mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 05:12:39 +00:00

* add pdf-mineru 添加了基于MinerU的PDF转Markdown接口服务,调用方式与pdf-marker一致,开箱即用。 * Rename Readme.md to README.md * Rename pdf_parser_mineru.py to main.py
283 lines
11 KiB
Python
283 lines
11 KiB
Python
import json
|
||
import os
|
||
from base64 import b64encode
|
||
from glob import glob
|
||
from io import StringIO
|
||
from typing import Tuple, Union
|
||
|
||
import uvicorn
|
||
from fastapi import FastAPI, UploadFile, File
|
||
from fastapi.responses import JSONResponse
|
||
from loguru import logger
|
||
from tempfile import TemporaryDirectory
|
||
from pathlib import Path
|
||
import fitz # PyMuPDF
|
||
import asyncio
|
||
from concurrent.futures import ProcessPoolExecutor
|
||
import torch
|
||
import multiprocessing as mp
|
||
from contextlib import asynccontextmanager
|
||
import time
|
||
|
||
import magic_pdf.model as model_config
|
||
from magic_pdf.config.enums import SupportedPdfParseMethod
|
||
from magic_pdf.data.data_reader_writer import DataWriter, FileBasedDataWriter
|
||
from magic_pdf.data.dataset import PymuDocDataset
|
||
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
|
||
from magic_pdf.operators.models import InferenceResult
|
||
from magic_pdf.operators.pipes import PipeResult
|
||
|
||
model_config.__use_inside_model__ = True
|
||
|
||
app = FastAPI()
|
||
|
||
process_variables = {}
|
||
my_pool = None
|
||
|
||
class MemoryDataWriter(DataWriter):
|
||
def __init__(self):
|
||
self.buffer = StringIO()
|
||
|
||
def write(self, path: str, data: bytes) -> None:
|
||
if isinstance(data, str):
|
||
self.buffer.write(data)
|
||
else:
|
||
self.buffer.write(data.decode("utf-8"))
|
||
|
||
def write_string(self, path: str, data: str) -> None:
|
||
self.buffer.write(data)
|
||
|
||
def get_value(self) -> str:
|
||
return self.buffer.getvalue() # 修复:使用 getvalue() 而不是 get_value()
|
||
|
||
def close(self):
|
||
self.buffer.close()
|
||
|
||
def worker_init(counter, lock):
|
||
num_gpus = torch.cuda.device_count()
|
||
processes_per_gpu = int(os.environ.get('PROCESSES_PER_GPU', 1))
|
||
with lock:
|
||
worker_id = counter.value
|
||
counter.value += 1
|
||
if num_gpus == 0:
|
||
device = 'cpu'
|
||
else:
|
||
device_id = worker_id // processes_per_gpu
|
||
if device_id >= num_gpus:
|
||
raise ValueError(f"Worker ID {worker_id} exceeds available GPUs ({num_gpus}).")
|
||
device = f'cuda:{device_id}'
|
||
config = {
|
||
"parse_method": "auto",
|
||
"ADDITIONAL_KEY": "VALUE"
|
||
}
|
||
converter = init_converter(config, device_id)
|
||
pid = os.getpid()
|
||
process_variables[pid] = converter
|
||
print(f"Worker {worker_id}: Models loaded successfully on {device}!")
