mirror of
https://github.com/labring/FastGPT.git
synced 2025-10-18 17:51:24 +00:00

* add logs chart (#5352) * charts * chart data * log chart * delete * rename api * fix * move api * fix * fix * pro config * fix * feat: Repository interaction (#5356) * feat: 1好像功能没问题了,明天再测 * feat: 2 解决了昨天遗留的bug,但全选按钮又bug了 * feat: 3 第三版,解决了全选功能bug * feat: 4 第四版,下面改小细节 * feat: 5 我勒个痘 * feat: 6 * feat: 6 pr * feat: 7 * feat: 8 * feat: 9 * feat: 10 * feat: 11 * feat: 12 * perf: checkbox ui * refactor: tweak login loyout (#5357) Co-authored-by: Archer <545436317@qq.com> * login ui * app chat log chart pro display (#5392) * app chat log chart pro display * add canopen props * perf: pro tag tip * perf: pro tag tip * feat: openrouter provider (#5406) * perf: login ui * feat: openrouter provider * provider * perf: custom error throw * perf: emb batch (#5407) * perf: emb batch * perf: vector retry * doc * doc (#5411) * doc * fix: team folder will add to workflow * fix: generateToc shell * Tool price (#5376) * resolve conflicts for cherry-pick * fix i18n * Enhance system plugin template data structure and update ToolSelectModal to include CostTooltip component * refactor: update systemKeyCost type to support array of objects in plugin and workflow types * refactor: simplify systemKeyCost type across plugin and workflow types to a single number * refactor: streamline systemKeyCost handling in plugin and workflow components * fix * fix * perf: toolset price config;fix: workflow array selector ui (#5419) * fix: workflow array selector ui * update default model tip * perf: toolset price config * doc * fix: test * Refactor/chat (#5418) * refactor: add homepage configuration; add home chat page; add side bar animated collapse and layout * fix: fix lint rules * chore: improve logics and code * chore: more clearer logics * chore: adjust api --------- Co-authored-by: Archer <545436317@qq.com> * perf: chat setting code * del history * logo image * perf: home chat ui * feat: enhance chat response handling with external links and user info (#5427) * feat: enhance chat response handling with external links and user info * fix * cite code * perf: toolset add in workflow * fix: test * fix: search paraentId * Fix/chat (#5434) * wip: rebase了upstream * wip: adapt mobile UI * fix: fix chat page logic and UI * fix: fix UI and improve some logics * fix: model selector missing logo; vision model to retrieve file * perf: role selector * fix: chat ui * optimize export app chat log (#5436) * doc * chore: move components to proper directory; fix the api to get app list (#5437) * chore: improve team app panel display form (#5438) * feat: add home chat log tab * chore: improve team app panel display form * chore: improve log panel * fix: spec * doc * fix: log permission * fix: dataset schema required * add loading status * remove ui weight * manage log * fix: log detail per * doc * fix: log menu * rename permission * bg color * fix: app log per * fix: log key selector * fix: log * doc --------- Co-authored-by: heheer <zhiyu44@qq.com> Co-authored-by: colnii <1286949794@qq.com> Co-authored-by: 伍闲犬 <76519998+xqvvu@users.noreply.github.com> Co-authored-by: Ctrlz <143257420+ctrlz526@users.noreply.github.com> Co-authored-by: 伍闲犬 <whoeverimf5@gmail.com> Co-authored-by: heheer <heheer@sealos.io>
216 lines
6.9 KiB
TypeScript
216 lines
6.9 KiB
TypeScript
/* oceanbase vector crud */
|
|
