Files
FastGPT/packages/service/core/ai/embedding/index.ts
Archer c031e6dcc9 4.6.7-alpha commit (#743)
Co-authored-by: Archer <545436317@qq.com>
Co-authored-by: heheer <71265218+newfish-cmyk@users.noreply.github.com>
2024-01-19 11:17:28 +08:00

67 lines
1.5 KiB
TypeScript

import { getAIApi } from '../config';
export type GetVectorProps = {
model: string;
input: string;
};
// text to vector
export async function getVectorsByText({
model = 'text-embedding-ada-002',
input
}: GetVectorProps) {
if (!input) {
return Promise.reject({
code: 500,
message: 'input is empty'
});
}
try {
const ai = getAIApi();
// input text to vector
const result = await ai.embeddings
.create({
model,
input: [input]
})
.then(async (res) => {
if (!res.data) {
return Promise.reject('Embedding API 404');
}
if (!res?.data?.[0]?.embedding) {
console.log(res);
// @ts-ignore
return Promise.reject(res.data?.err?.message || 'Embedding API Error');
}
return {
charsLength: input.length,
vectors: await Promise.all(res.data.map((item) => unityDimensional(item.embedding)))
};
});
return result;
} catch (error) {
console.log(`Embedding Error`, error);
return Promise.reject(error);
}
}
function unityDimensional(vector: number[]) {
if (vector.length > 1536) {
console.log(
`The current vector dimension is ${vector.length}, and the vector dimension cannot exceed 1536. The first 1536 dimensions are automatically captured`
);
return vector.slice(0, 1536);
}
let resultVector = vector;
const vectorLen = vector.length;
const zeroVector = new Array(1536 - vectorLen).fill(0);
return resultVector.concat(zeroVector);
}