|
||
|
||
# 如果嵌入向量的维度不为1536,则使用插值法扩展至1536维度
|
||
embeddings = [
|
||
expand_features(embedding, 1536) if len(embedding) < 1536 else embedding
|
||
for embedding in embeddings
|
||
]
|
||
|
||
# Min-Max normalization 归一化
|
||
embeddings = [embedding / np.linalg.norm(embedding) for embedding in embeddings]
|
||
|
||
# 将numpy数组转换为列表
|
||
embeddings = [embedding.tolist() for embedding in embeddings]
|
||
prompt_tokens = sum(len(text.split()) for text in request.input)
|
||
total_tokens = sum(num_tokens_from_string(text) for text in request.input)
|
||
|
||
response = {
|
||
"data": [
|
||
{"embedding": embedding, "index": index, "object": "embedding"}
|
||
for index, embedding in enumerate(embeddings)
|
||
],
|
||
"model": request.model,
|
||
"object": "list",
|
||
"usage": {
|
||
"prompt_tokens": prompt_tokens,
|
||
"total_tokens": total_tokens,
|
||
},
|
||
}
|
||
|
||
return response
|
||
|
||
|
||
if __name__ == "__main__":
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument("--model_name", default="16", type=str, help="Model name")
|
||
args = parser.parse_args()
|
||
|
||
model_dict = {
|
||
"4": "THUDM/chatglm2-6b-int4",
|
||
"8": "THUDM/chatglm2-6b-int8",
|
||
"16": "THUDM/chatglm2-6b",
|
||
}
|
||
|
||
model_name = model_dict.get(args.model_name, "THUDM/chatglm2-6b")
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()
|
||
embeddings_model = SentenceTransformer('moka-ai/m3e-large', device='cpu')
|
||
|
||
uvicorn.run(app, host='0.0.0.0', port=6006, workers=1)
|