Files
FastGPT/packages/service/core/ai/config/utils.ts
Archer e25d7efb5b feature: V4.11.1 (#5350)
* perf: system toolset & mcp (#5200)

* feat: support system toolset

* fix: type

* fix: system tool config

* chore: mcptool config migrate

* refactor: mcp toolset

* fix: fe type error

* fix: type error

* fix: show version

* chore: support extract tool's secretInputConfig out of inputs

* chore: compatible with old version mcp

* chore: adjust

* deps: update dependency @fastgpt-skd/plugin

* fix: version

* fix: some bug (#5316)

* chore: compatible with old version mcp

* fix: version

* fix: compatible bug

* fix: mcp object params

* fix: type error

* chore: update test cases

* chore: remove log

* fix: toolset node name

* optimize app logs sort (#5310)

* log keys config modal

* multiple select

* api

* fontsize

* code

* chatid

* fix build

* fix

* fix component

* change name

* log keys config

* fix

* delete unused

* fix

* perf: log code

* perf: send auth code modal enter press

* fix log (#5328)

* perf: mcp toolset comment

* perf: log ui

* remove log (#5347)

* doc

* fix: action

* remove log

* fix: Table Optimization (#5319)

* feat: table test: 1

* feat: table test: 2

* feat: table test: 3

* feat: table test: 4

* feat: table test : 5 把maxSize改回chunkSize

* feat: table test : 6 都删了,只看maxSize

* feat: table test : 7 恢复初始,接下来删除标签功能

* feat: table test : 8 删除标签功能

* feat: table test : 9 删除标签功能成功

* feat: table test : 10 继续调试,修改trainingStates

* feat: table test : 11 修改第一步

* feat: table test : 12 修改第二步

* feat: table test : 13 修改了HtmlTable2Md

* feat: table test : 14 修改表头分块规则

* feat: table test : 15 前面表格分的太细了

* feat: table test : 16 改着改着表头又不加了

* feat: table test : 17 用CUSTOM_SPLIT_SIGN不行,重新改

* feat: table test : 18 表头仍然还会多加,但现在分块搞的合理了终于

* feat: table test : 19 还是需要搞好表头问题,先保存一下调试情况

* feat: table test : 20 调试结束,看一下replace有没有问题,没问题就pr

* feat: table test : 21 先把注释删了

* feat: table test : 21 注释replace都改了,下面切main分支看看情况

* feat: table test : 22 修改旧文件

* feat: table test : 23 修改测试文件

* feat: table test : 24 xlsx表格处理

* feat: table test : 25 刚才没保存先com了

* feat: table test : 26 fix

* feat: table test : 27 先com一版调试

* feat: table test : 28 试试放format2csv里

* feat: table test : 29 xlsx解决

* feat: table test : 30 tablesplit解决

* feat: table test : 31

* feat: table test : 32

* perf: table split

* perf: mcp old version compatibility (#5342)

* fix: system-tool secret inputs

* fix: rewrite runtime node i18n for system tool

* perf: mcp old version compatibility

* fix: splitPluginId

* fix: old mcp toolId

* fix: filter secret key

* feat: support system toolset activation

* chore: remove log

* perf: mcp update

* perf: rewrite toolset

* fix:delete variable id (#5335)

* perf: variable update

* fix: multiple select ui

* perf: model config move to plugin

* fix: var conflit

* perf: variable checker

* Avoid empty number

* update doc time

* fix: test

* fix: mcp object

* update count app

* update count app

---------

Co-authored-by: Finley Ge <32237950+FinleyGe@users.noreply.github.com>
Co-authored-by: heheer <heheer@sealos.io>
Co-authored-by: heheer <zhiyu44@qq.com>
Co-authored-by: colnii <1286949794@qq.com>
Co-authored-by: dreamer6680 <1468683855@qq.com>
2025-08-01 16:08:20 +08:00

