mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-21 03:35:36 +00:00
462 lines
13 KiB
TypeScript
462 lines
13 KiB
TypeScript
import { type LLMModelItemType } from '@fastgpt/global/core/ai/model.d';
|
||
import type {
|
||
ChatCompletionCreateParamsNonStreaming,
|
||
ChatCompletionCreateParamsStreaming,
|
||
CompletionFinishReason,
|
||
StreamChatType,
|
||
UnStreamChatType,
|
||
CompletionUsage,
|
||
ChatCompletionMessageToolCall
|
||
} from '@fastgpt/global/core/ai/type';
|
||
import { getLLMModel } from './model';
|
||
import { getLLMDefaultUsage } from '@fastgpt/global/core/ai/constants';
|
||
import { getNanoid } from '@fastgpt/global/common/string/tools';
|
||
import json5 from 'json5';
|
||
|
||
/*
|
||
Count response max token
|
||
*/
|
||
export const computedMaxToken = ({
|
||
maxToken,
|
||
model
|
||
}: {
|
||
maxToken?: number;
|
||
model: LLMModelItemType;
|
||
}) => {
|
||
if (maxToken === undefined) return;
|
||
|
||
maxToken = Math.min(maxToken, model.maxResponse);
|
||
return maxToken;
|
||
};
|
||
|
||
// FastGPT temperature range: [0,10], ai temperature:[0,2],{0,1]……
|
||
export const computedTemperature = ({
|
||
model,
|
||
temperature
|
||
}: {
|
||
model: LLMModelItemType;
|
||
temperature: number;
|
||
}) => {
|
||
if (typeof model.maxTemperature !== 'number') return undefined;
|
||
temperature = +(model.maxTemperature * (temperature / 10)).toFixed(2);
|
||
temperature = Math.max(temperature, 0.01);
|
||
|
||
return temperature;
|
||
};
|
||
|
||
type CompletionsBodyType =
|
||
| ChatCompletionCreateParamsNonStreaming
|
||
| ChatCompletionCreateParamsStreaming;
|
||
type InferCompletionsBody<T> = T extends { stream: true }
|
||
? ChatCompletionCreateParamsStreaming
|
||
: T extends { stream: false }
|
||
? ChatCompletionCreateParamsNonStreaming
|
||
: ChatCompletionCreateParamsNonStreaming | ChatCompletionCreateParamsStreaming;
|
||
|
||
export const llmCompletionsBodyFormat = <T extends CompletionsBodyType>(
|
||
body: T & {
|
||
stop?: string;
|
||
},
|
||
model: string | LLMModelItemType
|
||
): InferCompletionsBody<T> => {
|
||
const modelData = typeof model === 'string' ? getLLMModel(model) : model;
|
||
if (!modelData) {
|
||
return body as unknown as InferCompletionsBody<T>;
|
||
}
|
||
|
||
const response_format = (() => {
|
||
if (!body.response_format?.type) return undefined;
|
||
if (body.response_format.type === 'json_schema') {
|
||
try {
|
||
return {
|
||
type: 'json_schema',
|
||
json_schema: json5.parse(body.response_format?.json_schema as unknown as string)
|
||
};
|
||
} catch (error) {
|
||
throw new Error('Json schema error');
|
||
}
|
||
}
|
||
if (body.response_format.type) {
|
||
return {
|
||
type: body.response_format.type
|
||
};
|
||
}
|
||
return undefined;
|
||
})();
|
||
|
||
const stop = body.stop ?? undefined;
|
||
|
||
const requestBody: T = {
|
||
...body,
|
||
model: modelData.model,
|
||
temperature:
|
||
typeof body.temperature === 'number'
|
||
? computedTemperature({
|
||
model: modelData,
|
||
temperature: body.temperature
|
||
})
|
||
: undefined,
|
||
...modelData?.defaultConfig,
|
||
response_format,
|
||
stop: stop?.split('|')
|
||
};
|
||
|
||
// field map
