mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-21 11:43:56 +00:00

* model config * feat: normalization embedding * perf: mark ui * perf: i18n * fix: rerank error tip
752 lines
22 KiB
TypeScript
752 lines
22 KiB
TypeScript
import {
|
|
DatasetSearchModeEnum,
|
|
DatasetSearchModeMap,
|
|
SearchScoreTypeEnum
|
|
} from '@fastgpt/global/core/dataset/constants';
|
|
import { recallFromVectorStore } from '../../../common/vectorStore/controller';
|
|
import { getVectorsByText } from '../../ai/embedding';
|
|
import { getEmbeddingModel, getDefaultRerankModel, getLLMModel } from '../../ai/model';
|
|
import { MongoDatasetData } from '../data/schema';
|
|
import {
|
|
DatasetDataTextSchemaType,
|
|
SearchDataResponseItemType
|
|
} from '@fastgpt/global/core/dataset/type';
|
|
import { MongoDatasetCollection } from '../collection/schema';
|
|
import { reRankRecall } from '../../../core/ai/rerank';
|
|
import { countPromptTokens } from '../../../common/string/tiktoken/index';
|
|
import { datasetSearchResultConcat } from '@fastgpt/global/core/dataset/search/utils';
|
|
import { hashStr } from '@fastgpt/global/common/string/tools';
|
|
import { jiebaSplit } from '../../../common/string/jieba';
|
|
import { getCollectionSourceData } from '@fastgpt/global/core/dataset/collection/utils';
|
|
import { Types } from '../../../common/mongo';
|
|
import json5 from 'json5';
|
|
import { MongoDatasetCollectionTags } from '../tag/schema';
|
|
import { readFromSecondary } from '../../../common/mongo/utils';
|
|
import { MongoDatasetDataText } from '../data/dataTextSchema';
|
|
import { ChatItemType } from '@fastgpt/global/core/chat/type';
|
|
import { POST } from '../../../common/api/plusRequest';
|
|
import { NodeInputKeyEnum } from '@fastgpt/global/core/workflow/constants';
|
|
import { datasetSearchQueryExtension } from './utils';
|
|
|
|
export type SearchDatasetDataProps = {
|
|
histories: ChatItemType[];
|
|
teamId: string;
|
|
model: string;
|
|
datasetIds: string[];
|
|
reRankQuery: string;
|
|
queries: string[];
|
|
|
|
[NodeInputKeyEnum.datasetSimilarity]?: number; // min distance
|
|
[NodeInputKeyEnum.datasetMaxTokens]: number; // max Token limit
|
|
[NodeInputKeyEnum.datasetSearchMode]?: `${DatasetSearchModeEnum}`;
|
|
[NodeInputKeyEnum.datasetSearchUsingReRank]?: boolean;
|
|
|
|
/*
|
|
{
|
|
tags: {
|
|
$and: ["str1","str2"],
|
|
$or: ["str1","str2",null] null means no tags
|
|
},
|
|
createTime: {
|
|
$gte: 'xx',
|
|
$lte: 'xxx'
|
|
}
|
|
}
|
|
*/
|
|
collectionFilterMatch?: string;
|
|
};
|
|
|
|
export type SearchDatasetDataResponse = {
|
|
searchRes: SearchDataResponseItemType[];
|
|
tokens: number;
|
|
searchMode: `${DatasetSearchModeEnum}`;
|
|
limit: number;
|
|
similarity: number;
|
|
usingReRank: boolean;
|
|
usingSimilarityFilter: boolean;
|
|
|
|
queryExtensionResult?: {
|
|
model: string;
|
|
inputTokens: number;
|
|
outputTokens: number;
|
|
query: string;
|
|
};
|
|
deepSearchResult?: { model: string; inputTokens: number; outputTokens: number };
