mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 21:13:50 +00:00
208 lines
5.8 KiB
TypeScript
208 lines
5.8 KiB
TypeScript
import { SplitData } from '@/service/mongo';
|
||
import { getOpenAIApi } from '@/service/utils/chat';
|
||
import { httpsAgent } from '@/service/utils/tools';
|
||
import { getOpenApiKey } from '../utils/openai';
|
||
import type { ChatCompletionRequestMessage } from 'openai';
|
||
import { ChatModelNameEnum } from '@/constants/model';
|
||
import { pushSplitDataBill } from '@/service/events/pushBill';
|
||
import { generateVector } from './generateVector';
|
||
import { connectRedis } from '../redis';
|
||
import { VecModelDataPrefix } from '@/constants/redis';
|
||
import { customAlphabet } from 'nanoid';
|
||
import { ModelSplitDataSchema } from '@/types/mongoSchema';
|
||
const nanoid = customAlphabet('abcdefghijklmnopqrstuvwxyz1234567890', 12);
|
||
|
||
export async function generateQA(next = false): Promise<any> {
|
||
if (global.generatingQA === true && !next) return;
|
||
global.generatingQA = true;
|
||
|
||
let dataId = null;
|
||
|
||
try {
|
||
const redis = await connectRedis();
|
||
// 找出一个需要生成的 dataItem
|
||
const data = await SplitData.aggregate([
|
||
{ $match: { textList: { $exists: true, $ne: [] } } },
|
||
{ $sample: { size: 1 } }
|
||
]);
|
||
|
||
const dataItem: ModelSplitDataSchema = data[0];
|
||
|
||
if (!dataItem) {
|
||
console.log('没有需要生成 QA 的数据');
|
||
global.generatingQA = false;
|
||
return;
|
||
}
|
||
|
||
dataId = dataItem._id;
|
||
|
||
// 获取 5 个源文本
|
||
const textList: string[] = dataItem.textList.slice(-5);
|
||
|
||
// 获取 openapi Key
|
||
let userApiKey = '',
|
||
systemKey = '';
|
||
try {
|
||
const key = await getOpenApiKey(dataItem.userId);
|
||
userApiKey = key.userApiKey;
|
||
systemKey = key.systemKey;
|
||
} catch (error: any) {
|
||
if (error?.code === 501) {
|
||
// 余额不够了, 清空该记录
|
||
await SplitData.findByIdAndUpdate(dataItem._id, {
|
||
textList: [],
|
||
errorText: error.message
|
||
});
|
||
throw new Error(error?.message);
|
||
}
|
||
|
||
throw new Error('获取 openai key 失败');
|
||
}
|
||
|
||
console.log(`正在生成一组QA, 包含 ${textList.length} 组文本。ID: ${dataItem._id}`);
|
||
|
||
const startTime = Date.now();
|
||
|
||
// 获取 openai 请求实例
|
||
const chatAPI = getOpenAIApi(userApiKey || systemKey);
|
||
const systemPrompt: ChatCompletionRequestMessage = {
|
||
role: 'system',
|
||
content: `${
|
||
dataItem.prompt || '下面是一段长文本'
|
||
},请从中提取出5至30个问题和答案,并按以下格式返回: Q1:\nA1:\nQ2:\nA2:\n`
|
||
};
|
||
|
||
// 请求 chatgpt 获取回答
|
||
const response = await Promise.allSettled(
|
||
textList.map((text) =>
|
||
chatAPI
|
||
.createChatCompletion(
|
||
{
|
||
model: ChatModelNameEnum.GPT35,
|
||
temperature: 0.8,
|
||
n: 1,
|
||
messages: [
|
||
systemPrompt,
|
||
{
|
||
role: 'user',
|
||
content: text
|
||
}
|
||
]
|
||
},
|
||
{
|
||
timeout: 180000,
|
||
httpsAgent
|
||
}
|
||
)
|
||
.then((res) => {
|
||
const rawContent = res?.data.choices[0].message?.content || ''; // chatgpt 原本的回复
|
||
const result = splitText(res?.data.choices[0].message?.content || ''); // 格式化后的QA对
|
||
// 计费
|
||
pushSplitDataBill({
|
||
isPay: !userApiKey && result.length > 0,
|
||
userId: dataItem.userId,
|
||
type: 'QA',
|
||
text: systemPrompt.content + text + rawContent,
|
||
tokenLen: res.data.usage?.total_tokens || 0
|
||
});
|
||
return {
|
||
rawContent,
|
||
result
|
||
};
|
||
})
|
||
)
|
||
);
|
||
|
||
// 获取成功的回答
|
||
const successResponse: {
|
||
rawContent: string;
|
||
result: {
|
||
q: string;
|
||
a: string;
|
||
}[];
|
||
}[] = response.filter((item) => item.status === 'fulfilled').map((item: any) => item.value);
|
||
|
||
const resultList = successResponse.map((item) => item.result).flat();
|
||
|
||
await Promise.allSettled([
|
||
SplitData.findByIdAndUpdate(dataItem._id, {
|
||
textList: dataItem.textList.slice(0, -5)
|
||
}), // 删掉后5个数据
|
||
...resultList.map((item) => {
|
||
// 插入 redis
|
||
return redis.sendCommand([
|
||
'HMSET',
|
||
`${VecModelDataPrefix}:${nanoid()}`,
|
||
'userId',
|
||
String(dataItem.userId),
|
||
'modelId',
|
||
String(dataItem.modelId),
|
||
'q',
|
||
item.q,
|
||
'text',
|
||
item.a,
|
||
'status',
|
||
'waiting'
|
||
]);
|
||
})
|
||
]);
|
||
|
||
console.log(
|
||
'生成QA成功,time:',
|
||
`${(Date.now() - startTime) / 1000}s`,
|
||
'QA数量:',
|
||
resultList.length
|
||
);
|
||
|
||
generateQA(true);
|
||
generateVector();
|
||
} catch (error: any) {
|
||
// log
|
||
if (error?.response) {
|
||
console.log('openai error: 生成QA错误');
|
||
console.log(error.response?.status, error.response?.statusText, error.response?.data);
|
||
} else {
|
||
console.log('生成QA错误:', error);
|
||
}
|
||
|
||
if (dataId && error?.response?.data?.error?.type === 'insufficient_quota') {
|
||
console.log('api 余额不足');
|
||
|
||
await SplitData.findByIdAndUpdate(dataId, {
|
||
textList: [],
|
||
errorText: 'api 余额不足'
|
||
});
|
||
|
||
generateQA(true);
|
||
return;
|
||
}
|
||
|
||
setTimeout(() => {
|
||
generateQA(true);
|
||
}, 4000);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* 检查文本是否按格式返回
|
||
*/
|
||
function splitText(text: string) {
|
||
const regex = /Q\d+:(\s*)(.*)(\s*)A\d+:(\s*)([\s\S]*?)(?=Q|$)/g; // 匹配Q和A的正则表达式
|
||
const matches = text.matchAll(regex); // 获取所有匹配到的结果
|
||
|
||
const result = []; // 存储最终的结果
|
||
for (const match of matches) {
|
||
const q = match[2];
|
||
const a = match[5];
|
||
if (q && a) {
|
||
// 如果Q和A都存在,就将其添加到结果中
|
||
result.push({
|
||
q,
|
||
a: a.trim().replace(/\n\s*/g, '\n')
|
||
});
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|