mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 05:12:39 +00:00

* Aiproxy (#3649) * model config * feat: model config ui * perf: rename variable * feat: custom request url * perf: model buffer * perf: init model * feat: json model config * auto login * fix: ts * update packages * package * fix: dockerfile * feat: usage filter & export & dashbord (#3538) * feat: usage filter & export & dashbord * adjust ui * fix tmb scroll * fix code & selecte all * merge * perf: usages list;perf: move components (#3654) * perf: usages list * team sub plan load * perf: usage dashboard code * perf: dashboard ui * perf: move components * add default model config (#3653) * 4.8.20 test (#3656) * provider * perf: model config * model perf (#3657) * fix: model * dataset quote * perf: model config * model tag * doubao model config * perf: config model * feat: model test * fix: POST 500 error on dingtalk bot (#3655) * feat: default model (#3662) * move model config * feat: default model * fix: false triggerd org selection (#3661) * export usage csv i18n (#3660) * export usage csv i18n * fix build * feat: markdown extension (#3663) * feat: markdown extension * media cros * rerank test * default price * perf: default model * fix: cannot custom provider * fix: default model select * update bg * perf: default model selector * fix: usage export * i18n * fix: rerank * update init extension * perf: ip limit check * doubao model order * web default modle * perf: tts selector * perf: tts error * qrcode package * reload buffer (#3665) * reload buffer * reload buffer * tts selector * fix: err tip (#3666) * fix: err tip * perf: training queue * doc * fix interactive edge (#3659) * fix interactive edge * fix * comment * add gemini model * fix: chat model select * perf: supplement assistant empty response (#3669) * perf: supplement assistant empty response * check array * perf: max_token count;feat: support resoner output;fix: member scroll (#3681) * perf: supplement assistant empty response * check array * perf: max_token count * feat: support resoner output * member scroll * update provider order * i18n * fix: stream response (#3682) * perf: supplement assistant empty response * check array * fix: stream response * fix: model config cannot set to null * fix: reasoning response (#3684) * perf: supplement assistant empty response * check array * fix: reasoning response * fix: reasoning response * doc (#3685) * perf: supplement assistant empty response * check array * doc * lock * animation * update doc * update compose * doc * doc --------- Co-authored-by: heheer <heheer@sealos.io> Co-authored-by: a.e. <49438478+I-Info@users.noreply.github.com>
88 lines
2.4 KiB
TypeScript
88 lines
2.4 KiB
TypeScript
import { EmbeddingModelItemType } from '@fastgpt/global/core/ai/model.d';
|
|
import { getAIApi } from '../config';
|
|
import { countPromptTokens } from '../../../common/string/tiktoken/index';
|
|
import { EmbeddingTypeEnm } from '@fastgpt/global/core/ai/constants';
|
|
import { addLog } from '../../../common/system/log';
|
|
|
|
type GetVectorProps = {
|
|
model: EmbeddingModelItemType;
|
|
input: string;
|
|
type?: `${EmbeddingTypeEnm}`;
|
|
};
|
|
|
|
// text to vector
|
|
export async function getVectorsByText({ model, input, type }: GetVectorProps) {
|
|
if (!input) {
|
|
return Promise.reject({
|
|
code: 500,
|
|
message: 'input is empty'
|
|
});
|
|
}
|
|
|
|
try {
|
|
const ai = getAIApi();
|
|
|
|
// input text to vector
|
|
const result = await ai.embeddings
|
|
.create(
|
|
{
|
|
...model.defaultConfig,
|
|
...(type === EmbeddingTypeEnm.db && model.dbConfig),
|
|
...(type === EmbeddingTypeEnm.query && model.queryConfig),
|
|
model: model.model,
|
|
input: [input]
|
|
},
|
|
model.requestUrl && model.requestAuth
|
|
? {
|
|
path: model.requestUrl,
|
|
headers: {
|
|
Authorization: `Bearer ${model.requestAuth}`
|
|
}
|
|
}
|
|
: {}
|
|
)
|
|
.then(async (res) => {
|
|
if (!res.data) {
|
|
addLog.error('Embedding API is not responding', res);
|
|
return Promise.reject('Embedding API is not responding');
|
|
}
|
|
if (!res?.data?.[0]?.embedding) {
|
|
console.log(res);
|
|
// @ts-ignore
|
|
return Promise.reject(res.data?.err?.message || 'Embedding API Error');
|
|
}
|
|
|
|
const [tokens, vectors] = await Promise.all([
|
|
countPromptTokens(input),
|
|
Promise.all(res.data.map((item) => unityDimensional(item.embedding)))
|
|
]);
|
|
|
|
return {
|
|
tokens,
|
|
vectors
|
|
};
|
|
});
|
|
|
|
return result;
|
|
} catch (error) {
|
|
addLog.error(`Embedding Error`, error);
|
|
|
|
return Promise.reject(error);
|
|
}
|
|
}
|
|
|
|
function unityDimensional(vector: number[]) {
|
|
if (vector.length > 1536) {
|
|
console.log(
|
|
`The current vector dimension is ${vector.length}, and the vector dimension cannot exceed 1536. The first 1536 dimensions are automatically captured`
|
|
);
|
|
return vector.slice(0, 1536);
|
|
}
|
|
let resultVector = vector;
|
|
const vectorLen = vector.length;
|
|
|
|
const zeroVector = new Array(1536 - vectorLen).fill(0);
|
|
|
|
return resultVector.concat(zeroVector);
|
|
}
|