|
|
};
|
|
|
|
export const datasetDataReRank = async ({
|
|
data,
|
|
query
|
|
}: {
|
|
data: SearchDataResponseItemType[];
|
|
query: string;
|
|
}): Promise<SearchDataResponseItemType[]> => {
|
|
const results = await reRankRecall({
|
|
query,
|
|
documents: data.map((item) => ({
|
|
id: item.id,
|
|
text: `${item.q}\n${item.a}`
|
|
}))
|
|
});
|
|
|
|
if (results.length === 0) {
|
|
return Promise.reject('Rerank error');
|
|
}
|
|
|
|
// add new score to data
|
|
const mergeResult = results
|
|
.map((item, index) => {
|
|
const target = data.find((dataItem) => dataItem.id === item.id);
|
|
if (!target) return null;
|
|
const score = item.score || 0;
|
|
|
|
return {
|
|
...target,
|
|
score: [{ type: SearchScoreTypeEnum.reRank, value: score, index }]
|
|
};
|
|
})
|
|
.filter(Boolean) as SearchDataResponseItemType[];
|
|
|
|
return mergeResult;
|
|
};
|
|
export const filterDatasetDataByMaxTokens = async (
|
|
data: SearchDataResponseItemType[],
|
|
maxTokens: number
|
|
) => {
|
|
const filterMaxTokensResult = await (async () => {
|
|
// Count tokens
|
|
const tokensScoreFilter = await Promise.all(
|
|
data.map(async (item) => ({
|
|
...item,
|
|
tokens: await countPromptTokens(item.q + item.a)
|
|
}))
|
|
);
|
|
|
|
const results: SearchDataResponseItemType[] = [];
|
|
let totalTokens = 0;
|
|
|
|
for await (const item of tokensScoreFilter) {
|
|
totalTokens += item.tokens;
|
|
|
|
if (totalTokens > maxTokens + 500) {
|
|
break;
|
|
}
|
|
results.push(item);
|
|
if (totalTokens > maxTokens) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return results.length === 0 ? data.slice(0, 1) : results;
|
|
})();
|
|
|
|
return filterMaxTokensResult;
|
|
};
|
|
|
|
export async function searchDatasetData(
|
|
props: SearchDatasetDataProps
|
|
): Promise<SearchDatasetDataResponse> {
|
|
let {
|
|
teamId,
|
|
reRankQuery,
|
|
queries,
|
|
model,
|
|
similarity = 0,
|
|
limit: maxTokens,
|
|
searchMode = DatasetSearchModeEnum.embedding,
|
|
usingReRank = false,
|
|
datasetIds = [],
|
|
collectionFilterMatch
|
|
} = props;
|
|
|
|
/* init params */
|
|
searchMode = DatasetSearchModeMap[searchMode] ? searchMode : DatasetSearchModeEnum.embedding;
|
|
usingReRank = usingReRank && !!getDefaultRerankModel();
|
|
|
|
// Compatible with topk limit
|
|
let set = new Set<string>();
|
|
let usingSimilarityFilter = false;
|
|
|
|
/* function */
|
|
const countRecallLimit = () => {
|
|
if (searchMode === DatasetSearchModeEnum.embedding) {
|
|
return {
|
|
embeddingLimit: 100,
|
|
fullTextLimit: 0
|
|
};
|
|
}
|
|
if (searchMode === DatasetSearchModeEnum.fullTextRecall) {
|
|
return {
|
|
embeddingLimit: 0,
|
|
fullTextLimit: 100
|
|
};
|
|
}
|
|
return {
|
|
embeddingLimit: 80,
|
|
fullTextLimit: 60
|
|
};
|
|
};
|
|
const getForbidData = async () => {
|
|
const collections = await MongoDatasetCollection.find(
|
|
{
|
|
teamId,
|
|
datasetId: { $in: datasetIds },
|
|
forbid: true
|
|
},
|
|
'_id'
|
|
);
|
|
|
|
return {
|
|