246 lines
8.3 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import { type SystemModelItemType } from '../type';
import { ModelTypeEnum } from '@fastgpt/global/core/ai/model';
import { MongoSystemModel } from './schema';
import {
type LLMModelItemType,
type EmbeddingModelItemType,
type TTSModelType,
type STTModelType,
type RerankModelItemType
} from '@fastgpt/global/core/ai/model.d';
import { debounce } from 'lodash';
import { getModelProvider } from '@fastgpt/global/core/ai/provider';
import { findModelFromAlldata } from '../model';
import {
reloadFastGPTConfigBuffer,
updateFastGPTConfigBuffer
} from '../../../common/system/config/controller';
import { delay } from '@fastgpt/global/common/system/utils';
import { pluginClient } from '../../../thirdProvider/fastgptPlugin';
import { setCron } from '../../../common/system/cron';
export const loadSystemModels = async (init = false) => {
const pushModel = (model: SystemModelItemType) => {
global.systemModelList.push(model);
// Add default value
if (model.type === ModelTypeEnum.llm) {
model.datasetProcess = model.datasetProcess ?? true;
model.usedInClassify = model.usedInClassify ?? true;
model.usedInExtractFields = model.usedInExtractFields ?? true;
model.usedInToolCall = model.usedInToolCall ?? true;
model.useInEvaluation = model.useInEvaluation ?? true;
}
if (model.isActive) {
global.systemActiveModelList.push(model);
if (model.type === ModelTypeEnum.llm) {
global.llmModelMap.set(model.model, model);
global.llmModelMap.set(model.name, model);
if (model.isDefault) {
global.systemDefaultModel.llm = model;
}
if (model.isDefaultDatasetTextModel) {
global.systemDefaultModel.datasetTextLLM = model;
}
if (model.isDefaultDatasetImageModel) {
global.systemDefaultModel.datasetImageLLM = model;
}
} else if (model.type === ModelTypeEnum.embedding) {
global.embeddingModelMap.set(model.model, model);
global.embeddingModelMap.set(model.name, model);
if (model.isDefault) {
global.systemDefaultModel.embedding = model;
}
} else if (model.type === ModelTypeEnum.tts) {
global.ttsModelMap.set(model.model, model);
global.ttsModelMap.set(model.name, model);
if (model.isDefault) {
global.systemDefaultModel.tts = model;
}
} else if (model.type === ModelTypeEnum.stt) {
global.sttModelMap.set(model.model, model);
global.sttModelMap.set(model.name, model);
if (model.isDefault) {
global.systemDefaultModel.stt = model;
}
} else if (model.type === ModelTypeEnum.rerank) {
global.reRankModelMap.set(model.model, model);
global.reRankModelMap.set(model.name, model);
if (model.isDefault) {
global.systemDefaultModel.rerank = model;
}
}
}
};
if (!init && global.systemModelList) return;
global.systemModelList = [];
global.systemActiveModelList = [];
global.llmModelMap = new Map<string, LLMModelItemType>();
global.embeddingModelMap = new Map<string, EmbeddingModelItemType>();
global.ttsModelMap = new Map<string, TTSModelType>();
global.sttModelMap = new Map<string, STTModelType>();
global.reRankModelMap = new Map<string, RerankModelItemType>();
// @ts-ignore
global.systemDefaultModel = {};
try {
// Get model from db and plugin
const [dbModels, systemModels] = await Promise.all([
MongoSystemModel.find({}).lean(),
pluginClient.model.list().then((res) => {
if (res.status === 200) return res.body;
console.error('Get fastGPT plugin model error');
return [];
})
]);
// Load system model from local
await Promise.all(
systemModels.map(async (model) => {
const mergeObject = (obj1: any, obj2: any) => {
if (!obj1 && !obj2) return undefined;
const formatObj1 = typeof obj1 === 'object' ? obj1 : {};
const formatObj2 = typeof obj2 === 'object' ? obj2 : {};