|
||
|
||
def init_converter(config, device_id):
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = str(device_id)
|
||
return config
|
||
|
||
def img_to_base64(img_path: str) -> str:
|
||
with open(img_path, "rb") as img_file:
|
||
return b64encode(img_file.read()).decode('utf-8')
|
||
|
||
def embed_images_as_base64(md_content: str, image_dir: str) -> str:
|
||
lines = md_content.split('\n')
|
||
new_lines = []
|
||
for line in lines:
|
||
if line.startswith("" in line:
|
||
start_idx = line.index("](") + 2
|
||
end_idx = line.index(")", start_idx)
|
||
img_rel_path = line[start_idx:end_idx]
|
||
img_name = os.path.basename(img_rel_path)
|
||
img_path = os.path.join(image_dir, img_name)
|
||
logger.info(f"Checking image: {img_path}")
|
||
if os.path.exists(img_path):
|
||
img_base64 = img_to_base64(img_path)
|
||
new_line = f""
|
||
new_lines.append(new_line)
|
||
else:
|
||
logger.warning(f"Image not found: {img_path}")
|
||
new_lines.append(line)
|
||
else:
|
||
new_lines.append(line)
|
||
return '\n'.join(new_lines)
|
||
|
||
def process_pdf(pdf_path, output_dir):
|
||
try:
|
||
pid = os.getpid()
|
||
config = process_variables.get(pid, "No variable")
|
||
parse_method = config["parse_method"]
|
||
|
||
with open(str(pdf_path), "rb") as f:
|
||
pdf_bytes = f.read()
|
||
|
||
output_path = Path(output_dir) / f"{Path(pdf_path).stem}_output"
|
||
os.makedirs(str(output_path), exist_ok=True)
|
||
image_dir = os.path.join(str(output_path), "images")
|
||
os.makedirs(image_dir, exist_ok=True)
|
||
image_writer = FileBasedDataWriter(str(output_path))
|
||
|
||
# 处理 PDF
|
||
infer_result, pipe_result = process_pdf_content(pdf_bytes, parse_method, image_writer)
|
||
|
||
md_content_writer = MemoryDataWriter()
|
||
pipe_result.dump_md(md_content_writer, "", "images")
|
||
md_content = md_content_writer.get_value()
|
||
md_content_writer.close()
|
||
|
||
# 获取保存的图片路径
|
||
image_paths = glob(os.path.join(image_dir, "*.jpg"))
|
||
logger.info(f"Saved images by magic_pdf: {image_paths}")
|
||
|
||
# 如果 magic_pdf 未保存足够图片,使用 fitz 提取
|
||
if not image_paths or len(image_paths) < 3: # 假设至少 3 张图片
|
||
logger.warning("Insufficient images saved by magic_pdf, falling back to fitz extraction")
|
||
image_map = {}
|
||
original_names = []
|
||
# 收集 Markdown 中的所有图片文件名
|
||
for line in md_content.split('\n'):
|
||
if line.startswith("" in line:
|
||
start_idx = line.index("](") + 2
|
||
end_idx = line.index(")", start_idx)
|
||
img_rel_path = line[start_idx:end_idx]
|
||
original_names.append(os.path.basename(img_rel_path))
|
||
|
||
# 提取图片并映射
|
||
with fitz.open(pdf_path) as doc:
|
||
img_counter = 0
|
||
for page_num, page in enumerate(doc):
|
||
for img_index, img in enumerate(page.get_images(full=True)):
|
||
xref = img[0]
|
||
base = doc.extract_image(xref)
|
||
if img_counter < len(original_names):
|
||
img_name = original_names[img_counter] # 使用 Markdown 中的原始文件名
|
||
else:
|
||
img_name = f"page_{page_num}_img_{img_index}.jpg"
|
||
img_path = os.path.join(image_dir, img_name)
|
||
with open(img_path, "wb") as f:
|
||
f.write(base["image"])
|
||
if img_counter < len(original_names):
|
||
image_map[original_names[img_counter]] = img_name
|
||
img_counter += 1
|
||
|
||
image_paths = glob(os.path.join(image_dir, "*.jpg"))
|
||
logger.info(f"Images extracted by fitz: {image_paths}")
|
||
|
||
# 更新 Markdown(仅在必要时替换)
|
||
for original_name, new_name in image_map.items():
|
||
if original_name != new_name:
|
||
md_content = md_content.replace(f"images/{original_name}", f"images/{new_name}")
|
||
|
||
return {
|
||
"status": "success",
|
||
"text": md_content,
|
||