forbidCollectionIdList: collections.map((item) => String(item._id))
|
|
};
|
|
};
|
|
/*
|
|
Collection metadata filter
|
|
标签过滤:
|
|
1. and 先生效
|
|
2. and 标签和 null 不能共存,否则返回空数组
|
|
*/
|
|
const filterCollectionByMetadata = async (): Promise<string[] | undefined> => {
|
|
if (!collectionFilterMatch || !global.feConfigs.isPlus) return;
|
|
|
|
let tagCollectionIdList: string[] | undefined = undefined;
|
|
let createTimeCollectionIdList: string[] | undefined = undefined;
|
|
|
|
try {
|
|
const jsonMatch =
|
|
typeof collectionFilterMatch === 'object'
|
|
? collectionFilterMatch
|
|
: json5.parse(collectionFilterMatch);
|
|
|
|
// Tag
|
|
let andTags = jsonMatch?.tags?.$and as (string | null)[] | undefined;
|
|
let orTags = jsonMatch?.tags?.$or as (string | null)[] | undefined;
|
|
|
|
// get andTagIds
|
|
if (andTags && andTags.length > 0) {
|
|
// tag 去重
|
|
andTags = Array.from(new Set(andTags));
|
|
|
|
if (andTags.includes(null) && andTags.some((tag) => typeof tag === 'string')) {
|
|
return [];
|
|
}
|
|
|
|
if (andTags.every((tag) => typeof tag === 'string')) {
|
|
// Get tagId by tag string
|
|
const andTagIdList = await MongoDatasetCollectionTags.find(
|
|
{
|
|
teamId,
|
|
datasetId: { $in: datasetIds },
|
|
tag: { $in: andTags }
|
|
},
|
|
'_id',
|
|
{
|
|
...readFromSecondary
|
|
}
|
|
).lean();
|
|
|
|
// If you enter a tag that does not exist, none will be found
|
|
if (andTagIdList.length !== andTags.length) return [];
|
|
|
|
// Get collectionId by tagId
|
|
const collections = await MongoDatasetCollection.find(
|
|
{
|
|
teamId,
|
|
datasetId: { $in: datasetIds },
|
|
tags: { $all: andTagIdList.map((item) => String(item._id)) }
|
|
},
|
|
'_id',
|
|
{
|
|
...readFromSecondary
|
|
}
|
|
).lean();
|
|
tagCollectionIdList = collections.map((item) => String(item._id));
|
|
} else if (andTags.every((tag) => tag === null)) {
|
|
const collections = await MongoDatasetCollection.find(
|
|
{
|
|
teamId,
|
|
datasetId: { $in: datasetIds },
|
|
$or: [{ tags: { $size: 0 } }, { tags: { $exists: false } }]
|
|
},
|
|
'_id',
|
|
{
|
|
...readFromSecondary
|
|
}
|
|
).lean();
|
|
tagCollectionIdList = collections.map((item) => String(item._id));
|
|
}
|
|
} else if (orTags && orTags.length > 0) {
|
|
// Get tagId by tag string
|
|
const orTagArray = await MongoDatasetCollectionTags.find(
|
|
{
|
|
teamId,
|
|
datasetId: { $in: datasetIds },
|
|
tag: { $in: orTags.filter((tag) => tag !== null) }
|
|
},
|
|
'_id',
|
|
{ ...readFromSecondary }
|
|
).lean();
|
|
const orTagIds = orTagArray.map((item) => String(item._id));
|
|
|
|
// Get collections by tagId
|
|
const collections = await MongoDatasetCollection.find(
|
|
{
|
|
teamId,
|
|
datasetId: { $in: datasetIds },
|
|
$or: [
|
|
{ tags: { $in: orTagIds } },
|
|
...(orTags.includes(null) ? [{ tags: { $size: 0 } }] : [])
|
|
]
|
|
},
|
|
'_id',
|
|
{ ...readFromSecondary }
|
|
).lean();
|
|
|
|
tagCollectionIdList = collections.map((item) => String(item._id));
|
|
}
|
|
|
|
// time
|
|
const getCreateTime = jsonMatch?.createTime?.$gte as string | undefined;