return { ...formatObj1, ...formatObj2 };
};
const dbModel = dbModels.find((item) => item.model === model.model);
const modelData: any = {
...model,
...dbModel?.metadata,
// @ts-ignore
defaultConfig: mergeObject(model.defaultConfig, dbModel?.metadata?.defaultConfig),
// @ts-ignore
fieldMap: mergeObject(model.fieldMap, dbModel?.metadata?.fieldMap),
provider: getModelProvider(dbModel?.metadata?.provider || (model.provider as any)).id,
type: dbModel?.metadata?.type || model.type,
isCustom: false
};
pushModel(modelData);
})
);
// Custom model(Not in system config)
dbModels.forEach((dbModel) => {
if (global.systemModelList.find((item) => item.model === dbModel.model)) return;
pushModel({
...dbModel.metadata,
isCustom: true
});
});
// Default model check
if (!global.systemDefaultModel.llm) {
global.systemDefaultModel.llm = Array.from(global.llmModelMap.values())[0];
}
if (!global.systemDefaultModel.datasetTextLLM) {
global.systemDefaultModel.datasetTextLLM = Array.from(global.llmModelMap.values()).find(
(item) => item.datasetProcess
);
}
if (!global.systemDefaultModel.datasetImageLLM) {
global.systemDefaultModel.datasetImageLLM = Array.from(global.llmModelMap.values()).find(
(item) => item.vision
);
}
if (!global.systemDefaultModel.embedding) {
global.systemDefaultModel.embedding = Array.from(global.embeddingModelMap.values())[0];
}
if (!global.systemDefaultModel.tts) {
global.systemDefaultModel.tts = Array.from(global.ttsModelMap.values())[0];
}
if (!global.systemDefaultModel.stt) {
global.systemDefaultModel.stt = Array.from(global.sttModelMap.values())[0];
}
if (!global.systemDefaultModel.rerank) {
global.systemDefaultModel.rerank = Array.from(global.reRankModelMap.values())[0];
}
// Sort model list
global.systemActiveModelList.sort((a, b) => {
const providerA = getModelProvider(a.provider);
const providerB = getModelProvider(b.provider);
return providerA.order - providerB.order;
});
console.log(
`Load models success, total: ${global.systemModelList.length}, active: ${global.systemActiveModelList.length}`,
JSON.stringify(
global.systemActiveModelList.map((item) => ({
provider: item.provider,
model: item.model,
name: item.name
})),
null,
2
)
);
} catch (error) {
console.error('Load models error', error);
// @ts-ignore
global.systemModelList = undefined;
return Promise.reject(error);
}
};
export const getSystemModelConfig = async (model: string): Promise<SystemModelItemType> => {
const modelData = findModelFromAlldata(model);
if (!modelData) return Promise.reject('Model is not found');
if (modelData.isCustom) return Promise.reject('Custom model not data');
// Read file
const modelDefaulConfig = await pluginClient.model.list().then((res) => {
if (res.status === 200) {
return res.body.find((item) => item.model === model) as SystemModelItemType;
}
return Promise.reject('Can not get model config from plugin');
});
return {
...modelDefaulConfig,
provider: modelData.provider,
isCustom: false
};
};
export const watchSystemModelUpdate = () => {
const changeStream = MongoSystemModel.watch();
changeStream.on(
'change',
debounce(async () => {
try {
// Main node will reload twice
await loadSystemModels(true);
// All node reaload buffer
await reloadFastGPTConfigBuffer();
} catch (error) {}
}, 500)
);
};
// 更新完模型后,需要重载缓存
export const updatedReloadSystemModel = async () => {
// 1. 更新模型(所有节点都会触发)
await loadSystemModels(true);
// 2. 更新缓存(仅主节点触发)
await updateFastGPTConfigBuffer();
// 3. 延迟1秒等待其他节点刷新
await delay(1000);
};
export const cronRefreshModels = async () => {
setCron('*/5 * * * *', async () => {
// 1. 更新模型(所有节点都会触发)
await loadSystemModels(true);
// 2. 更新缓存(仅主节点触发)
await updateFastGPTConfigBuffer();
});
};