import { DatasetVectorTableName } from '../constants';
|
|
import { delay, retryFn } from '@fastgpt/global/common/system/utils';
|
|
import { ObClient } from './controller';
|
|
import { type RowDataPacket } from 'mysql2/promise';
|
|
import {
|
|
type DelDatasetVectorCtrlProps,
|
|
type EmbeddingRecallCtrlProps,
|
|
type EmbeddingRecallResponse,
|
|
type InsertVectorControllerProps
|
|
} from '../controller.d';
|
|
import dayjs from 'dayjs';
|
|
import { addLog } from '../../system/log';
|
|
|
|
export class ObVectorCtrl {
|
|
constructor() {}
|
|
init = async () => {
|
|
try {
|
|
await ObClient.query(`
|
|
CREATE TABLE IF NOT EXISTS ${DatasetVectorTableName} (
|
|
id BIGINT AUTO_INCREMENT PRIMARY KEY,
|
|
vector VECTOR(1536) NOT NULL,
|
|
team_id VARCHAR(50) NOT NULL,
|
|
dataset_id VARCHAR(50) NOT NULL,
|
|
collection_id VARCHAR(50) NOT NULL,
|
|
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
|
);
|
|
`);
|
|
|
|
await ObClient.query(
|
|
`CREATE VECTOR INDEX IF NOT EXISTS vector_index ON ${DatasetVectorTableName}(vector) WITH (distance=inner_product, type=hnsw, m=32, ef_construction=128);`
|
|
);
|
|
await ObClient.query(
|
|
`CREATE INDEX IF NOT EXISTS team_dataset_collection_index ON ${DatasetVectorTableName}(team_id, dataset_id, collection_id);`
|
|
);
|
|
await ObClient.query(
|
|
`CREATE INDEX IF NOT EXISTS create_time_index ON ${DatasetVectorTableName}(createtime);`
|
|
);
|
|
|
|
addLog.info('init oceanbase successful');
|
|
} catch (error) {
|
|
addLog.error('init oceanbase error', error);
|
|
}
|
|
};
|
|
insert = async (props: InsertVectorControllerProps): Promise<{ insertIds: string[] }> => {
|
|
const { teamId, datasetId, collectionId, vectors } = props;
|
|
|
|
const values = vectors.map((vector) => [
|
|
{ key: 'vector', value: `[${vector}]` },
|
|
{ key: 'team_id', value: String(teamId) },
|
|
{ key: 'dataset_id', value: String(datasetId) },
|
|
{ key: 'collection_id', value: String(collectionId) }
|
|
]);
|
|
|
|
const { rowCount, rows } = await ObClient.insert(DatasetVectorTableName, {
|
|
values
|
|
});
|
|
|
|
if (rowCount === 0) {
|
|
return Promise.reject('insertDatasetData: no insert');
|
|
}
|
|
|
|
return {
|
|
insertIds: rows.map((row) => row.id)
|
|
};
|
|
};
|
|
delete = async (props: DelDatasetVectorCtrlProps): Promise<any> => {
|
|
const { teamId } = props;
|
|
|
|
const teamIdWhere = `team_id='${String(teamId)}' AND`;
|
|
|
|
const where = await (() => {
|
|
if ('id' in props && props.id) return `${teamIdWhere} id=${props.id}`;
|
|
|
|
if ('datasetIds' in props && props.datasetIds) {
|
|
const datasetIdWhere = `dataset_id IN (${props.datasetIds
|
|
.map((id) => `'${String(id)}'`)
|
|
.join(',')})`;
|
|
|
|
if ('collectionIds' in props && props.collectionIds) {
|
|
return `${teamIdWhere} ${datasetIdWhere} AND collection_id IN (${props.collectionIds
|
|
.map((id) => `'${String(id)}'`)
|
|
.join(',')})`;
|
|
}
|
|
|
|
return `${teamIdWhere} ${datasetIdWhere}`;
|
|
}
|
|
|
|
if ('idList' in props && Array.isArray(props.idList)) {
|
|
if (props.idList.length === 0) return;
|
|
return `${teamIdWhere} id IN (${props.idList.map((id) => String(id)).join(',')})`;
|
|
}
|
|
return Promise.reject('deleteDatasetData: no where');
|
|
})();
|
|
|
|
if (!where) return;
|
|
|
|
await ObClient.delete(DatasetVectorTableName, {
|
|
where: [where]
|
|
});
|
|
};
|
|
