Files
FastGPT/python/bge-rerank/bge-reranker-base/app.py
Archer 1fbc407ecf 4.7.1-alpha2 (#1153)
Co-authored-by: UUUUnotfound <31206589+UUUUnotfound@users.noreply.github.com>
Co-authored-by: Hexiao Zhang <731931282qq@gmail.com>
Co-authored-by: heheer <71265218+newfish-cmyk@users.noreply.github.com>
2024-04-08 21:17:33 +08:00

89 lines
2.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Time: 2023/11/7 22:45
@Author: zhidong
@File: reranker.py
@Desc:
"""
import os
import numpy as np
import logging
import uvicorn
import datetime
from fastapi import FastAPI, Security, HTTPException
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from FlagEmbedding import FlagReranker
from pydantic import Field, BaseModel, validator
from typing import Optional, List
app = FastAPI()
security = HTTPBearer()
env_bearer_token = 'ACCESS_TOKEN'
class QADocs(BaseModel):
query: Optional[str]
documents: Optional[List[str]]
class Singleton(type):
def __call__(cls, *args, **kwargs):
if not hasattr(cls, '_instance'):
cls._instance = super().__call__(*args, **kwargs)
return cls._instance
RERANK_MODEL_PATH = os.path.join(os.path.dirname(__file__), "bge-reranker-base")
class ReRanker(metaclass=Singleton):
def __init__(self, model_path):
self.reranker = FlagReranker(model_path, use_fp16=False)
def compute_score(self, pairs: List[List[str]]):
if len(pairs) > 0:
result = self.reranker.compute_score(pairs, normalize=True)
if isinstance(result, float):
result = [result]
return result
else:
return None
class Chat(object):
def __init__(self, rerank_model_path: str = RERANK_MODEL_PATH):
self.reranker = ReRanker(rerank_model_path)
def fit_query_answer_rerank(self, query_docs: QADocs) -> List:
if query_docs is None or len(query_docs.documents) == 0:
return []
pair = [[query_docs.query, doc] for doc in query_docs.documents]
scores = self.reranker.compute_score(pair)
new_docs = []
for index, score in enumerate(scores):
new_docs.append({"index": index, "text": query_docs.documents[index], "score": score})
results = [{"index": documents["index"], "relevance_score": documents["score"]} for documents in list(sorted(new_docs, key=lambda x: x["score"], reverse=True))]
return results
@app.post('/v1/rerank')
async def handle_post_request(docs: QADocs, credentials: HTTPAuthorizationCredentials = Security(security)):
token = credentials.credentials
if env_bearer_token is not None and token != env_bearer_token:
raise HTTPException(status_code=401, detail="Invalid token")
chat = Chat()
try:
results = chat.fit_query_answer_rerank(docs)
return {"results": results}
except Exception as e:
print(f"报错:\n{e}")
return {"error": "重排出错"}
if __name__ == "__main__":
token = os.getenv("ACCESS_TOKEN")
if token is not None:
env_bearer_token = token
try:
uvicorn.run(app, host='0.0.0.0', port=6006)
except Exception as e:
print(f"API启动失败\n报错:\n{e}")