Files
FastGPT/packages/service/common/vectorStore/pg/controller.ts

204 lines
5.6 KiB
TypeScript

/* pg vector crud */
import { PgDatasetTableName } from '@fastgpt/global/common/vectorStore/constants';
import { delay } from '@fastgpt/global/common/system/utils';
import { PgClient, connectPg } from './index';
import { PgSearchRawType } from '@fastgpt/global/core/dataset/api';
import { EmbeddingRecallItemType } from '../type';
import { DeleteDatasetVectorProps, EmbeddingRecallProps } from '../controller.d';
import dayjs from 'dayjs';
export async function initPg() {
try {
await connectPg();
await PgClient.query(`
CREATE EXTENSION IF NOT EXISTS vector;
CREATE TABLE IF NOT EXISTS ${PgDatasetTableName} (
id BIGSERIAL PRIMARY KEY,
vector VECTOR(1536) NOT NULL,
team_id VARCHAR(50) NOT NULL,
tmb_id VARCHAR(50) NOT NULL,
dataset_id VARCHAR(50) NOT NULL,
collection_id VARCHAR(50) NOT NULL,
data_id VARCHAR(50) NOT NULL,
createTime TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
`);
await PgClient.query(`
CREATE INDEX CONCURRENTLY IF NOT EXISTS vector_index ON ${PgDatasetTableName}
USING hnsw (vector vector_ip_ops) WITH (m = 32, ef_construction = 64);
`);
console.log('init pg successful');
} catch (error) {
console.log('init pg error', error);
}
}
export const insertDatasetDataVector = async (props: {
teamId: string;
tmbId: string;
datasetId: string;
collectionId: string;
dataId: string;
vectors: number[][];
retry?: number;
}): Promise<{ insertId: string }> => {
const { dataId, teamId, tmbId, datasetId, collectionId, vectors, retry = 3 } = props;
try {
const { rows } = await PgClient.insert(PgDatasetTableName, {
values: [
[
{ key: 'vector', value: `[${vectors[0]}]` },
{ key: 'team_id', value: String(teamId) },
{ key: 'tmb_id', value: String(tmbId) },
{ key: 'dataset_id', value: datasetId },
{ key: 'collection_id', value: collectionId },
{ key: 'data_id', value: String(dataId) }
]
]
});
return {
insertId: rows[0].id
};
} catch (error) {
if (retry <= 0) {
return Promise.reject(error);
}
await delay(500);
return insertDatasetDataVector({
...props,
retry: retry - 1
});
}
};
export const updateDatasetDataVector = async (props: {
id: string;
vectors: number[][];
retry?: number;
}): Promise<void> => {
const { id, vectors, retry = 2 } = props;
try {
// update pg
await PgClient.update(PgDatasetTableName, {
where: [['id', id]],
values: [{ key: 'vector', value: `[${vectors[0]}]` }]
});
} catch (error) {
if (retry <= 0) {
return Promise.reject(error);
}
await delay(500);
return updateDatasetDataVector({
...props,
retry: retry - 1
});
}
};
export const deleteDatasetDataVector = async (
props: DeleteDatasetVectorProps & {
retry?: number;
}
): Promise<any> => {
const { id, datasetIds, collectionIds, dataIds, retry = 2 } = props;
const where = await (() => {
if (id) return `id=${id}`;
if (datasetIds) return `dataset_id IN (${datasetIds.map((id) => `'${String(id)}'`).join(',')})`;
if (collectionIds)
return `collection_id IN (${collectionIds.map((id) => `'${String(id)}'`).join(',')})`;
if (dataIds) return `data_id IN (${dataIds.map((id) => `'${String(id)}'`).join(',')})`;
return Promise.reject('deleteDatasetData: no where');
})();
try {
await PgClient.delete(PgDatasetTableName, {
where: [where]
});
} catch (error) {
if (retry <= 0) {
return Promise.reject(error);
}
await delay(500);
return deleteDatasetDataVector({
...props,
retry: retry - 1
});
}
};
export const embeddingRecall = async (
props: EmbeddingRecallProps & {
vectors: number[][];
limit: number;
retry?: number;
}
): Promise<{
results: EmbeddingRecallItemType[];
}> => {
const { vectors, limit, similarity = 0, datasetIds, retry = 2 } = props;
try {
const results: any = await PgClient.query(
`BEGIN;
SET LOCAL hnsw.ef_search = ${global.systemEnv.pgHNSWEfSearch || 100};
select id, collection_id, data_id, (vector <#> '[${vectors[0]}]') * -1 AS score
from ${PgDatasetTableName}
where dataset_id IN (${datasetIds.map((id) => `'${String(id)}'`).join(',')})
AND vector <#> '[${vectors[0]}]' < -${similarity}
order by score desc limit ${limit};
COMMIT;`
);
const rows = results?.[2]?.rows as PgSearchRawType[];
// concat same data_id
const filterRows: PgSearchRawType[] = [];
let set = new Set<string>();
for (const row of rows) {
if (!set.has(row.data_id)) {
filterRows.push(row);
set.add(row.data_id);
}
}
return {
results: filterRows.map((item) => ({
id: item.id,
collectionId: item.collection_id,
dataId: item.data_id,
score: item.score
}))
};
} catch (error) {
if (retry <= 0) {
return Promise.reject(error);
}
return embeddingRecall(props);
}
};
// bill
export const getVectorCountByTeamId = async (teamId: string) => {
const total = await PgClient.count(PgDatasetTableName, {
where: [['team_id', String(teamId)]]
});
return total;
};
export const getVectorDataByTime = async (start: Date, end: Date) => {
const { rows } = await PgClient.query<{ id: string; data_id: string }>(`SELECT id, data_id
FROM ${PgDatasetTableName}
WHERE createTime BETWEEN '${dayjs(start).format('YYYY-MM-DD')}' AND '${dayjs(end).format(
'YYYY-MM-DD 23:59:59'
)}';
`);
return rows.map((item) => ({
id: item.id,
dataId: item.data_id
}));
};