Files
FastGPT/packages/service/core/ai/utils.ts
Archer 4d20274a97 feat: think tag parse (#3805) (#3808)
* feat: think tag parse

* remove some model config

* feat: parse think tag test
2025-02-17 20:57:36 +08:00

106 lines
2.8 KiB
TypeScript

import { LLMModelItemType } from '@fastgpt/global/core/ai/model.d';
import {
ChatCompletionCreateParamsNonStreaming,
ChatCompletionCreateParamsStreaming,
StreamChatType
} from '@fastgpt/global/core/ai/type';
import { getLLMModel } from './model';
/*
Count response max token
*/
export const computedMaxToken = ({
maxToken,
model
}: {
maxToken?: number;
model: LLMModelItemType;
}) => {
if (maxToken === undefined) return;
maxToken = Math.min(maxToken, model.maxResponse);
return maxToken;
};
// FastGPT temperature range: [0,10], ai temperature:[0,2],{0,1]……
export const computedTemperature = ({
model,
temperature
}: {
model: LLMModelItemType;
temperature: number;
}) => {
if (typeof model.maxTemperature !== 'number') return undefined;
temperature = +(model.maxTemperature * (temperature / 10)).toFixed(2);
temperature = Math.max(temperature, 0.01);
return temperature;
};
type CompletionsBodyType =
| ChatCompletionCreateParamsNonStreaming
| ChatCompletionCreateParamsStreaming;
type InferCompletionsBody<T> = T extends { stream: true }
? ChatCompletionCreateParamsStreaming
: T extends { stream: false }
? ChatCompletionCreateParamsNonStreaming
: ChatCompletionCreateParamsNonStreaming | ChatCompletionCreateParamsStreaming;
export const llmCompletionsBodyFormat = <T extends CompletionsBodyType>(
body: T & {
response_format?: any;
json_schema?: string;
stop?: string;
},
model: string | LLMModelItemType
): InferCompletionsBody<T> => {
const modelData = typeof model === 'string' ? getLLMModel(model) : model;
if (!modelData) {
return body as unknown as InferCompletionsBody<T>;
}
const response_format = body.response_format;
const json_schema = body.json_schema ?? undefined;
const stop = body.stop ?? undefined;
const requestBody: T = {
...body,
temperature:
typeof body.temperature === 'number'
? computedTemperature({
model: modelData,
temperature: body.temperature
})
: undefined,
...modelData?.defaultConfig,
response_format: response_format
? {
type: response_format,
json_schema
}
: undefined,
stop: stop?.split('|')
};
// field map
if (modelData.fieldMap) {
Object.entries(modelData.fieldMap).forEach(([sourceKey, targetKey]) => {
// @ts-ignore
requestBody[targetKey] = body[sourceKey];
// @ts-ignore
delete requestBody[sourceKey];
});
}
return requestBody as unknown as InferCompletionsBody<T>;
};
export const llmStreamResponseToText = async (response: StreamChatType) => {
let answer = '';
for await (const part of response) {
const content = part.choices?.[0]?.delta?.content || '';
answer += content;
}
return answer;
};