Files
FastGPT/packages/service/common/vectorDB/milvus/index.ts
Archer c51395b2c8 V4.12.0 features (#5435)
* add logs chart (#5352)

* charts

* chart data

* log chart

* delete

* rename api

* fix

* move api

* fix

* fix

* pro config

* fix

* feat: Repository interaction (#5356)

* feat: 1好像功能没问题了,明天再测

* feat: 2 解决了昨天遗留的bug,但全选按钮又bug了

* feat: 3 第三版,解决了全选功能bug

* feat: 4 第四版,下面改小细节

* feat: 5 我勒个痘

* feat: 6

* feat: 6 pr

* feat: 7

* feat: 8

* feat: 9

* feat: 10

* feat: 11

* feat: 12

* perf: checkbox ui

* refactor: tweak login loyout (#5357)

Co-authored-by: Archer <545436317@qq.com>

* login ui

* app chat log chart pro display (#5392)

* app chat log chart pro display

* add canopen props

* perf: pro tag tip

* perf: pro tag tip

* feat: openrouter provider (#5406)

* perf: login ui

* feat: openrouter provider

* provider

* perf: custom error throw

* perf: emb batch (#5407)

* perf: emb batch

* perf: vector retry

* doc

* doc (#5411)

* doc

* fix: team folder will add to workflow

* fix: generateToc shell

* Tool price (#5376)

* resolve conflicts for cherry-pick

* fix i18n

* Enhance system plugin template data structure and update ToolSelectModal to include CostTooltip component

* refactor: update systemKeyCost type to support array of objects in plugin and workflow types

* refactor: simplify systemKeyCost type across plugin and workflow types to a single number

* refactor: streamline systemKeyCost handling in plugin and workflow components

* fix

* fix

* perf: toolset price config;fix: workflow array selector ui (#5419)

* fix: workflow array selector ui

* update default model tip

* perf: toolset price config

* doc

* fix: test

* Refactor/chat (#5418)

* refactor: add homepage configuration; add home chat page; add side bar animated collapse and layout

* fix: fix lint rules

* chore: improve logics and code

* chore: more clearer logics

* chore: adjust api

---------

Co-authored-by: Archer <545436317@qq.com>

* perf: chat setting code

* del history

* logo image

* perf: home chat ui

* feat: enhance chat response handling with external links and user info (#5427)

* feat: enhance chat response handling with external links and user info

* fix

* cite code

* perf: toolset add in workflow

* fix: test

* fix: search paraentId

* Fix/chat (#5434)

* wip: rebase了upstream

* wip: adapt mobile UI

* fix: fix chat page logic and UI

* fix: fix UI and improve some logics

* fix: model selector missing logo; vision model to retrieve file

* perf: role selector

* fix: chat ui

* optimize export app chat log (#5436)

* doc

* chore: move components to proper directory; fix the api to get app list (#5437)

* chore: improve team app panel display form (#5438)

* feat: add home chat log tab

* chore: improve team app panel display form

* chore: improve log panel

* fix: spec

* doc

* fix: log permission

* fix: dataset schema required

* add loading status

* remove ui weight

* manage log

* fix: log detail per

* doc

* fix: log menu

* rename permission

* bg color

* fix: app log per

* fix: log key selector

* fix: log

* doc

---------

Co-authored-by: heheer <zhiyu44@qq.com>
Co-authored-by: colnii <1286949794@qq.com>
Co-authored-by: 伍闲犬 <76519998+xqvvu@users.noreply.github.com>
Co-authored-by: Ctrlz <143257420+ctrlz526@users.noreply.github.com>
Co-authored-by: 伍闲犬 <whoeverimf5@gmail.com>
Co-authored-by: heheer <heheer@sealos.io>
2025-08-12 22:22:18 +08:00