|
|
const lteCreateTime = jsonMatch?.createTime?.$lte as string | undefined;
|
|
if (getCreateTime || lteCreateTime) {
|
|
const collections = await MongoDatasetCollection.find(
|
|
{
|
|
teamId,
|
|
datasetId: { $in: datasetIds },
|
|
createTime: {
|
|
...(getCreateTime && { $gte: new Date(getCreateTime) }),
|
|
...(lteCreateTime && {
|
|
$lte: new Date(lteCreateTime)
|
|
})
|
|
}
|
|
},
|
|
'_id'
|
|
);
|
|
createTimeCollectionIdList = collections.map((item) => String(item._id));
|
|
}
|
|
|
|
// Concat tag and time
|
|
if (tagCollectionIdList && createTimeCollectionIdList) {
|
|
return tagCollectionIdList.filter((id) => createTimeCollectionIdList!.includes(id));
|
|
} else if (tagCollectionIdList) {
|
|
return tagCollectionIdList;
|
|
} else if (createTimeCollectionIdList) {
|
|
return createTimeCollectionIdList;
|
|
}
|
|
} catch (error) {}
|
|
};
|
|
const embeddingRecall = async ({
|
|
query,
|
|
limit,
|
|
forbidCollectionIdList,
|
|
filterCollectionIdList
|
|
}: {
|
|
query: string;
|
|
limit: number;
|
|
forbidCollectionIdList: string[];
|
|
filterCollectionIdList?: string[];
|
|
}) => {
|
|
const { vectors, tokens } = await getVectorsByText({
|
|
model: getEmbeddingModel(model),
|
|
input: query,
|
|
type: 'query'
|
|
});
|
|
|
|
const { results } = await recallFromVectorStore({
|
|
teamId,
|
|
datasetIds,
|
|
vector: vectors[0],
|
|
limit,
|
|
forbidCollectionIdList,
|
|
filterCollectionIdList
|
|
});
|
|
|
|
// Get data and collections
|
|
const collectionIdList = Array.from(new Set(results.map((item) => item.collectionId)));
|
|
const [dataList, collections] = await Promise.all([
|
|
MongoDatasetData.find(
|
|
{
|
|
teamId,
|
|
datasetId: { $in: datasetIds },
|
|
collectionId: { $in: collectionIdList },
|
|
'indexes.dataId': { $in: results.map((item) => item.id?.trim()) }
|
|
},
|
|
'_id datasetId collectionId updateTime q a chunkIndex indexes',
|
|
{ ...readFromSecondary }
|
|
).lean(),
|
|
MongoDatasetCollection.find(
|
|
{
|
|
_id: { $in: collectionIdList }
|
|
},
|
|
'_id name fileId rawLink apiFileId externalFileId externalFileUrl',
|
|
{ ...readFromSecondary }
|
|
).lean()
|
|
]);
|
|
|
|
const formatResult = results
|
|
.map((item, index) => {
|
|
const collection = collections.find((col) => String(col._id) === String(item.collectionId));
|
|
if (!collection) {
|
|
console.log('Collection is not found', item);
|
|
return;
|
|
}
|
|
const data = dataList.find((data) =>
|
|
data.indexes.some((index) => index.dataId === item.id)
|
|
);
|
|
if (!data) {
|
|
console.log('Data is not found', item);
|
|
return;
|
|
}
|
|
|
|
const score = item?.score || 0;
|
|
|
|
const result: SearchDataResponseItemType = {
|
|
id: String(data._id),
|
|
updateTime: data.updateTime,
|
|
q: data.q,
|
|
a: data.a,
|
|
chunkIndex: data.chunkIndex,
|
|
datasetId: String(data.datasetId),
|
|
collectionId: String(data.collectionId),
|
|
...getCollectionSourceData(collection),
|
|
score: [{ type: SearchScoreTypeEnum.embedding, value: score, index }]
