Files
FastGPT/packages/service/core/ai/config/utils.ts
Theresa 2d3117c5da feat: update ESLint config with @typescript-eslint/consistent-type-imports (#4746)
* update: Add type

* fix: update import statement for NextApiRequest type

* fix: update imports to use type for LexicalEditor and EditorState

* Refactor imports to use 'import type' for type-only imports across multiple files

- Updated imports in various components and API files to use 'import type' for better clarity and to optimize TypeScript's type checking.
- Ensured consistent usage of type imports in files related to chat, dataset, workflow, and user management.
- Improved code readability and maintainability by distinguishing between value and type imports.

* refactor: remove old ESLint configuration and add new rules

- Deleted the old ESLint configuration file from the app project.
- Added a new ESLint configuration file with updated rules and settings.
- Changed imports to use type-only imports in various files for better clarity and performance.
- Updated TypeScript configuration to remove unnecessary options.
- Added an ESLint ignore file to exclude build and dependency directories from linting.

* fix: update imports to use 'import type' for type-only imports in schema files
2025-05-06 17:33:09 +08:00

240 lines
8.1 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import path from 'path';
import * as fs from 'fs';
import { type SystemModelItemType } from '../type';
import { ModelTypeEnum } from '@fastgpt/global/core/ai/model';
import { MongoSystemModel } from './schema';
import {
type LLMModelItemType,
type EmbeddingModelItemType,
type TTSModelType,
type STTModelType,
type RerankModelItemType
} from '@fastgpt/global/core/ai/model.d';
import { debounce } from 'lodash';
import {
getModelProvider,
type ModelProviderIdType,
type ModelProviderType
} from '@fastgpt/global/core/ai/provider';
import { findModelFromAlldata } from '../model';
import {
reloadFastGPTConfigBuffer,
updateFastGPTConfigBuffer
} from '../../../common/system/config/controller';
import { delay } from '@fastgpt/global/common/system/utils';
const getModelConfigBaseUrl = () => {
const currentFileUrl = new URL(import.meta.url);
const filePath = decodeURIComponent(
process.platform === 'win32'
? currentFileUrl.pathname.substring(1) // Remove leading slash on Windows
: currentFileUrl.pathname
);
const modelsPath = path.join(path.dirname(filePath), 'provider');
return modelsPath;
};
/*
TODO: 分优先级读取:
1. 有外部挂载目录,则读取外部的
2. 没有外部挂载目录,则读取本地的。然后试图拉取云端的进行覆盖。
*/
export const loadSystemModels = async (init = false) => {
const pushModel = (model: SystemModelItemType) => {
global.systemModelList.push(model);
if (model.isActive) {
global.systemActiveModelList.push(model);
if (model.type === ModelTypeEnum.llm) {
global.llmModelMap.set(model.model, model);
global.llmModelMap.set(model.name, model);
if (model.isDefault) {
global.systemDefaultModel.llm = model;
}
if (model.isDefaultDatasetTextModel) {
global.systemDefaultModel.datasetTextLLM = model;
}
if (model.isDefaultDatasetImageModel) {
global.systemDefaultModel.datasetImageLLM = model;
}
} else if (model.type === ModelTypeEnum.embedding) {
global.embeddingModelMap.set(model.model, model);
global.embeddingModelMap.set(model.name, model);
if (model.isDefault) {
global.systemDefaultModel.embedding = model;
}
} else if (model.type === ModelTypeEnum.tts) {
global.ttsModelMap.set(model.model, model);
global.ttsModelMap.set(model.name, model);
if (model.isDefault) {
global.systemDefaultModel.tts = model;
}
} else if (model.type === ModelTypeEnum.stt) {
global.sttModelMap.set(model.model, model);
global.sttModelMap.set(model.name, model);
if (model.isDefault) {
global.systemDefaultModel.stt = model;
}
} else if (model.type === ModelTypeEnum.rerank) {
global.reRankModelMap.set(model.model, model);
global.reRankModelMap.set(model.name, model);
if (model.isDefault) {
global.systemDefaultModel.rerank = model;
}
}
}
};
if (!init && global.systemModelList) return;
global.systemModelList = [];
global.systemActiveModelList = [];
global.llmModelMap = new Map<string, LLMModelItemType>();
global.embeddingModelMap = new Map<string, EmbeddingModelItemType>();