|
||
if (modelData.fieldMap) {
|
||
Object.entries(modelData.fieldMap).forEach(([sourceKey, targetKey]) => {
|
||
// @ts-ignore
|
||
requestBody[targetKey] = body[sourceKey];
|
||
// @ts-ignore
|
||
delete requestBody[sourceKey];
|
||
});
|
||
}
|
||
|
||
return requestBody as unknown as InferCompletionsBody<T>;
|
||
};
|
||
|
||
export const llmStreamResponseToAnswerText = async (
|
||
response: StreamChatType
|
||
): Promise<{
|
||
text: string;
|
||
usage?: CompletionUsage;
|
||
toolCalls?: ChatCompletionMessageToolCall[];
|
||
}> => {
|
||
let answer = '';
|
||
let usage = getLLMDefaultUsage();
|
||
let toolCalls: ChatCompletionMessageToolCall[] = [];
|
||
let callingTool: { name: string; arguments: string } | null = null;
|
||
|
||
for await (const part of response) {
|
||
usage = part.usage || usage;
|
||
const responseChoice = part.choices?.[0]?.delta;
|
||
|
||
const content = responseChoice?.content || '';
|
||
answer += content;
|
||
|
||
// Tool calls
|
||
if (responseChoice?.tool_calls?.length) {
|
||
responseChoice.tool_calls.forEach((toolCall) => {
|
||
const index = toolCall.index;
|
||
|
||
if (toolCall.id || callingTool) {
|
||
// 有 id,代表新 call 工具
|
||
if (toolCall.id) {
|
||
callingTool = {
|
||
name: toolCall.function?.name || '',
|
||
arguments: toolCall.function?.arguments || ''
|
||
};
|
||
} else if (callingTool) {
|
||
// Continue call(Perhaps the name of the previous function was incomplete)
|
||
callingTool.name += toolCall.function?.name || '';
|
||
callingTool.arguments += toolCall.function?.arguments || '';
|
||
}
|
||
|
||
if (!callingTool) {
|
||
return;
|
||
}
|
||
|
||
// New tool, add to list.
|
||
const toolId = getNanoid();
|
||
toolCalls[index] = {
|
||
...toolCall,
|
||
id: toolId,
|
||
type: 'function',
|
||
function: callingTool
|
||
};
|
||
callingTool = null;
|
||
} else {
|
||
/* arg 追加到当前工具的参数里 */
|
||
const arg: string = toolCall?.function?.arguments ?? '';
|
||
const currentTool = toolCalls[index];
|
||
if (currentTool && arg) {
|
||
currentTool.function.arguments += arg;
|
||
}
|
||
}
|
||
});
|
||
}
|
||
}
|
||
return {
|
||
text: parseReasoningContent(answer)[1],
|
||
usage,
|
||
toolCalls
|
||
};
|
||
};
|
||
export const llmUnStreamResponseToAnswerText = async (
|
||
response: UnStreamChatType
|
||
): Promise<{
|
||
text: string;
|
||
toolCalls?: ChatCompletionMessageToolCall[];
|
||
usage?: CompletionUsage;
|
||
}> => {
|
||
const answer = response.choices?.[0]?.message?.content || '';
|
||
const toolCalls = response.choices?.[0]?.message?.tool_calls;
|
||
return {
|
||
text: answer,
|
||
usage: response.usage,
|
||
toolCalls
|
||
};
|
||
};
|
||
export const formatLLMResponse = async (response: StreamChatType | UnStreamChatType) => {
|
||
if ('iterator' in response) {
|
||
return llmStreamResponseToAnswerText(response);
|
||
}
|
||
return llmUnStreamResponseToAnswerText(response);
|
||
};
|
||
|
||
// Parse <think></think> tags to think and answer - unstream response
|
||
export const parseReasoningContent = (text: string): [string, string] => {
|
||
const regex = /<think>([\s\S]*?)<\/think>/;
|
||
const match = text.match(regex);
|
||
|
||
if (!match) {
|
||
return ['', text];