|
|
};
|
|
|
|
return result;
|
|
})
|
|
.filter(Boolean) as SearchDataResponseItemType[];
|
|
|
|
return {
|
|
embeddingRecallResults: formatResult,
|
|
tokens
|
|
};
|
|
};
|
|
const fullTextRecall = async ({
|
|
query,
|
|
limit,
|
|
filterCollectionIdList,
|
|
forbidCollectionIdList
|
|
}: {
|
|
query: string;
|
|
limit: number;
|
|
filterCollectionIdList?: string[];
|
|
forbidCollectionIdList: string[];
|
|
}): Promise<{
|
|
fullTextRecallResults: SearchDataResponseItemType[];
|
|
tokenLen: number;
|
|
}> => {
|
|
if (limit === 0) {
|
|
return {
|
|
fullTextRecallResults: [],
|
|
tokenLen: 0
|
|
};
|
|
}
|
|
|
|
const searchResults = (
|
|
await Promise.all(
|
|
datasetIds.map(async (id) => {
|
|
return MongoDatasetDataText.aggregate(
|
|
[
|
|
{
|
|
$match: {
|
|
teamId: new Types.ObjectId(teamId),
|
|
datasetId: new Types.ObjectId(id),
|
|
$text: { $search: jiebaSplit({ text: query }) },
|
|
...(filterCollectionIdList
|
|
? {
|
|
collectionId: {
|
|
$in: filterCollectionIdList.map((id) => new Types.ObjectId(id))
|
|
}
|
|
}
|
|
: {}),
|
|
...(forbidCollectionIdList && forbidCollectionIdList.length > 0
|
|
? {
|
|
collectionId: {
|
|
$nin: forbidCollectionIdList.map((id) => new Types.ObjectId(id))
|
|
}
|
|
}
|
|
: {})
|
|
}
|
|
},
|
|
{
|
|
$sort: {
|
|
score: { $meta: 'textScore' }
|
|
}
|
|
},
|
|
{
|
|
$limit: limit
|
|
},
|
|
{
|
|
$project: {
|
|
_id: 1,
|
|
collectionId: 1,
|
|
dataId: 1,
|
|
score: { $meta: 'textScore' }
|
|
}
|
|
}
|
|
],
|
|
{
|
|
...readFromSecondary
|
|
}
|
|
);
|
|
})
|
|
)
|
|
).flat() as (DatasetDataTextSchemaType & { score: number })[];
|
|
|
|
// Get data and collections
|
|
const [dataList, collections] = await Promise.all([
|
|
MongoDatasetData.find(
|
|
{
|
|
_id: { $in: searchResults.map((item) => item.dataId) }
|
|
},
|
|
'_id datasetId collectionId updateTime q a chunkIndex indexes',
|
|
{ ...readFromSecondary }
|
|
).lean(),
|
|
MongoDatasetCollection.find(
|
|
{
|
|
_id: { $in: searchResults.map((item) => item.collectionId) }
|
|
},
|
|
'_id name fileId rawLink apiFileId externalFileId externalFileUrl',
|
|
{ ...readFromSecondary }
|
|
).lean()
|
|
]);
|
|
|
|
return {
|
|
fullTextRecallResults: searchResults
|
|
.map((item, index) => {
|
|
const collection = collections.find(
|
|
(col) => String(col._id) === String(item.collectionId)
|
|
);
|
|
if (!collection) {
|
|
console.log('Collection is not found', item);
|
|
return;
|
|
}
|
|
const data = dataList.find((data) => String(data._id) === String(item.dataId));
|
|
if (!data) {
|
|
console.log('Data is not found', item);
|
|
return;
|
|
}
|
|
|
|
return {
|
|
id: String(data._id),
|
|
datasetId: String(data.datasetId),
|
|
collectionId: String(data.collectionId),
|
|
updateTime: data.updateTime,
|
|
q: data.q,
|
|
a: data.a,
|
|
chunkIndex: data.chunkIndex,
|
|
indexes: data.indexes,
|
|
...getCollectionSourceData(collection),
|
|
score: [
|
|
{
|
|
type: SearchScoreTypeEnum.fullText,
|
|
value: item.score || 0,
|
|
index
|
|
}
|
|
]
|
|