global.ttsModelMap = new Map<string, TTSModelType>();
global.sttModelMap = new Map<string, STTModelType>();
global.reRankModelMap = new Map<string, RerankModelItemType>();
// @ts-ignore
global.systemDefaultModel = {};
try {
const dbModels = await MongoSystemModel.find({}).lean();
// Load system model from local
const modelsPath = getModelConfigBaseUrl();
const providerList = fs.readdirSync(modelsPath) as string[];
await Promise.all(
providerList.map(async (name) => {
const fileContent = (await import(`./provider/${name}`))?.default as {
provider: ModelProviderIdType;
list: SystemModelItemType[];
};
const mergeObject = (obj1: any, obj2: any) => {
if (!obj1 && !obj2) return undefined;
const formatObj1 = typeof obj1 === 'object' ? obj1 : {};
const formatObj2 = typeof obj2 === 'object' ? obj2 : {};
return { ...formatObj1, ...formatObj2 };
};
fileContent.list.forEach((fileModel) => {
const dbModel = dbModels.find((item) => item.model === fileModel.model);
const modelData: any = {
...fileModel,
...dbModel?.metadata,
// @ts-ignore
defaultConfig: mergeObject(fileModel.defaultConfig, dbModel?.metadata?.defaultConfig),
// @ts-ignore
fieldMap: mergeObject(fileModel.fieldMap, dbModel?.metadata?.fieldMap),
provider: getModelProvider(dbModel?.metadata?.provider || fileContent.provider).id,
type: dbModel?.metadata?.type || fileModel.type,
isCustom: false
};
pushModel(modelData);
});
})
);
// Custom model
dbModels.forEach((dbModel) => {
if (global.systemModelList.find((item) => item.model === dbModel.model)) return;
pushModel({
...dbModel.metadata,
isCustom: true
});
});
// Default model check
if (!global.systemDefaultModel.llm) {
global.systemDefaultModel.llm = Array.from(global.llmModelMap.values())[0];
}
if (!global.systemDefaultModel.datasetTextLLM) {
global.systemDefaultModel.datasetTextLLM = Array.from(global.llmModelMap.values()).find(
(item) => item.datasetProcess
);
}
if (!global.systemDefaultModel.datasetImageLLM) {
global.systemDefaultModel.datasetImageLLM = Array.from(global.llmModelMap.values()).find(
(item) => item.vision
);
}
if (!global.systemDefaultModel.embedding) {
global.systemDefaultModel.embedding = Array.from(global.embeddingModelMap.values())[0];
}
if (!global.systemDefaultModel.tts) {
global.systemDefaultModel.tts = Array.from(global.ttsModelMap.values())[0];
}
if (!global.systemDefaultModel.stt) {
global.systemDefaultModel.stt = Array.from(global.sttModelMap.values())[0];
}
if (!global.systemDefaultModel.rerank) {
global.systemDefaultModel.rerank = Array.from(global.reRankModelMap.values())[0];
}
// Sort model list
global.systemActiveModelList.sort((a, b) => {
const providerA = getModelProvider(a.provider);
const providerB = getModelProvider(b.provider);
return providerA.order - providerB.order;
});
console.log('Load models success', JSON.stringify(global.systemActiveModelList, null, 2));
} catch (error) {
console.error('Load models error', error);
// @ts-ignore
global.systemModelList = undefined;
return Promise.reject(error);
}
};
export const getSystemModelConfig = async (model: string): Promise<SystemModelItemType> => {
const modelData = findModelFromAlldata(model);
if (!modelData) return Promise.reject('Model is not found');
if (modelData.isCustom) return Promise.reject('Custom model not data');
// Read file
const fileContent = (await import(`./provider/${modelData.provider}`))?.default as {
provider: ModelProviderType;
list: SystemModelItemType[];
};
const config = fileContent.list.find((item) => item.model === model);
if (!config) return Promise.reject('Model config is not found');
return {
...config,
provider: modelData.provider,
isCustom: false
};
};
export const watchSystemModelUpdate = () => {
const changeStream = MongoSystemModel.watch();
changeStream.on(
'change',
debounce(async () => {
try {
// Main node will reload twice
await loadSystemModels(true);
// All node reaload buffer
await reloadFastGPTConfigBuffer();
} catch (error) {}
}, 500)
);
};
// 更新完模型后,需要重载缓存
export const updatedReloadSystemModel = async () => {
// 1. 更新模型(所有节点都会触发)
await loadSystemModels(true);
// 2. 更新缓存(仅主节点触发)
await updateFastGPTConfigBuffer();
// 3. 延迟1秒等待其他节点刷新
await delay(1000);
};