embRecall = async (props: EmbeddingRecallCtrlProps): Promise<EmbeddingRecallResponse> => {
|
|
const { teamId, datasetIds, vector, limit, forbidCollectionIdList, filterCollectionIdList } =
|
|
props;
|
|
|
|
// Get forbid collection
|
|
const formatForbidCollectionIdList = (() => {
|
|
if (!filterCollectionIdList) return forbidCollectionIdList;
|
|
const list = forbidCollectionIdList
|
|
.map((id) => String(id))
|
|
.filter((id) => !filterCollectionIdList.includes(id));
|
|
return list;
|
|
})();
|
|
const forbidCollectionSql =
|
|
formatForbidCollectionIdList.length > 0
|
|
? `AND collection_id NOT IN (${formatForbidCollectionIdList.map((id) => `'${id}'`).join(',')})`
|
|
: '';
|
|
|
|
// Filter by collectionId
|
|
const formatFilterCollectionId = (() => {
|
|
if (!filterCollectionIdList) return;
|
|
|
|
return filterCollectionIdList
|
|
.map((id) => String(id))
|
|
.filter((id) => !forbidCollectionIdList.includes(id));
|
|
})();
|
|
const filterCollectionIdSql = formatFilterCollectionId
|
|
? `AND collection_id IN (${formatFilterCollectionId.map((id) => `'${id}'`).join(',')})`
|
|
: '';
|
|
// Empty data
|
|
if (formatFilterCollectionId && formatFilterCollectionId.length === 0) {
|
|
return { results: [] };
|
|
}
|
|
|
|
const rows = await ObClient.query<
|
|
({
|
|
id: string;
|
|
collection_id: string;
|
|
score: number;
|
|
} & RowDataPacket)[][]
|
|
>(
|
|
`BEGIN;
|
|
SET ob_hnsw_ef_search = ${global.systemEnv?.hnswEfSearch || 100};
|
|
SELECT id, collection_id, inner_product(vector, [${vector}]) AS score
|
|
FROM ${DatasetVectorTableName}
|
|
WHERE team_id='${teamId}'
|
|
AND dataset_id IN (${datasetIds.map((id) => `'${String(id)}'`).join(',')})
|
|
${filterCollectionIdSql}
|
|
${forbidCollectionSql}
|
|
ORDER BY score desc APPROXIMATE LIMIT ${limit};
|
|
COMMIT;`
|
|
).then(([rows]) => rows[2]);
|
|
|
|
return {
|
|
results: rows.map((item) => ({
|
|
id: String(item.id),
|
|
collectionId: item.collection_id,
|
|
score: item.score
|
|
}))
|
|
};
|
|
};
|
|
getVectorDataByTime = async (start: Date, end: Date) => {
|
|
const rows = await ObClient.query<
|
|
({
|
|
id: string;
|
|
team_id: string;
|
|
dataset_id: string;
|
|
} & RowDataPacket)[]
|
|
>(
|
|
`SELECT id, team_id, dataset_id
|
|
FROM ${DatasetVectorTableName}
|
|
WHERE createtime BETWEEN '${dayjs(start).format('YYYY-MM-DD HH:mm:ss')}' AND '${dayjs(
|
|
end
|
|
).format('YYYY-MM-DD HH:mm:ss')}';
|
|
`
|
|
).then(([rows]) => rows);
|
|
|
|
return rows.map((item) => ({
|
|
id: String(item.id),
|
|
teamId: item.team_id,
|
|
datasetId: item.dataset_id
|
|
}));
|
|
};
|
|
getVectorCountByTeamId = async (teamId: string) => {
|
|
const total = await ObClient.count(DatasetVectorTableName, {
|
|
where: [['team_id', String(teamId)]]
|
|
});
|
|
|
|
return total;
|
|
};
|
|
getVectorCountByDatasetId = async (teamId: string, datasetId: string) => {
|
|
const total = await ObClient.count(DatasetVectorTableName, {
|
|
where: [['team_id', String(teamId)], 'and', ['dataset_id', String(datasetId)]]
|
|
});
|
|
|
|
return total;
|
|
};
|
|
getVectorCountByCollectionId = async (
|
|
teamId: string,
|
|
datasetId: string,
|
|
collectionId: string
|
|
) => {
|
|
const total = await ObClient.count(DatasetVectorTableName, {
|
|
where: [
|
|
['team_id', String(teamId)],
|
|
'and',
|
|
['dataset_id', String(datasetId)],
|
|
'and',
|
|
['collection_id', String(collectionId)]
|
|
]
|
|
});
|
|
|
|
return total;
|
|
};
|
|
}
|