328 lines
9.6 KiB
TypeScript

import { DataType, LoadState, MilvusClient } from '@zilliz/milvus2-sdk-node';
import {
DatasetVectorDbName,
DatasetVectorTableName,
MILVUS_ADDRESS,
MILVUS_TOKEN
} from '../constants';
import type {
DelDatasetVectorCtrlProps,
EmbeddingRecallCtrlProps,
EmbeddingRecallResponse,
InsertVectorControllerProps
} from '../controller.d';
import { delay, retryFn } from '@fastgpt/global/common/system/utils';
import { addLog } from '../../system/log';
import { customNanoid } from '@fastgpt/global/common/string/tools';
export class MilvusCtrl {
constructor() {}
getClient = async () => {
if (!MILVUS_ADDRESS) {
return Promise.reject('MILVUS_ADDRESS is not set');
}
if (global.milvusClient) return global.milvusClient;
global.milvusClient = new MilvusClient({
address: MILVUS_ADDRESS,
token: MILVUS_TOKEN
});
await global.milvusClient.connectPromise;
addLog.info(`Milvus connected`);
return global.milvusClient;
};
init = async () => {
const client = await this.getClient();
// init db(zilliz cloud will error)
try {
const { db_names } = await client.listDatabases();
if (!db_names.includes(DatasetVectorDbName)) {
await client.createDatabase({
db_name: DatasetVectorDbName
});
}
await client.useDatabase({
db_name: DatasetVectorDbName
});
} catch (error) {}
// init collection and index
const { value: hasCollection } = await client.hasCollection({
collection_name: DatasetVectorTableName
});
if (!hasCollection) {
const result = await client.createCollection({
collection_name: DatasetVectorTableName,
description: 'Store dataset vector',
enableDynamicField: true,
fields: [
{
name: 'id',
data_type: DataType.Int64,
is_primary_key: true,
autoID: false // disable auto id, and we need to set id in insert
},
{
name: 'vector',
data_type: DataType.FloatVector,
dim: 1536
},
{ name: 'teamId', data_type: DataType.VarChar, max_length: 64 },
{ name: 'datasetId', data_type: DataType.VarChar, max_length: 64 },
{ name: 'collectionId', data_type: DataType.VarChar, max_length: 64 },
{
name: 'createTime',
data_type: DataType.Int64
}
],
index_params: [
{
field_name: 'vector',
index_name: 'vector_HNSW',
index_type: 'HNSW',
metric_type: 'IP',
params: { efConstruction: 32, M: 64 }
},
{
field_name: 'teamId',
index_type: 'Trie'
},
{
field_name: 'datasetId',
index_type: 'Trie'
},
{
field_name: 'collectionId',
index_type: 'Trie'
},
{
field_name: 'createTime',
index_type: 'STL_SORT'
}
]
});
addLog.info(`Create milvus collection: `, result);
}
const { state: colLoadState } = await client.getLoadState({
collection_name: DatasetVectorTableName
});
if (
colLoadState === LoadState.LoadStateNotExist ||
colLoadState === LoadState.LoadStateNotLoad
) {
await client.loadCollectionSync({
collection_name: DatasetVectorTableName
});
addLog.info(`Milvus collection load success`);
}
};
insert = async (props: InsertVectorControllerProps): Promise<{ insertIds: string[] }> => {
const client = await this.getClient();
const { teamId, datasetId, collectionId, vectors } = props;
const generateId = () => {
// in js, the max safe integer is 2^53 - 1: 9007199254740991
// so we can generate a random number between 1-8 as the first digit
// and the rest 15 digits can be random
const firstDigit = customNanoid('12345678', 1);
const restDigits = customNanoid('1234567890', 15);
return Number(`${firstDigit}${restDigits}`);
};
const result = await client.insert({
collection_name: DatasetVectorTableName,
data: vectors.map((vector) => ({
id: generateId(),
vector,
teamId: String(teamId),
datasetId: String(datasetId),
collectionId: String(collectionId),
createTime: Date.now()
}))
});
const insertIds = (() => {
if ('int_id' in result.IDs) {
return result.IDs.int_id.data.map((id) => String(id));
}
return result.IDs.str_id.data.map((id) => String(id));
})();
return {
insertIds
};
};
delete = async (props: DelDatasetVectorCtrlProps): Promise<any> => {
const { teamId } = props;
const client = await this.getClient();
const teamIdWhere = `(teamId=="${String(teamId)}")`;
const where = await (() => {
if ('id' in props && props.id) return `(id==${props.id})`;
if ('datasetIds' in props && props.datasetIds) {