};
|
|
})
|
|
.filter(Boolean) as SearchDataResponseItemType[],
|
|
tokenLen: 0
|
|
};
|
|
};
|
|
const multiQueryRecall = async ({
|
|
embeddingLimit,
|
|
fullTextLimit
|
|
}: {
|
|
embeddingLimit: number;
|
|
fullTextLimit: number;
|
|
}) => {
|
|
// multi query recall
|
|
const embeddingRecallResList: SearchDataResponseItemType[][] = [];
|
|
const fullTextRecallResList: SearchDataResponseItemType[][] = [];
|
|
let totalTokens = 0;
|
|
|
|
const [{ forbidCollectionIdList }, filterCollectionIdList] = await Promise.all([
|
|
getForbidData(),
|
|
filterCollectionByMetadata()
|
|
]);
|
|
|
|
await Promise.all(
|
|
queries.map(async (query) => {
|
|
const [{ tokens, embeddingRecallResults }, { fullTextRecallResults }] = await Promise.all([
|
|
embeddingRecall({
|
|
query,
|
|
limit: embeddingLimit,
|
|
forbidCollectionIdList,
|
|
filterCollectionIdList
|
|
}),
|
|
// FullText tmp
|
|
fullTextRecall({
|
|
query,
|
|
limit: fullTextLimit,
|
|
filterCollectionIdList,
|
|
forbidCollectionIdList
|
|
})
|
|
]);
|
|
totalTokens += tokens;
|
|
|
|
embeddingRecallResList.push(embeddingRecallResults);
|
|
fullTextRecallResList.push(fullTextRecallResults);
|
|
})
|
|
);
|
|
|
|
// rrf concat
|
|
const rrfEmbRecall = datasetSearchResultConcat(
|
|
embeddingRecallResList.map((list) => ({ k: 60, list }))
|
|
).slice(0, embeddingLimit);
|
|
const rrfFTRecall = datasetSearchResultConcat(
|
|
fullTextRecallResList.map((list) => ({ k: 60, list }))
|
|
).slice(0, fullTextLimit);
|
|
|
|
return {
|
|
tokens: totalTokens,
|
|
embeddingRecallResults: rrfEmbRecall,
|
|
fullTextRecallResults: rrfFTRecall
|
|
};
|
|
};
|
|
|
|
/* main step */
|
|
// count limit
|
|
const { embeddingLimit, fullTextLimit } = countRecallLimit();
|
|
|
|
// recall
|
|
const { embeddingRecallResults, fullTextRecallResults, tokens } = await multiQueryRecall({
|
|
embeddingLimit,
|
|
fullTextLimit
|
|
});
|
|
|
|
// ReRank results
|
|
const reRankResults = await (async () => {
|
|
if (!usingReRank) return [];
|
|
|
|
set = new Set<string>(embeddingRecallResults.map((item) => item.id));
|
|
const concatRecallResults = embeddingRecallResults.concat(
|
|
fullTextRecallResults.filter((item) => !set.has(item.id))
|
|
);
|
|
|
|
// remove same q and a data
|
|
set = new Set<string>();
|
|
const filterSameDataResults = concatRecallResults.filter((item) => {
|
|
// 删除所有的标点符号与空格等,只对文本进行比较
|
|
const str = hashStr(`${item.q}${item.a}`.replace(/[^\p{L}\p{N}]/gu, ''));
|
|
if (set.has(str)) return false;
|
|
set.add(str);
|
|
return true;
|
|
});
|
|
try {
|
|
return await datasetDataReRank({
|
|
query: reRankQuery,
|
|
data: filterSameDataResults
|
|
});
|
|
} catch (error) {
|
|
usingReRank = false;
|
|
return [];
|
|
}
|
|
})();
|
|
|
|
// embedding recall and fullText recall rrf concat
|
|
const rrfConcatResults = datasetSearchResultConcat([
|
|
{ k: 60, list: embeddingRecallResults },
|
|
{ k: 60, list: fullTextRecallResults },
|
|
{ k: 58, list: reRankResults }
|
|
]);
|
|
|
|
// remove same q and a data
|