|
||
}
|
||
|
||
const thinkContent = match[1].trim();
|
||
|
||
// Add answer (remaining text after think tag)
|
||
const answerContent = text.slice(match.index! + match[0].length);
|
||
|
||
return [thinkContent, answerContent];
|
||
};
|
||
|
||
export const removeDatasetCiteText = (text: string, retainDatasetCite: boolean) => {
|
||
return retainDatasetCite ? text : text.replace(/\[([a-f0-9]{24})\]\(CITE\)/g, '');
|
||
};
|
||
|
||
// Parse llm stream part
|
||
export const parseLLMStreamResponse = () => {
|
||
let isInThinkTag: boolean | undefined = undefined;
|
||
let startTagBuffer = '';
|
||
let endTagBuffer = '';
|
||
|
||
const thinkStartChars = '<think>';
|
||
const thinkEndChars = '</think>';
|
||
|
||
let citeBuffer = '';
|
||
const maxCiteBufferLength = 32; // [Object](CITE)总长度为32
|
||
|
||
/*
|
||
parseThinkTag - 只控制是否主动解析 <think></think>,如果接口已经解析了,则不再解析。
|
||
retainDatasetCite -
|
||
*/
|
||
const parsePart = ({
|
||
part,
|
||
parseThinkTag = true,
|
||
retainDatasetCite = true
|
||
}: {
|
||
part: {
|
||
choices: {
|
||
delta: {
|
||
content?: string | null;
|
||
reasoning_content?: string;
|
||
};
|
||
finish_reason?: CompletionFinishReason;
|
||
}[];
|
||
};
|
||
parseThinkTag?: boolean;
|
||
retainDatasetCite?: boolean;
|
||
}): {
|
||
reasoningContent: string;
|
||
content: string;
|
||
responseContent: string;
|
||
finishReason: CompletionFinishReason;
|
||
} => {
|
||
const finishReason = part.choices?.[0]?.finish_reason || null;
|
||
const content = part.choices?.[0]?.delta?.content || '';
|
||
// @ts-ignore
|
||
const reasoningContent = part.choices?.[0]?.delta?.reasoning_content || '';
|
||
const isStreamEnd = !!finishReason;
|
||
|
||
// Parse think
|
||
const { reasoningContent: parsedThinkReasoningContent, content: parsedThinkContent } = (() => {
|
||
if (reasoningContent || !parseThinkTag) {
|
||
isInThinkTag = false;
|
||
return { reasoningContent, content };
|
||
}
|
||
|
||
if (!content) {
|
||
return {
|
||
reasoningContent: '',
|
||
content: ''
|
||
};
|
||
}
|
||
|
||
// 如果不在 think 标签中,或者有 reasoningContent(接口已解析),则返回 reasoningContent 和 content
|
||
if (isInThinkTag === false) {
|
||
return {
|
||
reasoningContent: '',
|
||
content
|
||
};
|
||
}
|
||
|
||
// 检测是否为 think 标签开头的数据
|
||
if (isInThinkTag === undefined) {
|
||
// Parse content think and answer
|
||
startTagBuffer += content;
|
||
// 太少内容时候,暂时不解析
|
||
if (startTagBuffer.length < thinkStartChars.length) {
|
||
if (isStreamEnd) {
|
||
const tmpContent = startTagBuffer;
|
||
startTagBuffer = '';
|
||
return {
|
||
reasoningContent: '',
|
||
content: tmpContent
|
||
};
|
||
}
|
||
return {
|
||
reasoningContent: '',
|
||
content: ''
|
||
};
|
||
}
|
||
|
||
if (startTagBuffer.startsWith(thinkStartChars)) {
|
||
isInThinkTag = true;
|
||
return {
|
||
reasoningContent: startTagBuffer.slice(thinkStartChars.length),
|
||
content: ''
|
||
};
|
||
}
|
||
|
||
// 如果未命中 think 标签,则认为不在 think 标签中,返回 buffer 内容作为 content
|
||
isInThinkTag = false;
|
||
return {
|
||
reasoningContent: '',
|
||
content: startTagBuffer
|
||
};
|
||
}
|
||
|
||
// 确认是 think 标签内容,开始返回 think 内容,并实时检测 </think>
|
||
/*
|
||
检测 </think> 方案。
|
||
