Files
FastGPT/projects/app/data/config.json
Archer a209856d48 Fix config (#3476)
* feat: SiliconCloud doc

* feat: SiliconCloud doc

* perf: silicon cloud doc

* perf: silicon cloud doc
2024-12-26 21:36:09 +08:00

173 lines
6.6 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// 已使用 json5 进行解析,会自动去掉注释,无需手动去除
{
"feConfigs": {
"lafEnv": "https://laf.dev" // laf环境。 https://laf.run (杭州阿里云) ,或者私有化的laf环境。如果使用 Laf openapi 功能,需要最新版的 laf 。
},
"systemEnv": {
"vectorMaxProcess": 15, // 向量处理线程数量
"qaMaxProcess": 15, // 问答拆分线程数量
"tokenWorkers": 50, // Token 计算线程保持数,会持续占用内存,不能设置太大。
"pgHNSWEfSearch": 100 // 向量搜索参数。越大搜索越精确但是速度越慢。设置为100有99%+精度。
},
"llmModels": [
{
"provider": "OpenAI", // 模型提供商主要用于分类展示目前已经内置提供商包括https://github.com/labring/FastGPT/blob/main/packages/global/core/ai/provider.ts, 可 pr 提供新的提供商,或直接填写 Other
"model": "gpt-4o-mini", // 模型名(对应OneAPI中渠道的模型名)
"name": "gpt-4o-mini", // 模型别名
"maxContext": 125000, // 最大上下文
"maxResponse": 16000, // 最大回复
"quoteMaxToken": 120000, // 最大引用内容
"maxTemperature": 1.2, // 最大温度
"charsPointsPrice": 0, // n积分/1k token商业版
"censor": false, // 是否开启敏感校验(商业版)
"vision": true, // 是否支持图片输入
"datasetProcess": true, // 是否设置为文本理解模型QA务必保证至少有一个为true否则知识库会报错
"usedInClassify": true, // 是否用于问题分类务必保证至少有一个为true
"usedInExtractFields": true, // 是否用于内容提取务必保证至少有一个为true
"usedInToolCall": true, // 是否用于工具调用务必保证至少有一个为true
"usedInQueryExtension": true, // 是否用于问题优化务必保证至少有一个为true
"toolChoice": true, // 是否支持工具选择(分类,内容提取,工具调用会用到。)
"functionCall": false, // 是否支持函数调用(分类,内容提取,工具调用会用到。会优先使用 toolChoice如果为false则使用 functionCall如果仍为 false则使用提示词模式
"customCQPrompt": "", // 自定义文本分类提示词(不支持工具和函数调用的模型
"customExtractPrompt": "", // 自定义内容提取提示词
"defaultSystemChatPrompt": "", // 对话默认携带的系统提示词
"defaultConfig": {}, // 请求API时挟带一些默认配置比如 GLM4 的 top_p
"fieldMap": {} // 字段映射o1 模型需要把 max_tokens 映射为 max_completion_tokens
},
{
"provider": "OpenAI",
"model": "gpt-4o",
"name": "gpt-4o",
"maxContext": 125000,
"maxResponse": 4000,
"quoteMaxToken": 120000,
"maxTemperature": 1.2,
"charsPointsPrice": 0,
"censor": false,
"vision": true,
"datasetProcess": true,
"usedInClassify": true,
"usedInExtractFields": true,
"usedInToolCall": true,
"usedInQueryExtension": true,
"toolChoice": true,
"functionCall": false,
"customCQPrompt": "",
"customExtractPrompt": "",
"defaultSystemChatPrompt": "",
"defaultConfig": {},
"fieldMap": {}
},
{
"provider": "OpenAI",
"model": "o1-mini",
"name": "o1-mini",
"maxContext": 125000,
"maxResponse": 65000,
"quoteMaxToken": 120000,
"maxTemperature": 1.2,
"charsPointsPrice": 0,
"censor": false,
"vision": false,
"datasetProcess": true,
"usedInClassify": true,
"usedInExtractFields": true,
"usedInToolCall": true,
"usedInQueryExtension": true,
"toolChoice": false,
"functionCall": false,
"customCQPrompt": "",
"customExtractPrompt": "",
"defaultSystemChatPrompt": "",
"defaultConfig": {
"temperature": 1,
"max_tokens": null,
"stream": false
}
},
{
"provider": "OpenAI",
"model": "o1-preview",
"name": "o1-preview",
"maxContext": 125000,
"maxResponse": 32000,
"quoteMaxToken": 120000,
"maxTemperature": 1.2,
"charsPointsPrice": 0,
"censor": false,
"vision": false,
"datasetProcess": true,
"usedInClassify": true,
"usedInExtractFields": true,
"usedInToolCall": true,
"usedInQueryExtension": true,
"toolChoice": false,
"functionCall": false,
"customCQPrompt": "",
"customExtractPrompt": "",
"defaultSystemChatPrompt": "",
"defaultConfig": {
"temperature": 1,
"max_tokens": null,
"stream": false
}
}
],
"vectorModels": [
{
"provider": "OpenAI",
"model": "text-embedding-3-small",
"name": "text-embedding-3-small",
"charsPointsPrice": 0,
"defaultToken": 512,
"maxToken": 3000,
"weight": 100
},
{
"provider": "OpenAI",
"model": "text-embedding-3-large",
"name": "text-embedding-3-large",
"charsPointsPrice": 0,
"defaultToken": 512,
"maxToken": 3000,
"weight": 100,
"defaultConfig": {
"dimensions": 1024
}
},
{
"provider": "OpenAI",
"model": "text-embedding-ada-002", // 模型名与OneAPI对应
"name": "Embedding-2", // 模型展示名
"charsPointsPrice": 0, // n积分/1k token
"defaultToken": 700, // 默认文本分割时候的 token
"maxToken": 3000, // 最大 token
"weight": 100, // 优先训练权重
"defaultConfig": {}, // 自定义额外参数。例如,如果希望使用 embedding3-large 的话,可以传入 dimensions:1024来返回1024维度的向量。目前必须小于1536维度
"dbConfig": {}, // 存储时的额外参数(非对称向量模型时候需要用到)
"queryConfig": {} // 参训时的额外参数
}
],
"reRankModels": [],
"audioSpeechModels": [
{
"model": "tts-1",
"name": "OpenAI TTS1",
"charsPointsPrice": 0,
"voices": [
{ "label": "Alloy", "value": "alloy", "bufferId": "openai-Alloy" },
{ "label": "Echo", "value": "echo", "bufferId": "openai-Echo" },
{ "label": "Fable", "value": "fable", "bufferId": "openai-Fable" },
{ "label": "Onyx", "value": "onyx", "bufferId": "openai-Onyx" },
{ "label": "Nova", "value": "nova", "bufferId": "openai-Nova" },
{ "label": "Shimmer", "value": "shimmer", "bufferId": "openai-Shimmer" }
]
}
],
"whisperModel": {
"model": "whisper-1",
"name": "Whisper1",
"charsPointsPrice": 0
}
}