|
set = new Set<string>();
|
|
const filterSameDataResults = rrfConcatResults.filter((item) => {
|
|
// 删除所有的标点符号与空格等,只对文本进行比较
|
|
const str = hashStr(`${item.q}${item.a}`.replace(/[^\p{L}\p{N}]/gu, ''));
|
|
if (set.has(str)) return false;
|
|
set.add(str);
|
|
return true;
|
|
});
|
|
|
|
// score filter
|
|
const scoreFilter = (() => {
|
|
if (usingReRank) {
|
|
usingSimilarityFilter = true;
|
|
|
|
return filterSameDataResults.filter((item) => {
|
|
const reRankScore = item.score.find((item) => item.type === SearchScoreTypeEnum.reRank);
|
|
if (reRankScore && reRankScore.value < similarity) return false;
|
|
return true;
|
|
});
|
|
}
|
|
if (searchMode === DatasetSearchModeEnum.embedding) {
|
|
usingSimilarityFilter = true;
|
|
return filterSameDataResults.filter((item) => {
|
|
const embeddingScore = item.score.find(
|
|
(item) => item.type === SearchScoreTypeEnum.embedding
|
|
);
|
|
if (embeddingScore && embeddingScore.value < similarity) return false;
|
|
return true;
|
|
});
|
|
}
|
|
return filterSameDataResults;
|
|
})();
|
|
|
|
// token filter
|
|
const filterMaxTokensResult = await filterDatasetDataByMaxTokens(scoreFilter, maxTokens);
|
|
|
|
return {
|
|
searchRes: filterMaxTokensResult,
|
|
tokens,
|
|
searchMode,
|
|
limit: maxTokens,
|
|
similarity,
|
|
usingReRank,
|
|
usingSimilarityFilter
|
|
};
|
|
}
|
|
|
|
export type DefaultSearchDatasetDataProps = SearchDatasetDataProps & {
|
|
[NodeInputKeyEnum.datasetSearchUsingExtensionQuery]?: boolean;
|
|
[NodeInputKeyEnum.datasetSearchExtensionModel]?: string;
|
|
[NodeInputKeyEnum.datasetSearchExtensionBg]?: string;
|
|
};
|
|
export const defaultSearchDatasetData = async ({
|
|
datasetSearchUsingExtensionQuery,
|
|
datasetSearchExtensionModel,
|
|
datasetSearchExtensionBg,
|
|
...props
|
|
}: DefaultSearchDatasetDataProps): Promise<SearchDatasetDataResponse> => {
|
|
const query = props.queries[0];
|
|
|
|
const extensionModel = datasetSearchUsingExtensionQuery
|
|
? getLLMModel(datasetSearchExtensionModel)
|
|
: undefined;
|
|
|
|
const { concatQueries, rewriteQuery, aiExtensionResult } = await datasetSearchQueryExtension({
|
|
query,
|
|
extensionModel,
|
|
extensionBg: datasetSearchExtensionBg
|
|
});
|
|
|
|
const result = await searchDatasetData({
|
|
...props,
|
|
reRankQuery: rewriteQuery,
|
|
queries: concatQueries
|
|
});
|
|
|
|
return {
|
|
...result,
|
|
queryExtensionResult: aiExtensionResult
|
|
? {
|
|
model: aiExtensionResult.model,
|
|
inputTokens: aiExtensionResult.inputTokens,
|
|
outputTokens: aiExtensionResult.outputTokens,
|
|
query: concatQueries.join('\n')
|
|
}
|
|
: undefined
|
|
};
|
|
};
|
|
|
|
export type DeepRagSearchProps = SearchDatasetDataProps & {
|
|
[NodeInputKeyEnum.datasetDeepSearchModel]?: string;
|
|
[NodeInputKeyEnum.datasetDeepSearchMaxTimes]?: number;
|
|
[NodeInputKeyEnum.datasetDeepSearchBg]?: string;
|
|
};
|
|
export const deepRagSearch = (data: DeepRagSearchProps) =>
|
|
POST<SearchDatasetDataResponse>('/core/dataset/deepRag', data);
|