Files
FastGPT/packages/global/core/dataset/training/utils.ts
Theresa 2d3117c5da feat: update ESLint config with @typescript-eslint/consistent-type-imports (#4746)
* update: Add type

* fix: update import statement for NextApiRequest type

* fix: update imports to use type for LexicalEditor and EditorState

* Refactor imports to use 'import type' for type-only imports across multiple files

- Updated imports in various components and API files to use 'import type' for better clarity and to optimize TypeScript's type checking.
- Ensured consistent usage of type imports in files related to chat, dataset, workflow, and user management.
- Improved code readability and maintainability by distinguishing between value and type imports.

* refactor: remove old ESLint configuration and add new rules

- Deleted the old ESLint configuration file from the app project.
- Added a new ESLint configuration file with updated rules and settings.
- Changed imports to use type-only imports in various files for better clarity and performance.
- Updated TypeScript configuration to remove unnecessary options.
- Added an ESLint ignore file to exclude build and dependency directories from linting.

* fix: update imports to use 'import type' for type-only imports in schema files
2025-05-06 17:33:09 +08:00

137 lines
3.0 KiB
TypeScript

import { type EmbeddingModelItemType, type LLMModelItemType } from '../../../core/ai/model.d';
import {
ChunkSettingModeEnum,
DataChunkSplitModeEnum,
DatasetCollectionDataProcessModeEnum
} from '../constants';
export const minChunkSize = 64; // min index and chunk size
// Chunk size
export const chunkAutoChunkSize = 1000;
export const getMaxChunkSize = (model: LLMModelItemType) => {
return Math.max(model.maxContext - model.maxResponse, 2000);
};
// QA
export const defaultMaxChunkSize = 8000;
export const getLLMDefaultChunkSize = (model?: LLMModelItemType) => {
if (!model) return defaultMaxChunkSize;
return Math.max(Math.min(model.maxContext - model.maxResponse, defaultMaxChunkSize), 2000);
};
export const getLLMMaxChunkSize = (model?: LLMModelItemType) => {
if (!model) return 8000;
return Math.max(model.maxContext - model.maxResponse, 2000);
};
// Index size
export const getMaxIndexSize = (model?: EmbeddingModelItemType) => {
return model?.maxToken || 512;
};
export const getAutoIndexSize = (model?: EmbeddingModelItemType) => {
return model?.defaultToken || 512;
};
const indexSizeSelectList = [
{
label: '64',
value: 64
},
{
label: '128',
value: 128
},
{
label: '256',
value: 256
},
{
label: '512',
value: 512
},
{
label: '768',
value: 768
},
{
label: '1024',
value: 1024
},
{
label: '1536',
value: 1536
},
{
label: '2048',
value: 2048
},
{
label: '3072',
value: 3072
},
{
label: '4096',
value: 4096
},
{
label: '5120',
value: 5120
},
{
label: '6144',
value: 6144
},
{
label: '7168',
value: 7168
},
{
label: '8192',
value: 8192
}
];
export const getIndexSizeSelectList = (max = 512) => {
return indexSizeSelectList.filter((item) => item.value <= max);
};
// Compute
export const computeChunkSize = (params: {
trainingType: DatasetCollectionDataProcessModeEnum;
chunkSettingMode?: ChunkSettingModeEnum;
chunkSplitMode?: DataChunkSplitModeEnum;
llmModel?: LLMModelItemType;
chunkSize?: number;
}) => {
if (params.trainingType === DatasetCollectionDataProcessModeEnum.qa) {
if (params.chunkSettingMode === ChunkSettingModeEnum.auto) {
return getLLMDefaultChunkSize(params.llmModel);
}
} else {
// chunk
if (params.chunkSettingMode === ChunkSettingModeEnum.auto) {
return chunkAutoChunkSize;
}
}
if (params.chunkSplitMode === DataChunkSplitModeEnum.char) {
return getLLMMaxChunkSize(params.llmModel);
}
return Math.min(params.chunkSize || chunkAutoChunkSize, getLLMMaxChunkSize(params.llmModel));
};
export const computeChunkSplitter = (params: {
chunkSettingMode?: ChunkSettingModeEnum;
chunkSplitMode?: DataChunkSplitModeEnum;
chunkSplitter?: string;
}) => {
if (params.chunkSettingMode === ChunkSettingModeEnum.auto) {
return undefined;
}
if (params.chunkSplitMode === DataChunkSplitModeEnum.size) {
return undefined;
}
return params.chunkSplitter;
};