"output_path": str(output_path),
|
||
"images": image_paths
|
||
}
|
||
except Exception as e:
|
||
logger.error(f"Error processing PDF: {str(e)}")
|
||
return {
|
||
"status": "error",
|
||
"message": str(e),
|
||
"file": str(pdf_path)
|
||
}
|
||
|
||
def process_pdf_content(pdf_bytes, parse_method, image_writer):
|
||
ds = PymuDocDataset(pdf_bytes)
|
||
infer_result: InferenceResult = None
|
||
pipe_result: PipeResult = None
|
||
|
||
if parse_method == "ocr":
|
||
infer_result = ds.apply(doc_analyze, ocr=True)
|
||
pipe_result = infer_result.pipe_ocr_mode(image_writer)
|
||
elif parse_method == "txt":
|
||
infer_result = ds.apply(doc_analyze, ocr=False)
|
||
pipe_result = infer_result.pipe_txt_mode(image_writer)
|
||
else: # auto
|
||
if ds.classify() == SupportedPdfParseMethod.OCR:
|
||
infer_result = ds.apply(doc_analyze, ocr=True)
|
||
pipe_result = infer_result.pipe_ocr_mode(image_writer)
|
||
else:
|
||
infer_result = ds.apply(doc_analyze, ocr=False)
|
||
pipe_result = infer_result.pipe_txt_mode(image_writer)
|
||
|
||
return infer_result, pipe_result
|
||
|
||
@asynccontextmanager
|
||
async def lifespan(app: FastAPI):
|
||
try:
|
||
mp.set_start_method('spawn')
|
||
except RuntimeError:
|
||
raise RuntimeError("Set start method to spawn twice. This may be a temporary issue with the script. Please try running it again.")
|
||
global my_pool
|
||
manager = mp.Manager()
|
||
worker_counter = manager.Value('i', 0)
|
||
worker_lock = manager.Lock()
|
||
gpu_count = torch.cuda.device_count()
|
||
my_pool = ProcessPoolExecutor(max_workers=gpu_count * int(os.environ.get('PROCESSES_PER_GPU', 1)),
|
||
initializer=worker_init, initargs=(worker_counter, worker_lock))
|
||
yield
|
||
if my_pool:
|
||
my_pool.shutdown(wait=True)
|
||
print("Application shutdown, cleaning up...")
|
||
|
||
app.router.lifespan_context = lifespan
|
||
|
||
@app.post("/v2/parse/file")
|
||
async def process_pdfs(file: UploadFile = File(...)):
|
||
s_time = time.time()
|
||
with TemporaryDirectory() as temp_dir:
|
||
temp_path = Path(temp_dir) / file.filename
|
||
with open(str(temp_path), "wb") as buffer:
|
||
buffer.write(await file.read())
|
||
|
||
# 验证 PDF 文件
|
||
try:
|
||
with fitz.open(str(temp_path)) as pdf_document:
|
||
total_pages = pdf_document.page_count
|
||
except fitz.fitz.FileDataError:
|
||
return JSONResponse(content={"success": False, "message": "", "error": "Invalid PDF file"}, status_code=400)
|
||
except Exception as e:
|
||
logger.error(f"Error opening PDF: {str(e)}")
|
||
return JSONResponse(content={"success": False, "message": "", "error": f"Internal server error: {str(e)}"}, status_code=500)
|
||
|
||
try:
|
||
loop = asyncio.get_running_loop()
|
||
results = await loop.run_in_executor(
|
||
my_pool,
|
||
process_pdf,
|
||
str(temp_path),
|
||
str(temp_dir)
|
||
)
|
||
|
||
if results.get("status") == "error":
|
||
return JSONResponse(content={
|
||
"success": False,
|
||
"message": "",
|
||
"error": results.get("message")
|
||
}, status_code=500)
|
||
|
||
# 嵌入 Base64
|
||
image_dir = os.path.join(results.get("output_path"), "images")
|
||
md_content_with_base64 = embed_images_as_base64(results.get("text"), image_dir)
|
||
|
||
return {
|
||
"success": True,
|
||
"message": "",
|
||
"markdown": md_content_with_base64,
|
||
"pages": total_pages
|
||
}
|
||
except Exception as e:
|
||
logger.error(f"Error in process_pdfs: {str(e)}")
|
||
return JSONResponse(content={
|
||
"success": False,
|
||
"message": "",
|
||
"error": f"Internal server error: {str(e)}"
|
||
}, status_code=500)
|
||
|
||
if __name__ == "__main__":
|
||
uvicorn.run(app, host="0.0.0.0", port=7231)
|