const datasetIdWhere = `(datasetId in [${props.datasetIds
.map((id) => `"${String(id)}"`)
.join(',')}])`;
if ('collectionIds' in props && props.collectionIds) {
return `${datasetIdWhere} and (collectionId in [${props.collectionIds
.map((id) => `"${String(id)}"`)
.join(',')}])`;
}
return `${datasetIdWhere}`;
}
if ('idList' in props && Array.isArray(props.idList)) {
if (props.idList.length === 0) return;
return `(id in [${props.idList.map((id) => String(id)).join(',')}])`;
}
return Promise.reject('deleteDatasetData: no where');
})();
if (!where) return;
const concatWhere = `${teamIdWhere} and ${where}`;
await client.delete({
collection_name: DatasetVectorTableName,
filter: concatWhere
});
};
embRecall = async (props: EmbeddingRecallCtrlProps): Promise<EmbeddingRecallResponse> => {
const client = await this.getClient();
const { teamId, datasetIds, vector, limit, forbidCollectionIdList, filterCollectionIdList } =
props;
// Forbid collection
const formatForbidCollectionIdList = (() => {
if (!filterCollectionIdList) return forbidCollectionIdList;
const list = forbidCollectionIdList
.map((id) => String(id))
.filter((id) => !filterCollectionIdList.includes(id));
return list;
})();
const forbidColQuery =
formatForbidCollectionIdList.length > 0
? `and (collectionId not in [${formatForbidCollectionIdList.map((id) => `"${id}"`).join(',')}])`
: '';
// filter collection id
const formatFilterCollectionId = (() => {
if (!filterCollectionIdList) return;
return filterCollectionIdList
.map((id) => String(id))
.filter((id) => !forbidCollectionIdList.includes(id));
})();
const collectionIdQuery = formatFilterCollectionId
? `and (collectionId in [${formatFilterCollectionId.map((id) => `"${id}"`)}])`
: ``;
// Empty data
if (formatFilterCollectionId && formatFilterCollectionId.length === 0) {
return { results: [] };
}
const { results } = await retryFn(() =>
client.search({
collection_name: DatasetVectorTableName,
data: vector,
limit,
filter: `(teamId == "${teamId}") and (datasetId in [${datasetIds.map((id) => `"${id}"`).join(',')}]) ${collectionIdQuery} ${forbidColQuery}`,
output_fields: ['collectionId']
})
);
const rows = results as {
score: number;
id: string;
collectionId: string;
}[];
return {
results: rows.map((item) => ({
id: String(item.id),
collectionId: item.collectionId,
score: item.score
}))
};
};
getVectorCountByTeamId = async (teamId: string) => {
const client = await this.getClient();
const result = await client.query({
collection_name: DatasetVectorTableName,
output_fields: ['count(*)'],
filter: `teamId == "${String(teamId)}"`
});
const total = result.data?.[0]?.['count(*)'] as number;
return total;
};
getVectorCountByDatasetId = async (teamId: string, datasetId: string) => {
const client = await this.getClient();
const result = await client.query({
collection_name: DatasetVectorTableName,
output_fields: ['count(*)'],
filter: `(teamId == "${String(teamId)}") and (dataset == "${String(datasetId)}")`
});
const total = result.data?.[0]?.['count(*)'] as number;
return total;
};
getVectorCountByCollectionId = async (
teamId: string,
datasetId: string,
collectionId: string
) => {
const client = await this.getClient();
const result = await client.query({
collection_name: DatasetVectorTableName,
output_fields: ['count(*)'],
filter: `(teamId == "${String(teamId)}") and (datasetId == "${String(datasetId)}") and (collectionId == "${String(collectionId)}")`
});
const total = result.data?.[0]?.['count(*)'] as number;
return total;
};
getVectorDataByTime = async (start: Date, end: Date) => {
const client = await this.getClient();
const startTimestamp = new Date(start).getTime();
const endTimestamp = new Date(end).getTime();
const result = await client.query({
collection_name: DatasetVectorTableName,
output_fields: ['id', 'teamId', 'datasetId'],
filter: `(createTime >= ${startTimestamp}) and (createTime <= ${endTimestamp})`
});
const rows = result.data as {
id: string;
teamId: string;
datasetId: string;
}[];
return rows.map((item) => ({
id: String(item.id),
teamId: item.teamId,
datasetId: item.datasetId
}));
};
}