存储所有疑似 </think> 的内容,直到检测到完整的 </think> 标签或超出 </think> 长度。
|
||
content 返回值包含以下几种情况:
|
||
abc - 完全未命中尾标签
|
||
abc<th - 命中一部分尾标签
|
||
abc</think> - 完全命中尾标签
|
||
abc</think>abc - 完全命中尾标签
|
||
</think>abc - 完全命中尾标签
|
||
k>abc - 命中一部分尾标签
|
||
*/
|
||
// endTagBuffer 专门用来记录疑似尾标签的内容
|
||
if (endTagBuffer) {
|
||
endTagBuffer += content;
|
||
if (endTagBuffer.includes(thinkEndChars)) {
|
||
isInThinkTag = false;
|
||
const answer = endTagBuffer.slice(thinkEndChars.length);
|
||
return {
|
||
reasoningContent: '',
|
||
content: answer
|
||
};
|
||
} else if (endTagBuffer.length >= thinkEndChars.length) {
|
||
// 缓存内容超出尾标签长度,且仍未命中 </think>,则认为本次猜测 </think> 失败,仍处于 think 阶段。
|
||
const tmp = endTagBuffer;
|
||
endTagBuffer = '';
|
||
return {
|
||
reasoningContent: tmp,
|
||
content: ''
|
||
};
|
||
}
|
||
return {
|
||
reasoningContent: '',
|
||
content: ''
|
||
};
|
||
} else if (content.includes(thinkEndChars)) {
|
||
// 返回内容,完整命中</think>,直接结束
|
||
isInThinkTag = false;
|
||
const [think, answer] = content.split(thinkEndChars);
|
||
return {
|
||
reasoningContent: think,
|
||
content: answer
|
||
};
|
||
} else {
|
||
// 无 buffer,且未命中 </think>,开始疑似 </think> 检测。
|
||
for (let i = 1; i < thinkEndChars.length; i++) {
|
||
const partialEndTag = thinkEndChars.slice(0, i);
|
||
// 命中一部分尾标签
|
||
if (content.endsWith(partialEndTag)) {
|
||
const think = content.slice(0, -partialEndTag.length);
|
||
endTagBuffer += partialEndTag;
|
||
return {
|
||
reasoningContent: think,
|
||
content: ''
|
||
};
|
||
}
|
||
}
|
||
}
|
||
|
||
// 完全未命中尾标签,还是 think 阶段。
|
||
return {
|
||
reasoningContent: content,
|
||
content: ''
|
||
};
|
||
})();
|
||
|
||
// Parse datset cite
|
||
if (retainDatasetCite) {
|
||
return {
|
||
reasoningContent: parsedThinkReasoningContent,
|
||
content: parsedThinkContent,
|
||
responseContent: parsedThinkContent,
|
||
finishReason
|
||
};
|
||
}
|
||
|
||
// 缓存包含 [ 的字符串,直到超出 maxCiteBufferLength 再一次性返回
|
||
const parseCite = (text: string) => {
|
||
// 结束时,返回所有剩余内容
|
||
if (isStreamEnd) {
|
||
const content = citeBuffer + text;
|
||
return {
|
||
content: removeDatasetCiteText(content, false)
|
||
};
|
||
}
|
||
|
||
// 新内容包含 [,初始化缓冲数据
|
||
if (text.includes('[')) {
|
||
const index = text.indexOf('[');
|
||
const beforeContent = citeBuffer + text.slice(0, index);
|
||
citeBuffer = text.slice(index);
|
||
|
||
// beforeContent 可能是:普通字符串,带 [ 的字符串
|
||
return {
|
||
content: removeDatasetCiteText(beforeContent, false)
|
||
};
|
||
}
|
||
// 处于 Cite 缓冲区,判断是否满足条件
|
||
else if (citeBuffer) {
|
||
citeBuffer += text;
|
||
|
||
// 检查缓冲区长度是否达到完整Quote长度或已经流结束
|
||
if (citeBuffer.length >= maxCiteBufferLength) {
|
||
const content = removeDatasetCiteText(citeBuffer, false);
|
||
citeBuffer = '';
|
||
|
||
return {
|
||
content
|
||
};
|
||
} else {
|
||
// 暂时不返回内容
|
||
return { content: '' };
|
||
}
|
||
}
|
||
|
||
return {
|
||
content: text
|
||
};
|
||
};
|
||
const { content: pasedCiteContent } = parseCite(parsedThinkContent);
|
||
|
||
return {
|
||
reasoningContent: parsedThinkReasoningContent,
|
||
content: parsedThinkContent,
|
||
responseContent: pasedCiteContent,
|
||
finishReason
|
||
};
|
||
};
|
||
|
||
return {
|
||
parsePart
|
||
};
|
||
};
|